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Wildfire Image Analysis



Computer vision

Classification

Object 
detection

Semantic 
segmentation 

Classify an image 

into a specific class

Classify and localize 

objects within an image

Classify each pixel in an 

image into a specific class

Computer Vision Tasks
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Computer Vision Tasks

Fire / No Fire Burnt area / No Burnt area  Smoke / No Smoke 

Image Classification 
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Computer Vision Tasks

Fire detection Smoke Detection

Object Detection 
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Object Detection = classification + localization

•Find what is in a picture as well as where it is.

Computer Vision Tasks



7

Classification – Regression
•Given a training set of images annotated with bounding boxes
(coordinates and class per depicted object)

◦ Classification: predict probabilities that each box belongs to each of
the classes present in the dataset

◦ Regression: for each depicted object predict bounding box coordinates
in some predefined format, e.g., coordinates of the bounding box center
along with its width and height 𝑥, 𝑦, 𝑤, ℎ .

Computer Vision Tasks
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One stage vs Two stage object detection architectures [THA2023].

Computer Vision Tasks
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Fire Segmentation Fire/Smoke Segmentation

Computer Vision Tasks
Semantic Image Region Segmentation

• Assign class labels to each image pixel.



Semantic image segmentation of a sports event [EVE2011].

Computer Vision Tasks

Semantic Image Region Segmentation



Semantic image segmentation for autonomous driving [COR2016].

Computer Vision Tasks

Semantic Image Region Segmentation
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The overlap between a predicted bounding box (P) and a 

ground truth bounding box (G) is measured using IoU:

Intersection Over Union (IoU)

Evaluation Measures

𝐼𝑜𝑈 𝑃, 𝐺 =
𝑃 ∩ 𝐺

𝑃 ∪ 𝐺
.
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Predicted Bound box evaluation :

Evaluation Measures

Bounding box evaluation [KUK2023].

TP : IOU > 0.5
FP : IOU < 0.5
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Mean Average precision (mAP) for object detection:

• Combines precision and recall to evaluate detection accuracy.

• Uses Intersection over Union (IoU) to match predicted and 

ground-truth bounding boxes.

• Calculates the average precision for each class and averages 

across all classes.

• Rewards precise alignment and penalizes missing or incorrect 

predictions.

Mean IoU (mIoU) for Segmentation:

• Averages IoU across all pixels and classes to assess 

segmentation quality.

Evaluation Measures
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Wildfire Image Analysis



• An image domain 𝒳 must be segmented in 𝑁 different regions 

𝑅1, … , 𝑅𝑁.

• The segmentation rule is a logical predicate of the form 𝑃 ℛ

• Image segmentation partitions the set 𝒳 into the subsets 𝑅𝑖, 
𝑖 = 1,… , 𝑁, having the following properties:

𝒳 =∪𝑖=1
𝑁 𝑅𝑖 ,

𝑅𝑖 ∩ 𝑅𝑗 = ∅, 𝑖 ≠ 𝑗,

𝑃 𝑅𝑖 = 𝑇𝑅𝑈𝐸, 𝑖 = 1,… , 𝑁,

𝑃 𝑅𝑖 ∪ 𝑅𝑗 = 𝐹𝐴𝐿𝑆𝐸, 𝑖 ≠ 𝑗,
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Image  Region Segmentation

Definitions



Image  Region Segmentation

Image thresholding.



Image  Region Segmentation

(a)

a) Original image; b) Image thresholding in four equirange regions.

(b)

Image thresholding



Image  Region Segmentation

𝑅00 𝑅01 𝑅02 𝑅03

𝑅1

𝑅0

𝑎 𝑏

a) Image segmentation by region splitting; b) Quadtree.

Split/merge segmentation algorithm
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Convolution layers produce feature maps. 

• The final feature map is flattened into a 1D 

vector.

Fully Connected Layers:

• Reduce dimensionality to match the number 

of classes in the dataset.

• Perform the final classification by mapping 

features to class probabilities. [BIT2024]

Semantic Image Segmentation

CNN Image Classification
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In contrast to Image classification, in 

segmentation 𝐶 segmention maps of 

dimensions 𝐻 × 𝑊 are produced:

• 𝐶: Number of classes in the dataset.

• 𝐻,𝑊: Height and width of the image.

[SUP2024]

Semantic Image Segmentation

Semantic image segmentation



• Fully convolutional network for 

semantic segmentation.

• Usually, the final feature map is 

upsampled to match the resolution 

of the input image.

End-to-end CNN training for semantic image segmentation [LON2015].

Semantic Image Segmentation

Semantic image segmentation



• As the CNN model radically reduces the resolution of the 
input image, it fails to produce fine-grained segmentations. 

Coarse image segmentation [LON2015]. 

Semantic Image Segmentation



• To address this problem, skip network

connections are added in fully convolutional

network that combine the final prediction layer with

previous fine-grained layers.

• Combining fine layers and coarse layers allows the

model to make local predictions that respect global
structure.

Semantic Image Segmentation



Improved segmentation results with skip connections [LON2015]. 

Semantic Image Segmentation



• More advanced semantic segmentation network architectures

have emerged.

• The capacity of the decoder was expanded by using a U-

shaped network architecture (U-Net).

• Consists of a contracting path to capture context and a

symmetric expanding path that enables precise localization.

Deep Semantic Image segmentation

U-Net architecture



U-Net network architecture [RON 2015].

Semantic Image Segmentation



Semantic Image Segmentation

Spatial Pyramid Pooling

• Semantic image segmentation performance was

also increased by combining the advantages of a

Spatial Pyramid Pooling (SPP) [ZHA2017]

module and the encoder-decoder architecture.

• SPP module can encode multi-scale contextual

information, by probing the incoming features with

filters or pooling operations at multiple rates and

multiple effective fields-of-view.



Semantic Image Segmentation

Spatial Pyramid Pooling. Encoder-Decoder. Combined approach [CHE2018].
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Semantic Image Segmentation

Vision Transformer (ViT) [DOS2020].

• Implementation of transformer architecture in

Computer Vision.

• A pure transformer applied directly to sequences of

image patches works exceptionally well on image

classification, segmentation and object detection

tasks.

• Uses self-attention mechanisms to process images
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Self-Attention

• A mechanism which computes

a weighted sum of the input

image data vectors (block

pixels or their CNN feaures).

• The weight are computed

based on the similarity

between the input data

vectors.

Semantic Image Segmentation
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BASED ON IOU
3 TP – 0 FP 1TP – 2 FP 0 TP – 3 FP

PredictionsPossible ground-truth 
annotation  strategies 

Raw image

Fire Detection Evaluation



Challenges with mAP for Fire Detection

• Unlike most objects, fires consist of “children” objects (flames) that

belong to the same class as the “parent” object (fire), making it

uncertain how many bounding boxes are needed for accurate

representation.

Limitations of mAP: Inconsistent annotation styles for fire objects can

misalign with predicted bounding boxes, leading to mAP scores that do

not accurately reflect model performance.

Fire Detection Evaluation



Image-level mean Average Precision (ImAP) [TZI2023]:

• It evaluates fire detection models based on their ability to

predict bounding boxes for the entire image rather than

individual boxes.

• ImAP demonstrates greater suitability than mAP for

evaluating object detectors in fire detection tasks, addressing

the unique properties of fire entities.

Fire Detection Evaluation



Fire Detection Evaluation

ImAP utilize Image Level Intersection Over Union (ImIOU) instead of IOU in order

to evaluate fire detection in the entire image

ImIOU: Intersection over Union between all predictions and all ground truth

bounding boxes of the same image:

𝐼𝑚𝐼𝑜𝑈 𝒫, 𝒢 =
𝑖=1ڂ

𝒫 𝑃𝑖 ځ 𝑖=1ڂ
𝒢
𝐺𝑖

𝑖=1ڂ
𝒫 𝑃𝑖 ڂ 𝑖=1ڂ

𝒢
𝐺𝑖

.

• 𝒢 = 𝐺𝑖 𝑖=1,…,𝑁 : bounding box ground truths.

• 𝒫 = 𝑃𝑖 𝑖=1,…,𝑀 : predictions.



BASED ON IOU 3 TP – 0 FP 1TP – 2 FP 0 TP – 3 FP
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IMIOU=0.78 -> TP IMIOU=0.6 -> TP IMIOU=0.51 -> TP
BASED ON 

IMIOU

Fire Detection Evaluation
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Regression losses for the localization task of the object detection:

• L1

• IoU-based.

The state of the art object detection model RTDETR [ΖΗΑ2024]

combines the 𝐿1 loss with 𝐿𝐼𝑜𝑈 to improve the detection of object of

interest:

𝐿𝑙𝑜𝑐 = 𝜆1 ∙ 𝐿1 + 𝜆𝐼𝑜𝑈 ∙ 𝐿𝐼𝑜𝑈 .

Fire Detection Localization Loss
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𝐿1 and  𝐿𝐼𝑜𝑈 formulae for an image with 𝑁 bounding boxes:

𝐿1 𝒫, 𝒢 =
1

𝑁


𝑖=1

𝑁



𝑗∈{𝑥,𝑦,𝑤,ℎ}

𝑃𝑖,𝑗 − 𝐺𝑖,𝑗

𝐿𝐼𝑜𝑈 𝒫, 𝒢 =
1

𝑁


𝑖=1

𝑁

1 − 𝐼𝑜𝑈 𝑃𝑖 , 𝐺𝑖

• 𝒢 = 𝐺𝑖 𝑖=1,…,𝑁 : bounding box  ground truths

• 𝒫 = 𝑃𝑖 𝑖=1,…,𝑁 : predictions.

Fire Detection Localization Loss



41

In fire detection, there are many scenarios

where small and large flame regions can

appear in the same image.

• In this case the larger prediction boxes

have larger error with their corresponding

due to the 𝐿1 loss.

• 𝐿𝐼𝑜𝑈 loss is invariant of the bounding box

sizes.

Fire Detection Localization Loss
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In many cases, there may be

disagreements between the 𝐿1 and

IoU losses, which can affect

training, as the two losses may not

share the same local minimums.

Fire Detection Localization Loss
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Size balanced loss 𝐿𝑆𝐵 is an 𝐿1 loss variant adding a weighting

mechanism on the L1 loss based on the ground-truth bounding box size.

𝐿𝑆𝐵 𝒫, 𝒢 =

𝑖=1

𝑁

𝑊𝑖 

𝑗∈{𝑥,𝑦,𝑤,ℎ}

𝑃𝑖,𝑗 − 𝐺𝑖,𝑗 .

Experiments on fire detection datasets demonstrate +2% improvement 

over mAP and ImAP using 𝐿𝑆𝐵.

Fire Detection Localization Loss
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Fire Segmentation

Semantic segmentation Deep Neural Networks architectures were 

trained on the FLAME dataset: 

• BiSeNet (backbones: ResNet18, ResNet101) [CYO2018]

• I2I-CNN (backbones: ResNet18) [PAP2021]

• PIDNet (backbone: ResNet18) [JXU2023]

FLAME dataset [SHA2021]
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• Two-Stream Network: Combines spatial and contextual information for 

high accuracy in segmentation.

• Efficient and Fast: Designed for real-time performance with lightweight 

structure, ideal for real-time applications like fire detection.

• Context Path: Captures large-scale features for better scene 

understanding.

• Spatial Path: Retains high-resolution details for precise boundary 

segmentation.

BiseNet architecture

Fire Segmentation
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BiSeNet architecture [CYO2018]

Fire Segmentation
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Ι2Ι-CNN architecture

• Dual-Branch Design: Adds an auxiliary neural branch to the BiseNet

branch for enhanced semantic accuracy without slowing down execution.

• GAN-Based Auxiliary Branch: Trained using a Generative Adversarial

Network (GAN) to generate RGB-like segmentation maps, capturing

additional semantic information.

• Adversarial Training with Discriminator: The auxiliary branch learns

through adversarial loss, where a Discriminator validates its output for

improved semantic feature extraction.

• Lightweight and Fast: This network has the same inference speed as

Bisenet.

Fire Segmentation
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I2I-CNN architecture [PAP2021].

Fire Segmentation
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PIDNet architecture

• Triple-Branch Design: Uses three branches—Proportional (P),

integral (I), and derivative (D)—to balance accuracy and efficiency.

• Real-Time Performance: Optimized for real-time applications,

making it suitable for tasks like fire detection in edge environments.

• High Precision in Edge Detection: The Detail branch captures fine

edges, crucial for accurately outlining objects in segmentation.

• Competitive Accuracy: Delivers performance close to more

complex models, but with much faster inference speeds.

Fire Segmentation
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PIDNet architecture [JXU2023].

Fire Segmentation
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DNN input has the 3 following forms:

• RGB (3 channels)

• RGB+HSV (6 channels)

• RGBS (4 channels)

• 𝑆: processed saturation channel of HSV image transform and is used

to suggest potential fire regions. This mask is then concatenated with

the RGB image to form a new 4-channel input.

Fire Segmentation
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Process of creating the S channel (visualization)

RGB input image HSV transformation 

of RGB image
Saturation channel (S) Thresholding of channel S

Fire Segmentation
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Fire Segmentation

BiSeNet, I2I-CNN and PID-Net were evaluated using mIoU and novel fire

region segmentation measures:
• Fire region number difference 𝐷𝑁 ,
• Average fire region area difference 𝐷𝐴,
• Spatial dispersion 𝐷𝐴 of fire regions.

These measures distill meaningful information about the extent of a forest

fire and target the explainability to the end-user.

• The experiments on the FLAME dataset demonstrate that the PIDNet

with RGB+S as input achieve the best mIoU among all the other

configurations
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Fire Segmentation

Fire region number difference 𝐷𝑁:

=
1

𝐼


𝑖=1

𝐼

𝑁𝑖 −𝑁𝑖
′ .

Average fire region area difference 𝐷𝐴 (in pixels): 

𝐷𝐴 =
1

𝐼


𝑖=1

𝐼

𝐴𝑖 − 𝐴𝑖
′ .
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Fire Segmentation

Spatial dispersion 𝐷𝐴 of fire regions:

𝐷𝐴 =
1

𝐼
σ𝑖=1

𝐼 𝑠𝑖 − 𝑠𝑖
′ ,

𝑠𝑖=
1

𝑁

1

𝑁 − 1


𝑗=1

𝑁



𝑘=1,𝑗≠𝑘

𝑁

𝐩𝑗 − 𝐩𝑘 2

𝐩𝑖: centers of fire sources
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Smoke
Optical non visible 

Flames
Optical visible 

Flames

RGB INFRARED

A Venn Diagram of RGB and IR Capabilities

RGB/IR Fire Segmentation



IR and RGB image fusion

Early fusion: Concatenate the three RGB channels with the IR image

to create a unified 4D input for the DNN.

Intermediate fusion: Feed the RGB and IR images separately into their

respective DNNs, concatenate their intermediate feature maps, and

then pass the aggregated map through a common network for further

processing.

Late fusion: Process the RGB and IR images separately through their

respective DNNs, then concatenate the segmentation results from both

networks to obtain the final output.

RGB/IR Fire Segmentation



RGB/IR Fire Segmentation

Flame and smoke segmentation performance.
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RGB/IR Fire Segmentation

RGB/IR fire segmentation results.
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• Computer Vision

• Classical image segmentation techniques

• Deep semantic image segmentation

• Fire detection

• Fire segmentation

• RGB/IR Fire segmentation

• Prompted fire segmentation

Wildfire Image Analysis



62

An enormous amount of labeled data to train deep learning models to detect

objects of interest. Annotating datasets is a time-consuming and expensive task.

Raw images and the corresponding labels.

Prompted Fire Segmentation
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Unsupervised semantic segmentation architectures do not rely on labeled

datasets. 

• Without prior information about the objects of interest, they have poor 

segmentation accuracy.

Unsupervised segmentation results.

Prompted Fire Segmentation

Dataset [TOU2017]
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Prompted Fire Segmentation

Raw Images

We select a single image from the 
dataset and specify only one point 
where our object of interest is located.

1. Combine the raw images with 
the signal from the annotated 
point.

2. Push fire representations 
closer together in the feature 
space

3. Create a cluster head that 
separates fire from the 
background



Prompted Fire Segmentation

• Unsupervised segmentation

performance: 40 % mIoU.

• Prompted segmentation

performance: 80 % mIoU.

• Prompting achieves a 40%

increase in mIoU using only a

single fire point.

Raw Images and Labels

Predictions
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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