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Computer vision

Classification

Object 
detection

Semantic 
segmentation 

Classify an image 

into a specific class

Classify and localize 

objects within an image

Classify each pixel in an 

image into a specific class

Computer vision
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Computer Vision

Fire / No Fire Burnt area / No Burnt area  Smoke / No Smoke 

Classification 
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Computer Vision

Fire detection Smoke Detection

Object Detection 
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•Object Detection = classification + localization

•Find what is in a picture as well as where it is

Computer Vision



7

Classification – Regression
•Given a training set of images annotated with bounding boxes (coordinates and class per 
depicted object)

◦ Classification: predict probabilities that each box belongs to each of the 
classes present in the dataset

◦ Regression: for each depicted object predict bounding box coordinates 
in some predefined format, e.g., coordinates of the bounding box center 
along with its width and height (x, y, w, h)

Computer Vision
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One stage vs Two stage object 
detection architectures

[THA2023]

Computer Vision
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Fire Segmentation Fire/Smoke Segmentation

Computer Vision

Semantic Segmentation



Semantic image segmentation of a sports event [EVE2011].

Computer Vision

Semantic Segmentation



• Autonomous driving.

Semantic image segmentation for autonomous driving [COR2016].

Computer Vision

Semantic Segmentation



• Medical purposes.

Semantic dental Xray segmentation [TOR2014].

Computer Vision

Semantic Segmentation



• An image domain 𝒳 must be segmented in 𝑁 different regions 

𝑅1, … , 𝑅𝑁.

• The segmentation rule is a logical predicate of the form 𝑃 ℛ

• Image segmentation partitions the set 𝒳 into the subsets 𝑅𝑖, 
𝑖 = 1, … , 𝑁, having the following properties:

𝒳 =∪𝑖=1
𝑁 𝑅𝑖 ,

𝑅𝑖 ∩ 𝑅𝑗 = ∅, 𝑖 ≠ 𝑗,

𝑃 𝑅𝑖 = 𝑇𝑅𝑈𝐸, 𝑖 = 1, … , 𝑁,

𝑃 𝑅𝑖 ∪ 𝑅𝑗 = 𝐹𝐴𝐿𝑆𝐸, 𝑖 ≠ 𝑗,
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Computer Vision

Semantic Segmentation
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• Computer Vision

• Classical image segmentation 

techniques

• Deep semantic image segmentation

• Fire Detection

• Fire Segmentation
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Image thresholding
• The simplest image segmentation problem occurs

when an image contains.

• an object having homogenous intensity.

• a background with a different intensity level.

• Such an image can be segmented in two regions

by simple thresholding:

𝑔 𝑥, 𝑦 = ቊ
1, 𝑖𝑓 𝑓(𝑥, 𝑦)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The choice of threshold T can be based on the

image histogram.



Image thresholding

Image thresholding.



Image thresholding

(a)

a) Original image; b) Image segmentation in four equirange regions.

(b)



Region Growing

• The pixel seeds are chosen in a supervised mode.

• At least one seed 𝑠𝑖 , 𝑖 = 1, … , 𝑁 is chosen per

image region 𝑅𝑖.

• In order to implement region growing, we need a

rule describing a growth mechanism and a rule

checking the homogeneity of the regions after each

growth step.



Region Growing

• The growth mechanism is simple: at each stage (k)

and for each region 𝑅𝐼
𝑘
, 𝑖 = 1, … , 𝑁, we check if

there are unclassified pixels in the 8-

neighbourhood of each pixel of the region border.

• Before assigning such a pixel 𝐱 to a region 𝑅𝐼
𝑘

,

we check the region homogeneity:

𝑃 𝑅𝐼
𝑘
∪ 𝐱 = 𝑇𝑅𝑈𝐸

is still valid.



Split/merge algorithm

• If the original image is square 𝑁 × 𝑁, having dimensions that

are powers of 2(𝑁 = 2𝑛):

• All regions produced by the splitting algorithm are squares having

dimensions 𝑀 ×𝑀, where 𝑀 is a power of 2 as well 𝑀 = 2𝑚 , 𝑚 ≤ 𝑛 .

• Since the procedure is recursive, it produces an image presentation

that can be described by a tree whose nodes have four sons each.

• Such a tree is called a quadtree and is a very convenient region

representation scheme.



Split/merge algorithm

𝑅00 𝑅01 𝑅02 𝑅03

𝑅1

𝑅0

𝑎 𝑏

a) Image segmentation by region splitting; b) Quadtree.
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Deep Semantic Image
segmentation
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Convolution is a mathematical operation that 

applies a filter (kernel) to an image to extract 

specific features like edges, textures, or 

patterns.

Process:

• A small filter slides over the image.

• The dot product of the filter and overlapping 

image values is computed.

• The result forms a new, processed image 

(feature map).

Deep Semantic Image segmentation

Convolution
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Original image Convolution output

Deep Semantic Image segmentation

Image blurring



25

Original image Convolution output

Edge detection

Deep Semantic Image segmentation
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Kernels can have more than just two 

dimensions; they may also include depth.

Multiple convolutional kernels can be 

applied to the same input simultaneously

Input Output 
feature map 

Deep Semantic Image segmentation

Convolutional layer
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conv maxpool

Composed of multiple convolution layers.

Convolution Layer:

• Performs feature extraction using 

convolution operations.

• Often is followed by a max-pooling

step to reduce spatial dimensions and 

retain important features.

Deep Semantic Image segmentation

Deep semantic image

segmentation architectures 
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Deep Semantic Image segmentation
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• The final feature map is flattened into a 1D 

vector.

Fully Connected Layers:

• Reduce dimensionality to match the number 

of classes in the dataset.

• Perform the final classification by mapping 

features to class probabilities.
[BIT2024]

Deep Semantic Image segmentation

Image Classification
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In contrast to Image classification, in 

segmentation the final feature map has 

dimensions C × H × W, where:

• C: Number of classes in the dataset.

• H, W: Height and width of the image.

[SUP2024]

Deep Semantic Image segmentation

Semantic Segmentation



• Fully convolutional network for 

semantic segmentation.

• Usually, the final feature map is 

upsampled to match the resolution 

of the input image.

End-to-end CNN training for semantic image segmentation [LON2015].

Deep Semantic Image segmentation

Semantic Segmentation



• However, as the model radically reduces the 

resolution of the input image, it fails to produce 

fine-grained segmentations. 

Coarse image segmentation [LON2015]. 

Deep Semantic Image segmentation



• To address this problem, skip network

connections are added in fully convolutional

network that combine the final prediction layer with

previous fine-grained layers.

• Combining fine layers and coarse layers allows the

model to make local predictions that respect global

structure.

Deep Semantic Image segmentation



Improved segmentation results with skip connections [LON2015]. 

Deep Semantic Image segmentation



• More advanced semantic segmentation network

architectures have emerged.

• The capacity of the decoder was expanded by

using a U-shaped network architecture (U-Net).

• Consists of a contracting path to capture context

and a symmetric expanding path that enables

precise localization.

Deep Semantic Image segmentation

U-Net architecture



U-Net network architecture [RON 2015]

Deep Semantic Image segmentation

U-Net architecture



Deep Semantic Image segmentation

Spatial Pyramid Pooling

• Semantic image segmentation performance was

also increased by combining the advantages of a

Spatial Pyramid Pooling (SPP) [ZHA2017]

module and the encoder-decoder architecture.

• SPP module can encode multi-scale contextual

information, by probing the incoming features with

filters or pooling operations at multiple rates and

multiple effective fields-of-view.



Deep Semantic Image segmentation

Spatial Pyramid Pooling. Encoder-Decoder. Combined approach [CHE2018].
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Deep Semantic Image segmentation

Vision Transformer (ViT) [DOS2020].

• Implementation of transformer architecture in

Computer Vision.

• A pure transformer applied directly to sequences of

image patches works exceptionally well on image

classification, segmentation and object detection

tasks.

• Uses self-attention mechanisms to process images
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Self-Attention

A mechanism which computes a

weighted sum of the input data,

where the weights are computed

based on the similarity between

the input features.

Deep Semantic Image segmentation
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• h, w are the spatial dimensions of the feature map.

• c is the number of classes.

• 𝑦𝑖,𝑗,𝑘 is the one-hot encoded ground truth label for 

the k-th class at position (i, j).

• 𝑝𝑖,𝑗,𝑘 is the predicted probability for the k-th class at 

position (i, j).

Semantic Segmentation loss functions

Deep Semantic Image segmentation

𝐿𝑐𝑐𝑒 = ෍

𝑖=1

ℎ

෍

𝑗=1

𝑤

෍

𝑘=1

𝑐

𝑦𝑖,𝑗,𝑘 log( 𝑝𝑖,𝑗,𝑘 )Categorical cross entropy:
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Dice Loss : Focuses on maximizing overlap between predicted and 

ground truth masks, commonly used for imbalanced datasets.

IoU Loss : Optimizes the intersection over union between predicted 

and actual regions, improving pixel-level accuracy.

Focal Loss : Addresses class imbalance by down-weighting easy 

examples and focusing on hard-to-classify pixels.

Semantic Segmentation loss functions

Deep Semantic Image segmentation
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• Computer Vision

• Classical image segmentation techniques

• Deep semantic image segmentation

• Fire Detection

• Fire detection evaluation metric

• Fire detection localization loss 

• Fire Segmentation

Real-Time Image 
Segmentation
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The overlapping area between a predicted bounding 

box (P) and a ground truth bounding box (G) is 

measured using the Intersection over Union

(IoU) method, which is formulated as follows:

Intersection Over Union (IoU)

Fire Detection Evaluation metric

𝐼𝑜𝑈 𝑃, 𝐺 =
𝑃 ∩ 𝐺

𝑃 ∪ 𝐺
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mAP (Object Detection):

• Combines precision and recall to evaluate detection accuracy.

• Uses Intersection over Union (IoU) to match predicted and 

ground-truth bounding boxes.

• Calculates the average precision for each class and averages 

across all classes.

• Rewards precise alignment and penalizes missing or incorrect 

predictions.

mIoU (Segmentation):

• Averages IoU across all pixels and classes to assess 

segmentation quality.

Fire Detection Evaluation metric
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Predicted Bound box evaluation :

Fire Detection Evaluation metric

Bounding box evaluation [KUK2023]

TP : IOU > 0.5

FP : IOU < 0.5



BASED ON IOU
3 TP – 0 FP 1TP – 2 FP 0 TP – 3 FP

PredictionsPossible ground-truth 
annotation  strategies 

Raw image

Fire Detection Evaluation metric



Challenges with mAP for Fire Detection: Unlike most objects, fires 

consist of “children” objects (flames) that belong to the same class as the 

“parent” object (fire), making it uncertain how many bounding boxes are 

needed for accurate representation.

Limitations of mAP: Inconsistent annotation styles for fire objects can 

misalign with predicted bounding boxes, leading to mAP scores that do 

not accurately reflect model performance.

Fire Detection Evaluation metric



• Proposed Solution – ImAP [TZI2023] : The Image-level 

mean Average Precision (ImAP) metric evaluates fire 

detection models based on their ability to predict bounding 

boxes for the entire image rather than individual boxes.

• Experiments and Results: ImAP demonstrates greater 

suitability than mAP for evaluating object detectors in fire 

detection tasks, addressing the unique properties of fire 

entities.

Fire Detection Evaluation metric



ImAP utilize Image Level Intersection Over Union (ImIOU) instead of IOU

in order to evaluate fire detection in the entire image

Fire Detection Evaluation metric

𝐼𝑚𝐼𝑜𝑈 𝒫, 𝒢 =
𝑖=1ڂ

𝒫 𝑃𝑖 ځ 𝑖=1ڂ
𝒢
𝐺𝑖

𝑖=1ڂ
𝒫 𝑃𝑖 ڂ 𝑖=1ڂ

𝒢
𝐺𝑖

ImIOU : Intersection over Union between all predictions and all ground truth 

bounding boxes of the same image

Given then bounding box  ground truths 𝒢 = 𝐺𝑖 𝑖=1,…,𝑁 of an image and their 

corresponding predictions 𝒫 = 𝑃𝑖 𝑖=1,…,𝑀 then ImIoU is formulated as :



BASED ON IOU 3 TP – 0 FP 1TP – 2 FP 0 TP – 3 FP

51

IMIOU=0.78 -> TP IMIOU=0.6 -> TP IMIOU=0.51 -> TP
BASED ON 

IMIOU

Fire Detection Evaluation metric
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• Computer Vision

• Classical image segmentation techniques

• Deep semantic image segmentation

• Fire Detection

• Fire detection evaluation metric

• Fire detection localization loss 

• Fire Segmentation

Real-Time Image 
Segmentation
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Regression Losses for the localization task of the object detection:

• L1 

• IOU based 

The state of the art object detection model RTDETR [ΖΗΑ2024]

combines the 𝐿1 loss with 𝐿𝐼𝑜𝑈 to improve the detection of object of 

interest.

Fire Detection Localization Loss

𝐿𝑙𝑜𝑐 = 𝜆1 ∙ 𝐿1 + 𝜆𝐼𝑜𝑈 ∙ 𝐿𝐼𝑜𝑈
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𝐿1 𝒫, 𝒢 =
1

𝑁
෍

𝑖=1

𝑁

෍

𝑗∈{𝑥,𝑦,𝑤,ℎ}

𝑃𝑖,𝑗 − 𝐺𝑖,𝑗

For an image with N bounding box ground truths described by set 𝒢 =

𝐺𝑖 𝑖=1,…,𝑁 = {𝐺𝑖,𝑥 , 𝐺𝑖,𝑦 , 𝐺𝑖,𝑤 , 𝐺𝑖,ℎ} 𝑖=1,…,𝑁
and their matched predictions by 𝒫 =

𝑃𝑖 𝑖=1,…,𝑁 = {𝑃𝑖,𝑥 , 𝑃𝑖,𝑦 , 𝑃𝑖,𝑤 , 𝑃𝑖,ℎ} 𝑖=1,…,𝑁
the 𝐿1 and  𝐿𝐼𝑜𝑈 are formulated as : 

Fire Detection Localization Loss

where N the number of bounding boxes in the image

𝐿𝐼𝑜𝑈 𝒫, 𝒢 =
1

𝑁
෍

𝑖=1

𝑁

1 − 𝐼𝑜𝑈 𝑃𝑖 , 𝐺𝑖
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In fire detection there are many Scenarios where in the same image can 

appear small and large flames.

In this case the larger prediction 

boxes have larger error with 

their corresponding  due to the 

l1 loss 

IoU based losses are invariant 

of the bounding box sizes 

Fire Detection Localization Loss
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In many cases, there may be 

disagreements between the L1 and 

IoU losses, which can affect 

training, as the two losses may not 

share the same local minimums.

Fire Detection Localization Loss
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Solution : adding a weighting mechanism on the L1 loss based 

on the ground-truth bounding box size. 

Size balanced L1 loss LSB: 

Fire Detection Localization Loss

𝐿𝑆𝐵 𝒫, 𝒢 =෍

𝑖=1

𝑁

𝑾𝒊 ෍

𝑗∈{𝑥,𝑦,𝑤,ℎ}

𝑃𝑖,𝑗 − 𝐺𝑖,𝑗

Experiments on fire detection datasets demonstrate +2% 

improvment over mAP and ImAP
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• RGB/IR Fire segmentation

• Unsupervised fire segmentation

Real-Time Image 
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Fire Segmentation

In this approach 3 deep neural network based semantic segmentation 

architectures were trained on the flame dataset : 

• BiSeNet (backbones: ResNet18, ResNet101) [CYO2018]

• I2I-CNN (backbones: ResNet18) [PAP2021]

• PIDNet (backbone: ResNet18) [JXU2023]

flame dataset [SHA2021]
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• Two-Stream Network: Combines spatial and contextual 
information for high accuracy in segmentation.
• Efficient and Fast: Designed for real-time performance 
with lightweight structure, ideal for real-time applications 
like fire detection.
• Context Path: Captures large-scale features for better 
scene understanding.
• Spatial Path: Retains high-resolution details for precise 
boundary segmentation.

BiseNet architecture

Fire Segmentation
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BiSeNet architecture [CYO2018]

Fire Segmentation
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Ι2Ι-CNN architecture

• Dual-Branch Design: Adds an auxiliary neural branch to the BiseNet branch for 

enhanced semantic accuracy without slowing down execution.

• GAN-Based Auxiliary Branch: Trained using a Generative Adversarial Network 

(GAN) to generate RGB-like segmentation maps, capturing additional semantic 

information.

• Adversarial Training with Discriminator: The auxiliary branch learns through 

adversarial loss, where a Discriminator validates its output for improved semantic 

feature extraction.

• Lightweight and Fast: This network has the same inference speed as Bisenet. 

Fire Segmentation
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I2I-CNN architecture [PAP2021]

Fire Segmentation
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PIDNet architecture

• Triple-Branch Design: Uses three branches—Proportional (P), 
integral (I), and derivative (D)—to balance accuracy and efficiency.
• Real-Time Performance: Optimized for real-time applications, 
making it suitable for tasks like fire detection in edge environments.
• High Precision in Edge Detection: The Detail branch captures fine 
edges, crucial for accurately outlining objects in segmentation.
• Competitive Accuracy: Delivers performance close to more 
complex models, but with much faster inference speeds.

Fire Segmentation
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PIDNet architecture [JXU2023]

Fire Segmentation
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The DNNs  where studied with respect to the given input. The input was 
fed to the networks in the 3 following forms :

⚫ RGB (3 channels)
⚫ RGB+HSV (6 channels)
⚫ RGBS (4 channels)

Where S in RGBS input image represents the processed saturation 
channel of HSV image transform and is used to suggest potential fire 
regions. This mask is then concatenated with the RGB image to form a 
new 4-channel input.

Fire Segmentation
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Process of creating the S channel (visualization)

RGB input image HSV transformation 

of RGB image
Saturation channel (S) Thresholding of channel S

Fire Segmentation
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Fire Segmentation

BiSeNet, I2I-CNN and PID-Net were evaluated using mIoU and
novel fire region segmentation metrics based on :
• The number N of fire instances ( DN )
• The average fire region area in pixels ( DA )
• The spatial dispersion of fire region instances ( DS )

These metrics extract meaningful information about the extend
of a forest fire and target the explainability to the end-user

The experiments on the flame dataset demonstrate that the PIDNet
with RGB+S as input  achieve the best mIoU among all the other 
configurations
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Smoke
Optical non visible 

Flames
Optical visible 

Flames

RGB INFRARED

A Venn Diagram of RGB and IR Capabilities

RGB/IR Fire Segmentation



Early Fusion: Concatenate the three RGB channels with the IR image 

to create a unified 4D input for the DNN.

Intermediate Fusion : Feed the RGB and IR images separately into 

their respective DNNs, concatenate their intermediate feature maps, 

and then pass the aggregated map through a common network for 

further processing.

Late Fusion: Process the RGB and IR images separately through their 

respective DNNs, then concatenate the segmentation results from both 

networks to obtain the final output.

Combining IR and RGB:

RGB/IR Fire Segmentation



RGB/IR Fire Segmentation
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RGB/IR Fire Segmentation
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The natural disaster 

management field requires an 

enormous amount of labeled

data to train deep learning 

models to detect objects of 

interest. Annotating datasets is a 

time-consuming and expensive 

task. Raw images and the corresponding labels

Unsupervised Fire Segmentation
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Unsupervised semantic 

segmentation architectures in 

deep learning do not rely on 

labeled datasets. However, 

without prior information about 

the objects of interest, they 

struggle to achieve the desired 

clustering.
Unsupervised segmentation results that correspond to 
the above raw images

Unsupervised Fire Segmentation
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Unsupervised Fire Segmentation

Raw Images

We select a single image from the 
dataset and specify only one point 
where our object of interest is located.

1. Combine the raw images with 
the signal from the annotated 
point.

2. Push fire representations 
closer together in the feature 
space

3. Create a cluster head that 
separates fire from the 
background



Unsupervised Fire Segmentation

• Unsupervised performance : 40 % mIoU

• Our performance : 80 % mIoU

• Our approach achieves a 40% increase in 

mIoU using only a single point to indicate 

fire. Visualizations show that our results 

closely match the actual labels. This 

method can be extended to other classes, 

such as smoke, flood, and more

Raw Images and Labels

Predictions
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[MOU2016] A. Mousavian, H. Pirsiavash, J. Kosecḱa, “Joint semantic segmentation and depth estimation

with deep convolutional networks.”, In Proceedings of the 2016 Fourth International Conference on 3D

Vision (3DV). IEEE, 2016.

[LIU2018] J. Liu, Y. Wang, Y. Li, J. Fu, J. Li, H. Lu, “Collaborative deconvolutional neural networks for

joint depth estimation and semantic segmentation.”, IEEE transactions on neural networks and learning

systems, 2018.

[ALA2020] M. Aladem, S.A. Rawashdeh. “A single-stream segmentation and depth prediction CNN for

autonomous driving.”, IEEE Intelligent Systems, 2020.

[CHE2019] P.Y. Chen, A. H Liu, Y.C. Liu, Y.C.F Wang, “Towards scene understanding: Unsupervised

monocular depth estimation with semantic-aware representation.”, In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[QI2017] X. Qi, R. Liao, J. Jia, S. Fidler, R. Urtasun, “3D graph neural networks for RGBD semantic

segmentation.”, In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

[KEN2018] A. Kendall, Y. Gal, R. Cipolla, “Multi-task learning using uncertainty to weigh losses for scene

geometry and semantics.”, In Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), 2018.

[ZHA2017] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, “Pyramid scene parsing network.”, In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[APOLLO] http://apolloscape.auto/



82

References
[DOS2020] A. DOSOVITSKIY, An image is worth 16x16 words: Transformers for image recognition at scale. 

arXiv preprint arXiv:2010.11929. 2020.

[KRI2023] Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg AC, Lo WY, 

Dollár P. Segment anything. InProceedings of the IEEE/CVF International Conference on Computer Vision 

2023 (pp. 4015-4026).

[SHA2021] Shamsoshoara, Alireza, et al. "Aerial imagery pile burn detection using deep learning: The FLAME 

dataset." Computer Networks 193 (2021): 108001.

[CYU2018] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral segmentation network for 

real-time semantic segmentation,” in European Conference on Computer Vision. Springer, 2018, pp. 334–349.

[PAP2021] C. Papaioannidis, I. Mademlis, and I. Pitas, “Autonomous uav safety by visual human crowd 

detection using multi-task deep neural networks,” in 2021 IEEE International Conference on Robotics and 

Automation (ICRA), 2021, pp. 11 074–11 080.

[JXU2023] J. Xu, Z. Xiong, and S. P. Bhattacharyya, “Pidnet: A real-time semantic segmentation network 

inspired by pid controllers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2023, pp. 19 529–19 539.

[BIT2024] CNN Architecture - Detailed Explanation. (n.d.). InterviewBit. https://www.interviewbit.com/blog/cnn-

architecture/

[SUP2024]SuperAnnotate AI Inc. (n.d.). Semantic segmentation: Complete guide [Updated 2024] | 

SuperAnnotate. SuperAnnotate. https://www.superannotate.com/blog/guide-to-semantic-

segmentation#:~:text=Semantic%20segmentation%20is%20simply%20the,Image%20Source

https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn
https://www.interviewbit.com/blog/cnn-architecture/
https://www.interviewbit.com/blog/cnn-architecture/


[TZI2023] M. D. Tzimas, C. Papaioannidis, V. Mygdalis, and I. Pitas, "Evaluating Deep Neural Network-based Fire Detection for Natural Disaster 

Management," in 2023 IEEE/ACM 16th International Conference on Utility and Cloud Computing (UCC '23), Taormina (Messina), Ita ly, Dec. 

2023.

[ZHA2024] Zhao, Yian, et al. "Detrs beat yolos on real-time object detection." Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2024.

[THA2023]Thakur, N. (2023, June 2). A detailed introduction to Two Stage Object Detectors. Medium. https://namrata-

thakur893.medium.com/a-detailed-introduction-to-two-stage-object-detectors-d4ba0c06b14e

[KUK2023] Kukil, & Kukil. (2023, August 4). Intersection over union IOU in object detection segmentation. LearnOpenCV – Learn 

OpenCV, PyTorch, Keras, Tensorflow With Code, & Tutorials. https://learnopencv.com/intersection-over-union-iou-in-object-detection-

and-segmentation/

83

References



Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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