VML Privacy protection in Natural Disaster Management

Dr. V. Mygdalis, E. Chatzikyriakidis, Prof. I. Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 3.3

Face De-identification for privacy protection

- **Privacy and data protection**
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Privacy and data protection

- Protection of personal data must be ensured in the acquired video and/or images.
- The EU's General Data Protection Regulation 2016/679), repealing the 1995 Data Protection Directive.
- \bullet "*Member States shall protect the fundamental rights and freedoms of natural persons and in particular their right to privacy, with respect to the processing and distribution of personal data.*"

Data protection issues in Autonomous Systems

- Public perceives AS as machines infringing privacy.
- No trespassing above private property.

- Distinguish between:
	- actors, spectators, crowd
	- public events, private events.

Data protection issues in drones

- broadcasting
- creating experimental databases.
- Use of data de-identification algorithms when doing AV shooting.

ML

Data anonymity requirements in AV data bases

- Data to be distributed must be *anonymous*:
	- Any evidence that can be used to link acquired data to real people, is prohibited (e.g., address, names, etc.).
	- *Facial images* fall into the same category. They cannot be anonymous, since someone could link a facial image to a real person.
	- Soft biometric and non-biometric identifiers (fancy clothes, tattoos, skin marks, etc.) should be hindered as well.

Data anonymity requirements in AV data bases

- Image and video data collected by drones fall into the general data acquisition/shooting/distribution category.
- *Consent forms must be collected for experimental AV data.*
- Standard AV shooting privacy-protection rules must be observed for AV data to be broadcasted.

Facial data protection approaches

- *Face de-detection* (Face detector obfuscation):
	- Apply image manipulations until face detection algorithms are no longer able to work
- *Face de-identification* (Face recognizer obfuscation):
	- Corrupt the facial region so that deep NN face classifiers fail.
	- Developed methodology:
		- Simple/Naive approaches (additive noise, impulsive noise)
		- Reconstruction-based (SVD, PCA, hypersphere projections, autoencoder-based) approaches.

• Adversarial face de-identification. formation Analvsis Lab

Personal image protection approaches

- Person de-detection
- Person de-identification
	- Human body images
- Personal object de-detection/de-identification
	- Car plates, car make.

ML

Face De-identification for privacy protection

- Privacy and data protection
- **Classical face de-identification**
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Face De-identification definitions

Face de-identification (DID) or *Face recognition obfuscation* tries to fool machine face recognition systems and/or face recognition by humans:

- Recognition by *machines or humans* (darkening, blurring, pixilation, additive noise methods, reconstruction-based methods, GAN-based methods)
- Machine recognition only (adversarial attacks).
- *Focus on machine recognition obfuscation.*

Face de-identification against humans

- "Traditional" privacy protection against **face recognition** aimed at hindering/disabling a **human identifier** from being able to distinguish a specific face in the image.
- Disadvantages:

Artificial Intelligence & Information Analysis Lab

- These approaches were not designed to fool machines (automated face identification)
- They typically deteriorate significantly image quality and produce "ugly" noisy images with minimal utility.
- Some of them are *completely naïve and fully inversible* (e.g., image negation or darkening)

12

Face De-identification definitions

Simple face de-identification definition:

X

- A trained face recognition system f take an input facial image x and predicts its corresponding identity label $y: f(x; \theta) \rightarrow y$.
- Face de-identification methods aim to alter the original facial image x and produce a de-identified image x_p that can no longer be correctly identified: $f(\mathbf{x}_p; \boldsymbol{\theta}) \rightarrow ?$.

 \mathbf{x}_n

 $f \rightarrow ?$

de-identification

Face De-identification definitions

Formal face de-identification definition:

- Let ∈ ℝ be a vector containing e.g., a *facial image Region of Interest* (ROI) representation with $y \in \{C_1, ..., C_m\}$ its label. Function $f(\mathbf{x}; \theta) = y$ is the ML recognizer/classifier.
- Face de-identification is about manipulating input vector x in some way, such as:
	- Perturbation: $x_p = x + p$ (e.g., noise, pixelation, blurring, adversarial attacks)
	- Transformation: $x_p = Sx + p$ (e.g., reconstruction methods)
	- Generative mapping function: $\mathbf{x}_p = G(\mathbf{x}; \boldsymbol{\theta}_G) : \mathbb{R}^n \mapsto \mathbb{R}^n$, (AE, GANS)
- They all force the face identifier to fail: $f(\mathbf{x}_p; \boldsymbol{\theta}) \neq y$.

Face de-identification metrics

- Face de-identification performance against systems:
	- *1-classification accuracy*.
	- Face de-identification performance against humans.
	- Similarity of the de-identified image with the original one:
		- e.g.: structural image similarity.
	- Introduced image noise metrics (e.g., *MSE*).
	- Subjective image quality metrics:
		- perceived image quality, *CW-SSIM,* faceness, etc.

Acceptable Image Quality Issues

deviation of 5

projection with radius of 8

Trade-off between deidentification performance and facial image quality

Projection De-Identification

Information Analysis Lab

- Numerous face de-identification methods have been developed.
- Ad-hoc face de-identification methods:
	- masks on facial regions;
	- low-pass filtering or random noise addition;
		- swap face sub regions belonging to different individuals;
	- spatial subsampling resulting in facial region pixilation.

• Naïve face de-identification refers to applying additive noise (e.g., Gaussian, impulse) to or blur the (detected) input facial image region, until the system fails to detect/classify the face.

Gaussian blur with std. deviation of 5

- Modified face reconstruction methods:
	- Reduce the number of eigenfaces used for reconstructing the deidentified facial images.
- Taking advantage of the particularities of specific face identification methods in order to defeat them:
	- blocking efficient feature extraction.

Reconstruction-based face DID approaches:

- Obtain facial image coefficients using some reconstruction method (e.g., PCA, SVD, Autoencoder).
- Apply modifications to these coefficients.
- Reconstruct a distorted facial image.

Hypersphere projection with radius

Original Image

Face de-identification on drone videos

Artificial Intelligence & Information Analysis Lab

Face de-identification on drone videos

SVD-DID face de-identification in a drone video.

Drawbacks of previous face DID methods:

• They strongly alter original facial images.

Desirable face DID method properties against machines:

• De-identified image should retain the unique original facial image unique characteristics (e.g., race, gender, age, expression, pose). nformation Analysis Lab

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- **Autoencoder-based Face De-identification**
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Autoencoder-based Face Deidentification

- Originating from reconstruction-based methods.
- Leverage deep autoencoders or even GANs for generating "fake" image content, that is recognizable neither by machines and humans.
- The de-identified facial image is produced by reconstruction, using a neural Autoencoder (AE).

Autoencoder-based Face De-identification

- An image dataset $\mathcal{D} = \{x_i \in \mathbb{R}^n, i = 1, ..., N\}$ is employed to train an autoencoder $\mathbf{x}_{\mathrm{p}} = \boldsymbol{G}(\mathbf{x}; \boldsymbol{\theta}), \mathbf{x}_{\mathrm{p}} \in \mathbb{R}^n$.
- Let x_i be a facial image and z_i be its encoded feature vector, learnt by an autoencoder.
- The reconstruction x_p represents a lossy version of the original image, preserving similarity with $\mathbf{x}_i.$
- Information loss is enough to greatly lower face identification accuracy.

Autoencoder-based Deidentification

To produce visibly different facial identities, the autoencoder is disintegrated to its encoder and decoder parts, focusing on finetuning the encoder, using the following loss function:

$$
J(\mathbf{z}_i, \mathbf{t}_i) = |\mathbf{z}_i - \mathbf{t}_i|^2_2.
$$

 \cdot \cdot t_i is the generic target facial image representation (features). Its choice depends on the desired properties to be preserved/discarded on the reconstructed facial image.

• In order to obtain t_i , we first define the intermediate target s_i :

$$
\mathbf{s}_i = (1 - a)\mathbf{z}_i + a\mathbf{P}_i\mathbf{Z},
$$

$$
\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_N].
$$

where a is a trade-off parameter.

• $P_i \in [0,1]^{N \times N}$ is an *attraction matrix* encoding the data indices that contain desired properties to be preserved (e.g., ethnicity, mood, gender):

$$
P_{ij} = \begin{cases} \frac{1}{|\mathcal{D}_i|}, & \text{if } \mathbf{x}_j \in \mathcal{D}_i \\ 0, & \text{otherwise.} \end{cases}
$$

 \cdot \mathcal{D}_i : sets containing related facial images.

$$
Q_{ij} = \begin{cases} \frac{1}{|\mathcal{U}_i|}, & \text{if } \mathbf{x}_j \in \mathcal{U}_i \\ 0, & \text{otherwise.} \end{cases}
$$

- \cdot \mathcal{U}_i : sets containing opposing facial images.
- Q_i encodes undesirable properties (e.g., same-person facial images).
- The final reconstruction weight target is defined as follows:

$$
\mathbf{t}_i = (1+\beta)\mathbf{s}_i - a\mathbf{Q}_i\mathbf{S}, \qquad \mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_N].
$$

First row: original images; second row: images reconstructed by a standard AE, third row: Images reconstructed by Supervised Attributed Preserving DID.

This method is evaluated in terms of the following performance metrics [NOU2019] :

• Faceness (FCNS), De-identification performance, Output diversity (DIV). $C1 + C_1 - 3A + 1 = 1$ $T \cap T \cap T$ \mathbf{m} \mathbf{m} \mathbf{r} \mathbf{n} $T\Gamma T$

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- **GAN-based de-identification**
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

GAN-based face de-identification

GAN-based face de-identification extends AE-DID, by employing a Generator-Discriminator GD network pair, trained in an adversarial fashion. Given:

- source facial image x to be de-identified and its true label y .
- target 'wrong' facial image t,
- G calculates a reconstruction $\mathbf{x}_p = G(\mathbf{x}, \mathbf{t}; \boldsymbol{\theta}_G)$ by:
	- minimizing the discrepancy between x_p and t or
	- by "learning the translation" of x to t .

GAN-based face de-identification

- $\hat{d} = D(\mathbf{x}_p; \theta_D)$ is a binary discriminator of whether \mathbf{x}_p follows the distribution of **t**, or not.
	- x, t could be images belonging to the same class, or even completely different ones.
- If we feed the de-identified image x_p to a trained face recognizer $f(\mathbf{x}_p; \theta)$, it should not be able to identify it correctly $f(\mathbf{x}_p; \theta) \neq y$.
- This pipeline leads to even more realistic image generations, when compared to AE-based de-identification.

37

GAN-based face de-identification

Live face de-identification in video [GAF2019].

GAN body image de-identification

- Generative adversarial networks attempting to generate synthetic body image samples from the distribution of all possible body images that were generated from true segmented body images.
- Synthetic body images should be de-identified ones.
- Extending face de-identification.
- It removes soft biometric (e.g., tattoos) and non-biometric identifiers (e.g., cloth color).

GAN body image de-identification

Generative Full Body and Face De-Identification [BRK2017].

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- **Adversarial face de-identification**
- K-anonymity attacks
- SVDD Adversarial Defense

Adversarial attacks & Defenses

Adversarial Attacks modify facial images to be wrongly identified.

• They may be employed for privacy protection.

Adversarial Defenses modify face recognition pipeline modules to make the pipeline robust to adversarial attacks.

• They be employed for content protection against adversarial attacks (e.g., copyright protection systems).

- Such methods perform de-identification by applying adversarial attacks on trained deep NN face recognizers.
- Adversarial attacks may be:
	- Targeted or un-targeted.
	- White-box or black box.
	- Iterative or single-step.
	- Transferable to different NN architectures/classification methods.
- The de-identified image is produced by returning gradient from a trained NN to the input facial image directly.

They produce imperceptible facial image perturbations by humans. **Artificial Intelligence & Information Analysis Lab**

Targeted adversarial attacks

For a given image $x \in \mathbb{R}^n$, target label $t \in \mathcal{C} - \{y\}$, targeted adversarial attacks solve the following box-constrained optimization problem:

Minimize $\|\mathbf{p}\|_2$

subject to: $f(\mathbf{x}_p; \mathbf{\theta}) = t$ and $\mathbf{x}_p = \mathbf{x} + \mathbf{p} \in \mathbb{R}^n$.

An additional stopping condition of this optimization problem could be just:

Iterative Fast Gradient Value Method (*I-FGVM*):

- Let images x have normalized pixel values in the domain $[0,1]$.
- The gradient descent update equations have the form:

$$
\mathbf{x}_p^0 = \mathbf{x},
$$

$$
\mathbf{x}_p^{i+1} = \text{clip}_{[0,1]} \left(\mathbf{x}_p^i - \alpha \nabla_{\mathbf{x}} J(\mathbf{x}_p^i, \mathbf{t}) \right).
$$

- α is the step size, ${\bf x}$ is the original image, ${\bf x}_p^i$ is the adversarial image at step i ,
- $J(\mathbf{x}_p^i, \mathbf{t})$ is the adversarial loss,
- \cdot t is the target output vector class related to label target label t and
- clip $[a,b]$ is a constraint that keeps pixel values in the $[a, b]$ range.

• Alternative update equation of the I-FGSM:

$$
\mathbf{x}_p^{i+1} = \operatorname{clip}_{[0,1]}(\mathbf{x}_p^i - \alpha \operatorname{sign}(\nabla_{\mathbf{x}}J(\mathbf{x}_p^i, \mathbf{t}))).
$$

• sign(∙) function returns the sign of a real number.

P-FGVM face de-identification method:

- Another face de-identification method based on adversarial samples.
- Penalized Fast Gradient Value Method (P-FGVM).
- Inspired by the adversarial attack method I-FGVM.
- It combines an adversarial loss term and a 'realism' loss term in the objective function.

• Gradient descent update equations of the P-FGVM:

$$
\mathbf{x}_p^0 = \mathbf{x},
$$

$$
\mathbf{x}_p^{i+1} = \text{clip}_{[0,1]}(\mathbf{x}_p^i - \alpha \nabla_{\mathbf{x}} J(\mathbf{x}_p^i, \mathbf{t}) + \lambda (\mathbf{x}_p^i - \mathbf{x})).
$$

- λ is a weight coefficient for the proposed "realism term" $\mathbf{x}_p^i \mathbf{x}$.
- It pushes the solution of the optimization problem towards images x_n that lie close to the original image x, in terms of distance.

Comparison of P-FGVM with I-FGVM and Iterative Fast Gradient Sign Method I-FGSM face DID methods.

- Performance metrics:
	- L2 Distance (L2), CW-SSIM (SI) and de-identification performance (MR). Model A

Model A

Model B

First row: original image; Second row: de-identified image. Third row: adversarial perturbation absolute value (x10) [CHA2019].

Artificial Intelligence & Information Analysis Lab

49

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- **K-anonymity attacks**
- SVDD Adversarial Defense

-Anonymity-inspired adversarial attack

-anonymity concept:

- The maximum probability of retrieving a sample from a set must be less than $1/k$.
- Originally introduced in other research areas (e.g., Database research).
- In k -anonymity-inspired adversarial attack, the concept is altered as follows:
	- The maximum probability of retrieving the real person identity must be less than $1/k$, in every possible face classifier output ranking position.

-Anonymity-inspired adversarial attack

- Replacing the initial face with a face from another person.
- \cdot *k*-anonymity model:
	- de-identified images can be misclassified as belonging to at least k original individuals;
	- recognition rates are guaranteed to be lower than $1/k$.
- The core problem of k -same de-identification is to find the optimal selection of faces from the original face set consisting of $C = \{C_1, ..., C_m\}$ facial classes $(m \gg k)$ to form the clusters of k faces.

A NN classifier label output $\hat{y} = f(x; \theta)$ is usually produced by finding the arguments of the maxima of the final layer:

 $f(\mathbf{x}; \boldsymbol{\theta}) = argmax(\boldsymbol{g}(\mathbf{x}; \boldsymbol{\theta})),$

- $q(x; \theta) \in \mathbb{R}^m$ contains the network output values corresponding to the number of classes supported by the model.
- It has been observed that adversarial samples are usually classified correctly, only by obtaining the 2nd maximum ranking position instead of the 1st.

• Thus, network activations $g(x; \theta)$ for a sample x in the final layer may in fact act as Quasi-Identifiers, along with the output label \hat{y} **.** 53nformation Analvsis Lab

Let $r_{\mathbf{x}}(i) \in \mathcal{C}$, $i = 1, ..., m$, be a function associated with $\boldsymbol{g}(\mathbf{x}; \boldsymbol{\theta})$, outputting the $i - th$ most probable label of sample x, ranked as follows:

 $r_{\mathbf{x}}(1) = argmax(\boldsymbol{g}(\mathbf{x}; \boldsymbol{\theta})) = f(\mathbf{x}; \boldsymbol{\theta}).$

 $r_{\mathbf{x}_p}(1) \neq y$,

• For every adversarial sample in a dataset, we demand that:

 $P(r_{\mathbf{x}_p}(i) = y) \leq$ 1 \overline{k} , $i = 1, ..., m$.

- The first term is the adversarial attack constraint.
- In the second term, $P(\cdot)$ is a probability function and k denotes the desirable " k -anonymity protection level" property for sample x. 54nformation Analysis Lab

$$
\min_{\mathbf{p}} ||\mathbf{p}||_2 + \left(d - s(\mathbf{x} - \mathbf{x}_p)\right) + \sum_{i=2}^k J_i\left(f(\mathbf{x}_p; \boldsymbol{\theta}), \mathbf{t}_i\right)
$$

- J_i is a classification loss function.
- \mathbf{t}_i is the target output vector class corresponding to output label $r_x(i)$.
- $s(\cdot) < d$ is a similarity cost function for regularization purposes (related to SSIM).

This method extends the standard targeted Adversarial Attack optimization problem towards perturbations using k different classes in the dataset, instead of just 1.

− **face de-identification method** $P(r_{\mathbf{x}_p}(i) = y)$

- "Adversarial" datasets were created for each adversarial attack method, using 3 SoA methods and the proposed one.
- In most of the cases, the 2nd sorted ranked activations contain the "true" label $_{0.4}$ of the adversarial samples.
- Only the $k A^3$ method for $k = 5$, $k = 9$, satisfies the k -Anonymity Requirements.

the sorted ranked activations of the final layer. Probability of obtaining the true face label, using

Face de-identification: original images (1st, 3rd, 5th row), magnified de-identification noise for various methods (2nd, 4th, 6th row, $k-A^3$ 3 right columns).

Artificial Intelligence & Information Analysis Lab

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- **SVDD Adversarial Defense**

Adversarial Defense based on SVDD

- To protect face recognition NNs against adversarial attacks, we replace the NN classification layer with by m non-linear one-class classifiers (SVDD).
- We introduce the concept of *minimum* activation value $(T > 0)$, acting as an additional class ($m + 1$ class).
- Thus, the framework classifies $m + 1$ face classes, where m are the classes associated with one-class classifiers, and $m + 1$ is the adversarial class, using the following rule:
- If $q(x; \theta)$ < T1 for all m SVDD classifiers, then x is an adversarial example.

-SVDD Adversarial Defense

Information Analysis Lab

-SVDD Adversarial Defense

The effectiveness and noise required to fool the face recognition models before and after applying the proposed defense have been studied.

- The least noise is generated by the proposed $k A^3$ method.
- SVDD defense methodology increases the robustness of the model.

-SVDD Adversarial Defense

Effectiveness and noise required to fool the face recognition models. Performance metrics: Attack Success Rate (ASR), (F: Failed Attacks, D: Detected Attacks). a is defense parameter [MYG2020].

Adversarial face DID Motivations

- Adversarial attacks minimally intervene with the original data, focusing only against automated analysis.
- Up to date, they are imperceptible by humans.
- It is a great tool for examining robustness of neural networks.
- They have the potential of fooling multiple neural networks.
- They expose AI weaknesses in critical applications, e.g., biometric identifiers, traffic sign classification.

Adversarial face DID Limitations

- A "host" pre-trained network is required to generate adversarial perturbations.
- Adversarial attacks are network specific, come with no guarantees and cannot be applied universally.
	- However, some attacks may be transferable between different architectures.
- Adversarial attacks provide no privacy protection against humans, thus will never become GDPR compliant.
- If the DNN *adversarial robustness* problem is solved in the future, adversarial attacks will not even work, at least not that well.

They will generate too much noise or will fail completely. Artificial Intelliaence & nformation Analvsis Lab

Bibliography

[MYG2020] V. Mygdalis, A. Tefas and I. Pitas, "*K-anonymity inspired Adversarial Attack and M-SVDD Defense*", Neural Networks, Elsevier, vol. 124, pp. 296-307, 2020

[NOU2019] P. Nousi, S. Papadopoulos, A.Tefas and I.Pitas, "*Deep autoencoders for attribute preserving face de-identification*", Elsevier Signal Processing: Image Communication, 2019

[CHA2019] E. Chatzikyriakidis, C. Papaioannidis and I.Pitas, "*Adversarial Face De-Identification*" in Proceedings of the IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019 [PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis" , China Machine Press, 2017 (in Chinese). [PIT2013] I. Pitas, "Digital Video and Television" , Createspace/Amazon, 2013. [NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000. [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Bibliography

[SZE2013] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. 2013 Dec 21.

[BRK2017] Brkic, K., Sikiric, I., Hrkac, T., & Kalafatic, Z. *"I Know That Person: Generative Full Body and Face De-Identification of People in Images",* Proc. CVPR, 2017

[GAF2019] Gafni, Oran, Lior Wolf, and Yaniv Taigman. "*Live face de-identification in video."* Proc. IEEE International Conference on Computer Vision, 2019.

[MAX2020] Maximov, Maxim, Ismail Elezi, and Laura Leal-Taixé. "*CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks.*" Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

