

Flood Image Analysis

E. Vlachos, D. Papaioannou, A. Gerontopoulos, A. Pavlidis, Prof. I. Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.1

Flood Image Analysis

• **Introduction**

- **Deep Semantic Segmentation**
- Flood Region Segmentation
- **Object Detection**
- Person/Vehicle Detection in Flooded Regions
- House-Roof Detection in Flooded Regions
- Flood Monitoring System

- Due to climate change, **flash floods** *are more* usual than ever, affecting the lives of millions of people.
	- There is an imminent need for cutting-edge Natural Disaster Management systems (NDM).

Thessaly megaflood (2023).

- *Unmanned Aerial Vehicles (UAVs)* can fly over areas which humans cannot access and capture useful footage.
- State-of-the-art computer vision models can perform tasks like *flood segmentation* or *person detection* and produce valuable insights from multimedia.
- Evolution on *edge computing* enables us to deploy computer vision models on UAVs.

UAV flood monitoring in Peru.

Flood region segmentation, Ahrtal flood, Germany.

Object detection in flooded areas.

Detected persons and cars.

Flood Image Analysis

- **Introduction**
- **Deep Semantic Segmentation**
- Flood Region Segmentation
- **Object Detection**
- Person/Vehicle Detection in Flooded Regions
- House-Roof Detection in Flooded Regions
- Flood Monitoring System

Image region segmentation

- An image domain $\mathcal X$ must be segment in N different regions $\mathcal R_1^-\ldots, \mathcal R_N^+$.
- The segmentation rule is a logical predicate of the form $P(R)$.
- Image segmentation partitions the set X into the subsets \mathcal{R}_i , $i = 1, ..., N$, having the following properties:

$$
\mathcal{X} = \bigcup_{i=1}^{N} \mathcal{R}_i,
$$

\n
$$
\mathcal{R}_i \cap \mathcal{R}_j = \emptyset, \quad i \neq j,
$$

\n
$$
P(\mathcal{R}_i) = TRUE, \quad i = 1, ..., N,
$$

\n
$$
P(\mathcal{R}_i \cup \mathcal{R}_j) = FALSE, \quad i \neq j
$$

- Goal of deep flood semantic image segmentation is to classify each pixel of the input image to a flood or non-flood class using DNNs.
- *Feature Extraction***:** Extract relevant information for the image, identifying visual patterns and characteristics that can assist in distinguishing the different regions.
- *Dense prediction***:** DNN predictions are made at pixel level.
- Result: Class-related image segmentation maps.

- Transforming the fully connected layers of image classification networks into convolution layers enables the transformed network to output **heatmaps**.
- End-to-end dense prediction learning is possible by adding extra layers and using an appropriate loss function.

• Encoder-Decoder network architecture.

Replacing fully connected layers with convolutional ones.

The encoder produces a coarse feature map which is then refined by the decoder module.

Coarse feature map for semantic image segmentation [LON2015].

- However, as the encoder radically reduces the resolution of the input image the decoder fails to produce fine-grained segmentations.
- **Skip network connections** are added in fully convolutional network that combine the final prediction layer with previous fine-grained layers.
- Combine fine layers and coarse layers allow the model to make local predictions that respect global structure.

Ground truth target

Predicted segmentation

Coarse image segmentation[LON2015].

Ground truth target

Predicted segmentation

Improved segmentation results

with skip connections [LON2015].

Types of semantic segmentation learning procedures:

- *Supervised Segmentation:* A fully labeled dataset is used, where each image has a ground truth segmentation mask. The objective is to minimize the difference between the ground truth and the prediction mask using a loss function (e.g., cross entropy).
- *Unsupervised Segmentation:* Segmentation is performed without labeled data, relying on clustering or representation learning techniques to produce the segmentation masks.
- *Semi-Supervised Segmentation:* Both labeled and unlabeled images are utilized with a ratio of 1: 5. It combines supervised learning on labeled data with consistency regularization on unlabeled data.

Flood Image Analysis

- **Introduction**
- **Deep Semantic Segmentation**
- **Flood Region Segmentation**
- **Object Detection**
- Person/Vehicle Detection in Flooded Regions
- House-Roof Detection in Flooded Regions
- Flood Monitoring System

DNN-based flood Region Segmentation, Ahrtal flood, Germany.

FloodNet dataset comprises UAV images for post-flood semantic segmentation.

• It is more suitable for post destruction assessment applications.

V-floodnet dataset includes thousands of images depicting regular waterbodies.

• Flood images are a "minority".

FloodSeg: Novel Flood Segmentation dataset.

- *High-Resolution Aerial View:* FloodSeg contains detailed, high resolution aerial images of flood-affected areas.
- *Annotated Flood Regions:* Flooded regions are carefully labeled, allowing for precise segmentation of water boundaries from surrounding terrain.

FloodSeg dataset details:

FloodSeg: Train, Val, Test

- 548 annotated flood images from 3 different sources.
- Training-Validation split (ratio 3:1). 2 manually annotated videos for testing purposes.
- Greek video: 567 frames
- Italian video: 1204 frames.

Extended FloodSeg Dataset

- It includes unlabeled subsets to be used in semi-supervised training.
- It includes a new validation and test sets for distinct geographic regions (floods in Greece and Central Europe).

FloodSeg training dataset sample images from various locations.

Flood Segmentation – CNN i2i

CNN-i2i is a state-of-the-art semantic segmentation model, capable of making real-time predictions.

- A parallel *neural generative branch* is tasked to reconstruct the semantic masks in RGB format, and its useful features are propagated to the main branch via attention-based synapses.
- In our case, the main branch is a *BiseNet* Network with *Resnet18* as backbone.

Flood Segmentation – PSPnet

PSPnet is considered a benchmark model for semantic segmentation tasks.

- It employs a Pyramid Pooling module, concatenates feature maps of different scales and captures "global" features.
- **Resnet50** is used as backbone for a lighter implementation.

Information Analysis Lab

Flood Segmentation – Semi Supervised Learning

ST++ is a state-of-the-art self-training method is utilized for semi-supervised training.

- This method pseudo-labels the unlabeled images in two steps (reliable, unreliable).
- Strong image augmentations are injected in unlabeled images to prevent overfitting to wrong predictions.

ST++ architecture.

Flood Segmentation Results

Artificial Intelligence & Information Analysis Lab

Experimental evaluation of both supervised segmentation architectures trained on FloodSeg Dataset.

PSPnet semi-supervised training results using various numbers of unlabeled flood images.

CNN-i2i segmentation.

PSPnet segmentation.

CNN-i2i segmentation results on Ahrtal flood images.

Flood segmentation masks.

Flood Image Analysis

- **Introduction**
- **Deep Semantic Segmentation**
- Flood Region Segmentation
- **Object Detection**
- Person/Vehicle Detection in Flooded Regions
- House-Roof Detection in Flooded Regions
- Flood Monitoring System

Object Detection

- Object detection = Classification + Localization:
- Find *what* is in a picture as well as *where* it is.

Object Detection

- *Input*: an image.
- *Output*: *bounding boxes* containing depicted objects.
	- Each image may contain a different number of detected objects.
- Old approach: train a specialized classifier and deploy in *sliding-window style* to detect all object of that class.
	- Very inefficient, quite ineffective.
- *Goal*: combine classification and localization into a *single architecture for multiple, multiclass object detection*.

Classification/Recognition/ Identification

- Given a set of classes $C = \{C_i, i = 1, ..., m\}$ and a sample $\mathbf{x} \in \mathbb{R}^n$, the ML model $\hat{y} = f(x; \theta)$ predicts a class label vector $\hat{y} \in [0, 1]^m$ for input sample x, where θ are the learnable model parameters.
- Essentially, a probabilistic distribution $P(\hat{y} | x)$ is computed.
- Interpretation: likelihood of the given sample x belonging to each class \mathcal{C}_i .
	- Single-target classification:
		- classes C_i , $i = 1, ..., m$ are not mutually exclusive : $\|\hat{\mathbf{y}}\|_{\mathbf{q}} = 1$.
- Multi-target classification:
	- classes \mathcal{C}_i , $i = 1, ..., m$ are not mutually exclusive : $\|\hat{\mathbf{y}}\|_{1} \geq 1$.

Regression

- **Regression:**
	- Example: In object detection, localize the object:
	- regress object ROI parameters: ROI center (x_c, y_c) , width w, height (h) .
	- **Function approximation:** it is essentially regression, when the function $y = f(x)$ is known.

Object Detection

Object detection is a *multitask machine learning* problem:

- combination of classification and regression.
- Given a set of classes $C = \{C_i, i = 1, ..., m\}$ and an image sample $x \in$ \mathbb{R}^n , the model predicts (for one object instance only) an output vector $\widehat{\mathbf{y}}$ = $\bm{\widehat y}_1^{\intercal}|\bm{\widehat y}_2^{\intercal}]^{\intercal}$ consisting of: 2 T 1
	- A class vector $\hat{\mathbf{y}}_1 \in [0, 1]^m$ and
	- A bounding box parameter vector $\hat{y}_2 = [x, y, w, h]^T$ corresponding to object ROI.
	- Optimization of a joint cost function:

 $\boldsymbol{\theta}$ min $J(y, \hat{y}) = \alpha_1 J_1(y_1, \hat{y}_1) + \alpha_2 J_2(y_2, \hat{y}_2)$

• The above vector pair will be computed for every possible target detected in the image sample x.

Non-Maximum Suppression (NMS)

Challenge: Object detectors often output many overlapping detections.

Solution: Raw detection postprocessing using *Non-Maximum Suppression* (NMS):

- For each detection:
	- Select next highest-scoring box
	- Eliminate lower-scoring boxes with IoU>threshold (e.g., 0.5)
	- If remaining boxes, go to first step.

Object Detection Inference Examples

Bicycle Detection. **Face Detection.**

CNN-Object Detection

Region proposal-based detectors

- R-CNN, Fast R-CNN, Faster R-CNN
- R-FCN

Single Stage Detectors

- YOLO
- SSD
- YOLO v2, v3, v4
- RetinaNet, RBFnet
- CornerNet, CenterNet

Transformer Detectors

• DETR.

CNN-Object Detection Architectures

Backbone is a CNN used for image feature extraction:

• ResNet, MobileNet, VGG etc.

Neck is an extra object detector layer that goes on top of the backbone.

- It extracts different feature maps from different backbone stages.
	- FPN, PANet, Bi-FPN etc.

Head network performs actual object detection:

- classification in $m + 1$ classes and
- regression of object RoI parameters (x, y, h, w) .

YOLO v6

Artificial Intelligence & Information Analysis Lab

- *EfficientRep Backbone*: RepVGG and CSPStackRep blocks are combined to optimize speed and accuracy across model sizes.
- *Rep-PAN Neck*: RepVGG and CSPStackRep blocks are used to enhance feature integration at multiple scales.
- *Efficient Decoupled Head*: a hybrid-channel strategy is used to reduce the computation costs.

YOLO Models

YOLO versions have evolved significantly, each uniquely enhancements to the single-stage detector architecture:

- *YOLOX*
- *YOLOv7*
- *YOLOv8*
- *YOLOv9*
- *YOLOv10*
- *YOLOv11.*

Each model improves detection accuracy, speed, and robustness for various applications.

Detection Transformer (*DETR*) views object detection as a direct set prediction problem, while removing many hand-designed components like Non-Maximum Suppression (NMS) or anchor generation.

• DETR utilizes an encoder-decoder sequence processing model called *Transformer* [VAS2017] and a bipartite matching loss.

DETR

DETR architecture has three main components:

- A RestNet50/101 CNN backbone for feature extraction.
- An *encoder-decoder transformer* model.
- A feed-forward head network makes the final detection predictions.

DETR architecture [CAR2020].

Evaluating Performance with IoU

- *Intersection over Union (IoU)*:
	- $J(\mathcal{A},\mathcal{B})=$ $\frac{|ADB|}{|ADB|}$. $|\mathcal{A} \cup \mathcal{B}|$

Intersection over Union (IoU) =

- A, B : estimated, ground truth ROIs (sets, bounding boxes).
- $|A|$: set cardinality (area counted in pixels).
- Also called *Jaccard Similarity Coefficient* or *Overlap Score.*

Object Detection Performance Metrics

- Object detection on images $i = 1, ..., N_t$: bounding boxes \mathcal{A}_{ij} and confidence scores s_{ij} .
- If \mathcal{A}_{ij} is matched to a ground truth box \mathcal{B}_{ik} :

 $J(\mathcal{A}_{ij}, \mathcal{B}_{ik})$ > $T(\mathcal{B}_{ik}),$ then $z_{ij} = 1$.

The threshold $T(\mathcal{B}_{ik})$ depends on the box size:

 $T(\mathcal{B}_{ik})$ = min(0.5, $h w/(h + 1)(w + 1)$).

Object Localization Performance Metrics Example

Object localization performance: a) $J(A, B) = 0.67$; b) $J(A, B) = 0.27$.

ML

Object Detection Performance Metrics

For M ground truth object ROIs on all N_t images:

- Let $n_{ij} = 1$ for a successful classification at **confidence** *threshold* t $(s_{ij} \geq t)$:
	- *Recall, Precision* definitions (modified):

$$
r(t) = \frac{\sigma_{ij} n_{ij} z_{ij}}{M},
$$

 $p(t) = \frac{0.95}{0.05}$.

 σ_{ij} n_{ij}

 $\sigma^{}_{ij}\,n_{ij}$ zij

Object Detection Performance Metrics

Mean Average Precision (*mAP*):

 \cdot It is calculated over N levels of confidence threshold t_n , $n = 1, ..., N$:

$$
mAP = \frac{1}{N} \Sigma_n p(t_n).
$$

Real-Time Object Detectors

Real time object detectors comparison on COCO dataset [WAN2024].

Flood Image Analysis

- **Introduction**
- Deep Semantic Segmentation
- Flood Region Segmentation
- **Object Detection**
- **Person/Vehicle Detection in Flooded Regions**
- House-Roof Detection in Flooded Regions
- Flood Monitoring System

Person/Vehicle Detection

-
- Vanilla approach of using a DNN model pretrained on COCO dataset.
- Yolov6 [LI2023] is a state-of-the-art model in real-time object
- detection.
- Small and Large Yolov6 models were selected and compared.

Person/Vehicle Detection Results

The DNN detectors were evaluated using a novel manually annotated *submerged objection detection test set*.

• It consists of many images depicting objects, such as persons, cars, trucks that are *submerged in water* and possibly in danger.

mAP object detection results.

Person detection results. Car detection results.

Object Detection and Tracking in Floods

DNN models, pretrained on COCO dataset were used to detect classes of interest (*cars, persons*) that may be in danger.

YOLOv6s 4.0 person, car detections in Thessaly floods, Greece (2023).

Detection Results Visualized

Person and car detections.

Flood Image Analysis

- **Introduction**
- Deep Semantic Segmentation
- Flood Region Segmentation
- **Object Detection**
- Person/Vehicle Detection in Flooded Regions
- **House-Roof Detection in Flooded Regions**
- Flood Monitoring System

Datasets

Three main datasets have been used:

- *FloodNet.*
- *Giannitsa* (images of the city of Giannitsa, Macedonia, Greece).
- *RedRoofs* (Google Maps Images).

The following datasets were created:

- *FRG* (Floodnet + RedRoofs + Giannitsa).
- **MixedAreas** (images from the FRG dataset and internet-sourced images depicting flooded houses).
- *NoWater*:
	- images without flooded regions for training
	- Images with flooded regions for testing.

FloodNet Giannitsa RedRoofs

Image samples from the three main datasets.

Datasets

Two ways for *roof region annotation*:

- a) One bounding box
- b) Multiple bounding boxes.

 (b) (a) Example of annotating a C-shaped building.

Advantages of (b):

- Improved Object Description
- Fewer unrelated pixels
- Reduced false detections.

Disadvantages of (b):

- Higher number of bounding boxes
- Longer annotation time.

Inference Time

Roof detector inference speed.

Results

Table 10. Performance of YOLOv6 Finetuned Models.

Best detector: YOLOv6l Finetuned.

Suitable detector for our drone: YOLOv6m Finetuned.

Inference Example

DETR YOLOv6m

DETR and YOLOv6m Inference Results.

Flood Image Analysis

- **Introduction**
- Deep Semantic Segmentation
- Flood Region Segmentation
- **Object Detection**
- Person/Vehicle Detection in Flooded Regions
- House-Roof Detection in Flooded Regions
- **Flood Monitoring System**

DNN Flood Monitoring System

- Precise flood segmentation.
- human and/or vehicle detection in a flood context, even when they are partially submerged in the water.
- Fusion the two outputs to generate a rescue alert, if the detected person/car is in danger of the flood.

- It can be deployed for edge computing.
- Near real tbig visual data analysis.

Rescue alert examples, Thessaly, Greece (2023).

Rescue alert examples, Thessaly, Greece (2023).

References

[LI2022] C.Li, L.Li, H.Jiang, et al. "YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications". arXiv, 2022.

[VAS2017] A. Vaswani, Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. "Attention is all you need". NeurIPS (2017).

[CAR2020] N. Carion, F. Massa, G. Synnaeve, N. Usanier, A. Kirillov, S. Zagoruyko. "End-to-end object detection with transformers". arXiv, 2020.

[WAN2024] A.Wang, H.Chen, et al. "YOLOv10: Real-Time End-to-End Object Detection". arXiv, 2024.

[LI2023] C. Li, L. Li, Y. Geng, H. Jiang, M. Cheng, B. Zhang, Z. Ke, X. Xu, and X. Chu, "Yolov6 v3. 0: A fullscale reloading," arXiv preprint arXiv:2301.05586, 2023.

[DING2021] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, "Repvgg: Making vgg-style convnets great again," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 13 733–13 742.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

