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Main goals of this presentation are:

• Provide the role of the UAVs in the problem of the elongated object 

detection.

• Present the most recent techniques used to locate and recognize 

elongated objects, specifically line, power lines and pipelines.

Introduction
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• UAVs can perform economic and faster asset inspection than the

classic methods [LYU2019][SIN2019].

• For the visual inspection UAVs utilize RGB cameras, thermal camera

and LiDAR sensors [LYU2019].

• UAVs external pipeline inspection constitutes a preferable

replacement to in-pipe robots [AMI2016].

Role of UAVs in elongated 

object detection
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Applications of automatic linear elongated object detection by UAVs :

• Pipeline external inspection on industrial environment [LYU2019.]

• Autonomous tracking of pipelines and navigation of UAV in industrial 

enviroment [LYU2019].

• Powerline visual inspection on electricity transmission and distribution 

networks. [VAN2018]

Applications on industrial 

environment
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5 types of pipeline failures to be inspected.

Mechanical failures and corrosion are the 2 causes of failure which is 

aimed to be detected through UAV inspection. 

Pipeline inspection

Causes Distribution (%)

Mechanical failures 42

3rd party activity 24

Corrosion 18

Operational error 10

Natural Hazards 6

Table 1: Possible pipeline failures [SIN2019][JAK2014]
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• Mechanical failures: open insulation , misplaced insulation, 

rapture, puncture and leak. [SIN2019]

• Corrosion: internal and external. 

• Causes of external corrosion: worn-off, open or 

misplaced insulation, manufacturing defects and location 

close to extreme environments. [SIN2019][JAK2014]

• Causes of internal corrosion: chemicals such as, 

chloride, carbon dioxide, hydrogen sulfide, oxygen, and 

microbiological activity. [SIN2019][JAK2014]

Pipeline inspection
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Pipeline inspection

Corrosion damage [SIN2019]. Mechanical failure [SIN2019].
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Powerline inspection tasks:

• Inspection and mapping of powerlines and its components (conductors 

and pylons).  Main faults to be detected: damaged poles and 

crossarms and missing toppads [VAN2018].

• Monitoring for vegetation encroachment consists of: detection and 

classification of vegetation near the powerlines, estimation of height 

and distance from the powerlines [VAN2018].

Powerline inspection
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Powerline inspection tasks:

• Icing detection on the powerline and measurement of the icing 

thickness parameter [VAN2018]

• Disaster monitoring. Fast and accurate damage assessments on the 

powerlines to recover the power grid. [VAN2018]

Powerline inspection
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Elongated object detection: localization of instances of elongated 

structured objects inside an image.

• Powerline detection, refering to line detection.

• Pipeline detection, refering to linear structured object detection, such 

as cylinder.

Both object can be characterized as elongated linear objects because 

they extend in one direction (along one axis). 

Visual detection of elongated 

objects
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Edge Drawing Lines (EDLines):

• Input: RGB image

• Output: set of sharp, continuous, connected, chains of edge pixels, 

called edge segments.

• Fast, precise results and robustness to noise.

• Implementation steps:
• Edge Drawing: produces an edge segment consisted of a chain of pixels 

corresponding to the edge.

• Line Detection: uses the “Least Squares Line Fittings” method to extract 

lines from the edges.

• Line Validation: uses the Helmholtz Principle

Line Segmentation
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Image 3: (a) Edge map of Lena’s photos. (b) Part of the gradient map of the input 
image. (c) The 3D illustration of (b). [YET2015] 

Line segmentation
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Line Segments Detector (LSD):

• Input: Grayscale image

• Output: List of detected line segments

• Steps of LSD:

• Produce level-line field

• Line Support Regions (Region growing)

• Associate a rectangle to each region

• Helmholtz principle to consider ε-meaningful each reactnagel

• LSD is an automatic image analysis tool hence no parameter tuning 

is required. The values of the internal parameters of the algorithm are 

properly tuned to work on all images [VON2012].

Line segmentation
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Image: Illustration of the vector field and the region growing steps for the line

detection using the LSD algorithm [VON2012].

Line segmentation
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• Hough Transform has many variants and extensions, e.g. 

“Randomized Hough Transform”, “Elliptical Gaussian Kernel Hough 

Transform”, “Progressive Hough Transform” [YET2015] , etc..  

• The parameters of these techniques must be adjusted manually as 

they cannot be determined automatically.

• An edge map produced from edge detectors, such as Cunny, is 

required for the Hough Transform

• The run times of these methods are long.

Line segmentation



Image 4: Comparison results from [YET2015]  (Accuracy (%), Time (seconds), Size (row x 
column)) 19

Line segmentation

Comparison of Edge Drawing Lines (EDLines), Line Segmentation 

Detector (LSD) and Hough Transform [YET2015].
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Deep Hough Transform for semantic line detection [ZHA2021]. 

• Input: RGB image

• Combination of feature learning capabilities of CNN with the Hough 

Transform technique. 

• Real-time efficient solution for semantic line detection.

Deep line segmentation

Image 5: Pipeline of the method 

proposed in [ZHA2021].  (DHT: Deep 

Hough Transform, RHT: Reverse 

Hough Transform, CTX: Context-aware 

line detection)
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Deep Hough Transform [ZHA2021] 

• Input: 𝐗 ∈ ℝ𝐶×𝐻×𝑊 (features from a Deep CNN encoder network)

• Output: Y ∈ ℝ𝐶×Θ×𝑅 transformed features.

• Along an arbitrary line 𝑙 features are aggregated from all the pixels to 

the parametric space 𝑌:

𝐘 𝜃𝑙 , Ƹ𝑟𝑙 =

𝑖∈𝑙

𝐗 𝑖 .

Deep line segmentation
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Context-aware line detector [ZHA2021] 

• FPN encoder containing multiple 3 × 3 convolutional layers (two at 

each stage).

• Through the convolutional layers contextual line features are 

aggregated which then are interpolated matching the resolution of 

features from the different stages and finally they get concatenated 

together. 

The final pointwise predictions are produced through a 1 × 1
convolutional layer applied to the concatenated feature maps.

Deep line segmentation
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• The Loss Function used is the cross-entropy and it is calculated in 

the parametric space [ZHA2021]. 

𝐿 = −

𝑖

𝑮𝒊 ∙ log 𝑷𝒊 + (1 − 𝑮𝒊) ∙ log 𝟏 − 𝑷𝒊

• For the Reverse mapping the predicted map is binarized through a 

threshold then the centroids (parameter of detected lines) of each 

connected area are calculated. The detected lines are mapped to the 

image space with 𝑃−1(∙)

Deep Line Segmentation
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Image 6: Detection results from the Deep Hough Transform [ZHA2021].  

Deep line segmentation
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End-to-end convolutional architecture for pixelwise power line detection.

• Encoder-decoder CNN with information fusion

• Attention sub-brand creates high-resolution attention mask from the 

deep feature 

• Output: a score for each pixel (by thresholding the low score pixel are 

supressed and the final detection result is created).

Powerline segmentation

Image 7: Architecture of 

the attentional power 

line detection [LIY2019].
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For the pixelwise detection of a powerline it is needed:

• Semantic information for the identification of the powerlines. 

• The localization information for detecting the position of the powerline.

Powerline segmentation
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Information Fusion Module [LIY2019]

• Output: Probability score map.

• The convolution layers and the 

upsampling provides semantic 

information.

• Lateral connections from the 

shallow to the same scale 

corresponding deep layers provides 

the needed localization information.

Powerline segmentation

Image 8: Information fusion module in [LIY2019].  
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Attention Module [LIY2019]

• Goal: Prevent misinterpretation of the background noise and focus on 

the powerlines.

• Input: Feature map from the last layer of the encoder. 

• Upsampling and Convolution layers before and after the upsampling

produce the attention map of the encoder-decoder structure. The size 

of the attention map is the same as the output.

• The attention map is elementwise multiplied with the output fused 

image from the encoding-decoding structure.

𝑌 𝑥 = 𝐴 𝑥 ⨀𝐼 𝑥 .

Powerline segmentation
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Image 9: Results from the comparison of the attentional powerline detection with LSD and MAAA 

[LIY2019].

Powerline segmentation
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Domain Adaptation (DA) for powerline segmentation in aerial images

[KAL2023] .

• Synthetic Dataset: RGB images with their corresponding

segmentation maps captured in two Unity-created virtual

environments.

• Domain Adaptation: bridge the domain discrepancy between the two

datasets, a source (synthetic) dataset 𝒟𝑆 = { 𝑥𝑖
𝑠, 𝑦𝑖

𝑠 }𝑖=1
𝑁𝑠 and a target

(real) dataset 𝒟𝑇 = { 𝑥𝑖
𝑇 , 𝑦𝑖

𝑇 }𝑖=1
𝑁𝑇 ,where 𝑥𝑠, 𝑥𝑡 ∈ ℝ𝐻×𝑊×3 is a RGB

image, and 𝑦𝑠, 𝑦𝑡 ∈ ℝ𝐻×𝑊 is the segmentation map associated with

𝑥𝑠, 𝑥𝑡 accordingly.

Powerline segmentation
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• Fourier-based image translation was employed by swapping the

spectrum amplitude of a synthetic image with that of a random real

image.

• Fourier DA utilized as a separate step and doesn’t at all require any 

training to achieve domain alignment, instead relying on a simple 

Fourier Transform and its inverse.

Powerline segmentation

Image 12: The proposed framework for power line segmentation consists of two components: a) an input-level 

domain adaptation module that employs a Fourier-based image translation strategy, b) a high-performance 

semantic segmentation architecture trained with a power line segmentation loss.
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• DeeplabV3+ was used since it can enhance the accuracy and smooth 

the boundaries and incorporates a number of strategies, like skip 

connections, dilated convolution, global context, strong backbone, etc.

• The segmentation architecture was trained using a proposed power 

line segmentation learning objective:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1 ∙ 𝐿𝑓𝑜𝑐𝑎𝑙 + 𝜆2 ∙ 𝐿𝑑𝑖𝑐𝑒 .

Powerline segmentation
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• A comparison was conducted with existing SOTA method on TTPLA 

dataset where the proposed DA powerline segmentation method 

[KAL2023] outperforms the recently presented PLGAN [RAB2022]  

architecture by +3,82% 

Powerline segmentation

Method Backbone Network Image Resolution

TTPLA (Real 

dataset)

Test set mIOU

PLGAN [RAB2022] ResNet-6 512x512 53.30%

DA powerline 

segmentation 

[KAL2023] 

ResNet-6 512x512 57.12%
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Tiny-Yolov3 model for power line detection [HYU2022].

• Input: RGB image

• Prediction: Bounding boxes for detection of continuous object.

• A line is labelled using several continuous boxes of constant size. 

The shape of the power line (U-shaped curve, straight line etc.) is 

broken to small straight fragments.

• Lines close to each other are labelled by the same bounding boxes.

Powerline detection
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Power line ground truth RoIs [HYU2022].

Powerline detection
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In tiny-Yolov3:

• Real-time implementation capabilities.

• It consist of seven convolution layers and six max-pooling layers. 

• For the feature extraction 1 × 1 and 3 × 3 convolution layers were 

used. 

• The continuous bounding boxes are predicted in two scales.

• one 13 × 13 feature map

• concatenation of upsampled 13×13 and 26×26 feature maps

Powerline detection
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Evaluation metrics:

• Precision, recall and Intersection over Union (IoU).

𝑝(𝑡) =
σ𝑖𝑗 𝑛𝑖𝑗𝑧𝑖𝑗

σ𝑖𝑗 𝑛𝑖𝑗
, 𝑟(𝑡) =

σ𝑖𝑗 𝑛𝑖𝑗𝑧𝑖𝑗

𝑀

𝐽 𝒜,ℬ =
𝒜 ∩ ℬ

𝒜 ∪ ℬ
.

• Because of duplicate detection one ground truth has multiple IoUs, 

hence a true positive is counted when the sum of IoUs in one ground 

truth is over 0.5. 

Powerline detection
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Image 11: Example of a case of a true positive in  [HYU2022]

Powerline detection
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Different sensors can be used for the pipeline detection.

• Visual sensors. The pipeline detection problem in computer vision is 

treated as a semantic segmentation problem [GUE2020].

• LIDAR-based detection is typically treated as a pipeline segmentation 

problem [GUE2020].

• Infrared thermal images has been used for automatic fault diagnosis 

on hot water pipelines [HAN2022].

For this presentation only computer vision and infrared thermal image 

are discussed.

Pipeline detection and 

segmentation
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Automatic fault diagnosis method for hot water pipes on infrared images 

[HAN2022] .

• Infrared images were used because the distribution of surface 

temperature of the insulation is a good indicator that the layer is 

damaged. 

• The algorithm comprises of two parts: image segmentation and fault 

diagnosis.

Goal of image segmentation part is to decrease as much as possible the 

influence of the background. 

Pipeline segmentation
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Image segmentation contains gray processing, binarization and 

mathematical morphological processing.

• The gray processing extracts only the red component of the RGB 

input image.

• The gray image is divided to ROI (region of interest) and background:

𝑔 𝑥, 𝑦 = {
1 𝑓 𝑥, 𝑦 > 𝑇

0 𝑓 𝑥, 𝑦 ≤ 𝑇
• With Otsu’s technique the optimal threshold can be determined by 

minimizing between-class variance and within-class variance

Pipeline segmentation
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• By labelling the connected components in the binary image small 

background regions are eliminated.

• The used Morphological filter comprise of firstly a closing and 

afterwards an opening, clearing the small connected components in 

the image.

• Finally the resulted binary image is multiplied with each channel of the 

input image resulting to the pipe infrared image.

Pipeline segmentation

Image 18: Infrared 
image segmentation 
flowchart [HAN2022] 



45

Image 19: Image segmentation results: (a) initial image, (b) cropped image, (c) grayscale image (d) Otsu’s technique 
segmentation, (e) histogram of the red component image, (f) the segmentation result (the right peak method), (g) the 

largest connected component of (f), (h) output of closing, (i) output of opening (binary image of the pipe), and (j) the final 
segmented infrared image of the pipe. [HAN2022] 

Pipeline segmentation
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Classic semantic segmentation [GUE2020]

• Two step process: image processing for feature extraction, feature 

level classification.

• In dataset learned classes must be specified before training.

• The result of classification is used as input for the training of the 

classifier.

Pipeline segmentation

Image 15: Classic semantic segmentation architecture [GUE2020].
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Deep learning approach of the segmentation problem [GUE2020]

• At the scale of inference, image level probabilistic detection and pixel 

level classification can be produced.

• Provides localization using centroids and/or bounding boxes.

• Pixel level labelling can be achieved by using fully convolutional 

network (FCN).

Pipeline segmentation
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FCN16 model with AlexNet for pipeline segmentation [GUE2020]. 

• The AlexNet functioned as the semantic segmentation model.

• In this model deep features are extracted through convolutional and 

max pooling layers. 

• High level information is lost during the propagation of the data 

through the layers. Hence a fusion of the data from multiple layers is 

needed by upsampling through deconvolution data from deep layers.

Pipeline segmentation



Image 16: AlexNet architecture [GUE2020] Image 17: FCN32, FCN16 and FCN8 architectures to use 
data from deep layers and fuse deep features and spatial 

information [GUE2020].

Pipeline segmentation
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• Cooperation of a CNN segmentation model [PAP2021] and Segment

Anything Model [KIR2023].

• The CNN model produces masks of the pipes.

• A prompted SAM goal is used to refine the segmentation masks

produced by CNN model.

• SAM also runs on automatic mode to produce masks for all objects.

• The final segmentation mask is produced by fusing the two

intermediate outputs.

Pipeline segmentation
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Pipeline segmentation
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D. Psarras, C. Papaioannidis, V. Mygdalis, and I. Pitas, “A Unified DNN-Based System for Industrial Pipeline Segmentation”, submitted as 
conference paper.

Pipeline segmentation

• The performance of the model was evaluated using the Intersection-

over-Union (IoU) metric.
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Image 18: Pipe image segmentation.

Pipeline segmentation
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Yolov4 Neural Network (single stage detector, twenty-four convolution 

layers and two fully connected layers) for pipeline detection [YAG2022]. 

• Input: RGB image

• Prediction: Bounding Box that contains the pipe and a confidence 

score of the box. (x, y, h, w and confidence score)

• The confidence score represents the confidence of the model that the 

box contains an object and accurately predicts it, is given by:

Pr Object ∗ 𝐽(𝒜,ℬ)

Pipeline detection
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In Yolov4:

• The input image is divided to an S × S grid

• Each grid cell predicts a number of bounding boxes along with their 

respective confidence. 

• The grid cells which contain an object predicts additionally one set of 

conditional class probabilities Pr(Classi|Object).

• A number of bounding boxes with their confidence and a class 

probability map are predicted and by multiplying them together the 

class-specific confidence score of the boxes is obtained.

Pipeline detection
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YOLO object detection: a) input image 

of pipe; b) image division to grid cells; 

c)  merged boxes that contain the 

pipeline; d) generated bounding box 

[YAG2022].

Pipeline Detection
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The hyperparameters of the Yolo CNN used: 

Optimizer SGD (lr=0.01 learning rate)

Epochs 200

Batch size 16

Patience 100

Image size 448×448

Weight decay 0.0004

Pipeline detection
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Image 14: (a) input image of pipe, (b) resizing of the input image and ground truth, (b) convolution 
and fully connected layers, (c) pooling process, (d) flattened output matrix, (e) real time object 

detection [YAG2022].  

Pipeline detection
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Thank you very much for your attention!

Contact: Psarras Dimitrios
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