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• Pipeline Semantic Segmentation

• Developed pipeline segmentation algorithm: Pipeline segmentation model.

• Performed an extensive evaluation of the Pipeline segmentation model.

• Pipeline Damage Detection and Classification

• Developed damage detection and classification algorithms.

• Algorithms based on lightweight DNN detectors (YoLo, RT-DETR).

• Changes detection algorithm, which works in using image patches.

• Perfomed an extensive evaluation of the developed algorithms.

Overview
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• 3D Pipeline Damage Localization

• Developed algorithms for creating 3D models of pipelines (cylinders) using a) 3D 

point cloud, b) RGB video frames. 

• Projecting the 2D detected pipeline damages  on the 3D point cloud/map.

• X-ray Pipeline Corrosion Detection

• Solved the task using the YoLov8 object detection algorithm.

• Developed an image processing algorithm for corrosion detection.

• Implemented modern anomaly detection algorithms for corrosion detection.

• Developed an algorithm for synthetic X-ray data generation.

• PEC Pipeline Corrosion Detection

• Analysed and pre-processed PEC data. 

Overview



6

UAV Industrial 
Infrastructure Inspection

• Overview

o Pipeline Semantic Segmentation 

o Pipeline Damage Detection and Classification 

o 3D Pipeline Damage Localization

o X-ray Pipeline Corrosion Detection

o PEC Pipeline Corrosion Detection



7

• Pipeline segmentation model: Cooperation of a CNN segmentation model 

[PAP2021a] and Segment Anything Model [KIR2023].

• The CNN model produces masks of the pipes.

• A prompted SAM goal is used to refine the segmentation masks 

produced by CNN model.

• SAM also runs on automatic mode to produce masks for all objects.

• The final segmentation mask is produced by fusing the two 

intermediate outputs.

Pipeline Semantic Segmentation
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Pipeline Semantic Segmentation



9

• Training dataset: 901 annotated RGB images collected from the CHEVRON 

site (initial data collection).

• Validation dataset: 77 annotated RGB images collected from the AUTH site.

• Test Dataset: RGB images collected from CHEVRON on September 21st 

2023 using UAV.

Validation 
dataset example.
(AUTH site)

Pipeline Semantic Segmentation
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• The performance of the model was evaluated using the Intersection-

over-Union (IoU) metric.

D. Psarras, C. Papaioannidis, V. Mygdalis, and I. Pitas, “A Unified DNN-Based System for Industrial Pipeline Segmentation”, ICASSP 2024.

Pipeline Semantic Segmentation



11

Pipeline semantic segmentation image example.

Pipeline Semantic Segmentation
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• Detection/classification:

• YOLO-based algorithm [CHU2022] :

• Extract features from CNN-based backbone.

• Integrate features at multiple scales.

• RT-Detr-based algorithm [WEN2023] :

• Transformer based detector.

• Changes detection:

• Deep autoencoder model:

• Learns the distribution of non-damaged pipe from image patches.

• Detects the image patches that differ from learned distribution and classifies 

them as abnormal.

Pipeline Damage

Detection and Classification
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Pipe damage in a Greek factory.

Pipeline Damage

Detection and Classification
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Model Dataset Mean Average 

Precision

Mean Average 

Recall

YOLO-NAS D2023-07-01 0.39 0.776

YOLOv6L6 D2023-07-01 0.519 0.705

YOLOv6L6+SAHI D2023-07-01 0.521 0.730

Rt-Detr D2023-07-01 0.472 0.77

Rt-Detr+SAHI D2023-07-01 0.45 0.54

YOLOv6L6 D2023-09-30 0.52 0.78

Rt-Detr D2023-09-30 0.45 0.77

Rt-Detr+YOLOv6-

Backbone

D2023-09-30 0.40 0.65

YOLOv6L6 D2023-10-20 0.52 0.82

Rt-Detr D2023-10-20 0.46 0.78

Methods Precision Recall 

Autoencoders 0.55 0.91

Autoencoders 

with one-

class SVM

0.56 0.89

ResNet-50 

with Local 

Outlier Factor

0.36 0.86

Pipeline Damage

Detection and Classification
Performance of damage detection and classification algorithms Performance of changes detection algorithm
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Overall pipe damage detection and visualization.

Pipeline Damage

Detection and Classification
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3D Pipeline Damage Localization
• Goal: Improve accuracy of damage localization on the 3D point cloud.

• Developed algorithm for 3D pipeline model construction from 3D point 

clouds.

• Input: 3D point cloud from simulation.

• Methodology:

• Principal Component Analysis (PCA) to the 3D point cloud. [BRO2014]

• Fit a circle by projecting the 3D point cloud onto the plane of the 

eigenvectors.

• Compute the orientation and height of cylinder.
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PCA on the 3D point cloud 2D projection of cylinder to 
compute orientation and height

Projection of the point cloud onto 
the plane of eigenvectors. The 

blue line is the circle fitted.

3D Pipeline Damage Localization
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• 3D pipe model construction from RGB video frames.

• Structure from Motion software

• Apply masks to point cloud mainly to reduce outliers.

• Utilizes segmentation masks + confidence masks.

• Better cylinder parameter computation. 

• Reduced processing time.

3D Pipeline Damage Localization
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X-Ray Pipeline

Corrosion Detection

• Regarding X-rays, we have three types of datasets.

o DXR1: The X-rays are powerful, and able to penetrate the metal pipelines 

[YAN2021]. (This dataset was captured at the manufacturing stage)

o DXR2: The X-rays are only able to penetrate the insulation. This is the type of 

dataset that we deal with in the SIMAR project.

o Dsyntethic: The X-ray data have been synthetically created to look similar to DXR2.
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• Similarly to [YAN2021], solved this as an object detection task.

• Trained baseline models based on YOLO object detector [CHU2022].

YOLOv8 Results

Precision 0.97

Recall 0.96

mAP50 0.98

mAP50-95 0.71

X-Ray Pipeline

Corrosion Detection

Dataset DXR1 [YAN2021]



X-Ray Pipeline

Corrosion Detection

• Developed a methodology based on traditional computer vision and 
image processing to detect corrosion.

o Passed a median and a Gaussian filter to deal with insulation noise.

o Performed Binary thresholding on the image.

o Made use of the well-established Canny edge detector.

o Performed Hough Line Transform to find a suitable line that represents the 
ideal pipeline edge (i.e., if there was no corrosion).

24
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• Measured corrosion as the sum of y-axis distances from the 

corresponding straight line that simulates a pipeline without corrosion.

Corrosion

No 

Corrosion

Images 
taken from 

[QSA] 

X-Ray Pipeline

Corrosion Detection

Dataset DXR2



Several algorithms were implemented to 
solve the problem as an anomaly 
detection (AD) and anomaly localization 
(AL) task.
The algorithm with the best performance 
is Patchcore [PAT2022].
The results are near-perfect for some 
algorithms. We believe this is 
empowered by the simplicity of the task 
for modern AD/AL algorithms, as well as 
the low variance of dataset X-ray 
images.

X-Ray Pipeline

Corrosion Detection
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Algorithm Precision Recall F1 Score Accuracy AUC

CFA 0.788 0.850 0.818 0.790 0.849

Cflow 0.889 0.932 0.910 0.898 0.960

DFM 0.988 0.996 0.992 0.991 1.000

FastFlow 0.996 0.994 0.995 0.994 0.999

GANomaly 0.561 0.990 0.716 0.563 0.672

PaDiM 0.810 0.944 0.872 0.845 0.913

Patchcore 0.996 0.996 0.996 0.996 1.000

STFPM 0.994 0.980 0.987 0.986 0.999

CSFlow 0.951 0.974 0.962 0.958 0.992



Patchcore [PAT2022] works in the 
following steps:
oImage patch features are extracted from a pre-

trained encoder.

oThe features are greedily sub-sampled into a 

coreset and stored in a memory bank.

oNearest neighbor search is performed in the 

memory bank and patch-feature distances are 

calculated to perform anomaly detection and 

anomaly localization.

X-Ray Pipeline

Corrosion Detection

Patchcore Abnormal Inference Example:

Patchcore Normal Inference Example:

27



Developed an algorithm for 

synthetic data creation which can be 

used to augment DXR2.

Did not make use of such data 
because the performance is already 
near-perfect without augmentation.

X-Ray Pipeline

Corrosion Detection

Dataset Dsynthetic
28
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PEC Pipe Corrosion Detection

• A literature review is needed to identify deep learning methods and 

baselines for analysing PEC signals.
• A sample of demo data provided by USE:
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Infrastructure inspection 
applications
• Aerial robots with different characteristics must be integrated 

for:

1. Long range and local very accurate inspection of the 
infrastructure. 

2. Maintenance activities based on aerial manipulation 
involving force interactions. 

3. Aerial co-working safely and efficiently helping human 
workers in inspection and maintenance.

32



Electrical Infrastructure 
Inspection

• Overview

• Sensors

• Visual analysis

• Drone operations
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Technical objectives

• Cognitive functionalities for aerial robots including perception based 
on novel sensors such as event cameras and data fusion techniques, 
learning, reactivity, fast on-line planning, and teaming.

• Cognitive safe aerial robotic co-workers capable of physical 
interaction with people.

• Cognitive aerial manipulation capabilities, including manipulation 
while flying, while holding with one limb, and while hanging or perching 
to improve accuracy and develop greater forces. 

• Aerial platforms with morphing capabilities, including morphing 
between flight configurations, and between flying and ground 
locomotion, to save energy and perform a very accurate inspection.

34



Long range inspection of 
power lines
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Helicopter inspection of 
power lines

36

¿En+qué+consiste+la+inspección+aérea+de+las+líneas_+_+VIESGO.mp4


Helicopter inspection of 
power lines
• Complete manned helicopter flight:

• The helicopter has on-board a pilot and a camera operator. 

• Manned helicopter is flying at low altitude and stopping at each 
electrical tower.

• High quality visual, thermography and LIDAR data are obtained at 
the same time.

• LIDAR is disconnected in each electrical tower since it gets bad 
results when it is a long time in the same spot.

37



Types of flights with 
manned helicopter

• Fast manned helicopter  flight:

• Thermography and LIDAR acquisition at the same time.

• Helicopter does not stop at each electrical tower, but the flight is at 
low altitude (due to the thermography camera resolution).

• Speed limited to 50-60 km/h because of the thermography.

38



Disadvantages of current 
approach

Main disadvantages of current inspections with manned 
helicopters:
• Costs: 40,5 €/km.

• Difficulties to detect some devices, like connecting cable from the 
tower to ground.

• Safety.

• 200 km report is ready in two weeks.

39



Safe local manipulation 
interventions

• Examples: 
• Installing anti-birds 

systems.

• Cleaning isolator in 
power lines.

40

A lineman installs bird diverters from dizzying heights.mp4


Installing anti-birds 
systems

• National regulation (a few 
years ago) enforces their 
installation every 5-10 m.

• (De-)installation is performed 
by work at height on a basket.

• Dangerous, slow and costly.

• The electrical lines has to be 
without voltage, resulting in 
money loss.
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Co-working activities
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400 KV transmissionline Poland..mp4
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Types of inspection

44

Thermography
3D mapping (LIDAR)

Camera & video



Inspection using 
camera/video
• High quality images and videos

• Detailed images of the complete electrical tower

• Requires 2 mm GSD, i.e., 1 pixel per 2 mm to be able to 
identify all the required details.

• For example:
• check that the bolt on a screw is there.

• Requires that the UAV moves very slowly around the 
electrical tower.

45



Thermography

• Detection of hot spots in the electrical tower: cramps and 
connections

• To perform thermography, the speed of a fixed wing UAV is 
limited to 50-60 km/h.

46



3D LIDAR

• Precise 3D mapping (with cm level accuracy and precision)

• No speed limitation on the manned helicopter

• A 3D map is constructed to:
• Detection of obstacles close to power lines.

• Measurement of vegetation around power lines.

• Checking distance when crossing power lines.

• Once the 3D map is obtained, a classifier algorithm (and also 
checked and adjusted by a technician) is used. 

• Afterwards, distances and other measurements are performed to 
develop the inspection report.

47



3D VGA Time-of-Flight camera
• A camera for human gesture recognition, object avoidance in 

close distance, landing and taking-off. 

48
Indoor Tests, February 2021, Terabee facilities.



Event cameras - 
motivation

49

Latency  & Motion blur. Dynamic Range.



Event cameras

• Novel sensor that measures only motion in the scene.

• Low-latency (~ 1 μs).

• No motion blur.

• High dynamic range (140 dB instead of 60 dB).

• Ultra-low power (1 mW vs 1W).

• Traditional vision algorithms do not work all the time!

50
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Research tasks

• Semantic 3D world mapping.

• Learning methods for object 
detection/tracking of electric 
lines, rods, etc. 

• Human-drone interaction:
• Gesture drone control.

• Body posture estimation.

• Human action recognition.

• Facial pose estimation.

52



Learning methods for 
aerial inspection
• Visual detection.

• Semantic segmentation of power lines to enhance  robot 
behavior.

• Object detection for manipulation tasks.

• Focus in lightweight nets for online computing.

• Generative adversarial networks (GAN) to improve detection 
quality from previous learned experiences.

53



Semantic visual 
cognition
• Deep Neural Networks (DNNs) are the algorithm of choice for 

2D visual object detection/tracking tasks.

• They require powerful GPU-equipped hardware platforms for 
real-time execution.

• E.g.: Nvidia Xavier computing board for embedded/robotics 
applications.

• Software execution environment: Linux + Python.

54



Fast 2D Convolutions
• State-of-the-art neural network architectures for visual data use convolutional layers.

• The convolution operation takes up most of the total inference and training time.

• Reducing the computational complexity of convolutions would render networks for 
e.g., target detection or target tracking much more efficient for deployment on 
embedded GPUs.

55

Experimental Results

Algorithm Computation time (ms)

Winograd-6 (cuDNN Winograd linear 

convolution )

0.9165

GEMM-0 (fastest cuDNN 

convolution)

0.3858

Ours 0.0809

• We developed a fast convolution algorithm which 

splits cyclic convolution into smaller products.

• In this algorithm, cyclic convolution takes the 

following form:

𝐲 = 𝐂 𝐀𝐱⊗ 𝐁𝐡 .

• Thus, the problem is reduced to finding matrices 

𝐀,𝐁 and 𝐂.



Semantic 3D World 
Mapping

Geometric modeling of the 3D world. 

56



Semantic 3D World 
Mapping

57

• Semantic image 

segmentation:

• Segment low/high 

vegetation regions, 

roads.



Semantic 3D World 
Mapping
• Semantic image 

segmentation:
• Crowd detection  and 

localization.

58



Semantic Segmentation
• Multitask CNN for semantic segmentation and self-supervised depth 

estimation.

• Novel consistency loss function to regularize segmentation output.

• “Do not form semantic edges, if there are no depth edges”.

59

O
m

it
te

d
 d

u
ri

n
g

 i
n

fe
re

n
c
e

Method Mean IoU Inference (ms)

Yu et al. 39.557% 6.2

Klingner et al. 34.318% 6.4

Novosel et al. 37.683% 8.3

Chen et al. 

(pretrained)

39.610% 6.2

Chen et al. 

(multitask)

38.153% 9

Ours 40.597% 6.2

Semantic Image Segmentation Guided by Scene Geometry [PAP2021b].



Semantic Segmentation
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Semantic 3D World Mapping

61

• Raw reprojection

After step2 Final

• Semantic segmentation output



Semantic 3D World Mapping
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Object detection and 
tracking

Deep learning for power line detection and tracking.
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Object detection and tracking

64

Event-based Powerline tracker

Event-based Powerline tracker.



Object detection and 
tracking

• ENDESA dataset (17K images, insulators, dumpers, towers).

• SoA detector evaluation (Single-Shot-MultiBox-Detector (SSD), You-Only-Look-Once 
v4 (YOLOv4), Detection-Transformer (DETR).

• Proposed approach: Content-specific image queries (based on DETR).

65

Model
FPS

 2080 / Jetson 𝐴𝑃 𝐴𝑃50

YOLO v4 

CSPDarknet53

96/26 41.6 83.5

SSD Mobilenet v2 126/17 50.1 82.1

SSD Inception v2 84/13 48.7 80.0

SSD Resnet50 40/9 52.3 79.8

DETR Resnet50 35/8 52.4 83.1

Ours Resnet50 35/8 𝟓𝟑. 𝟗 𝟖𝟑. 𝟗



Object detection and 
tracking
• Combination of object 

detection/tracking methods.

• Object detector periodically re-
initiates the tracker.

66



Online tracking model 
adaptation

• Online tracking model updating is typically addressed as a regression problem.

• An adversarial optimization scheme

• Generator is assigned to the tracking model  producing response maps.

• Discriminator network is trained to identify if the tracker response maps produced by the 
generator belong to the target distribution, or not.

67



Robustness 2D Visual 
Object Tracking 
• VOT-RT - A toolkit that allows evaluation against:

• Image acquisition: Gaussian, Salt and pepper, etc,

• Image transmission: Low Quality image, Key-frame loss.

• We evaluated many state-of-the-art tracking methods, and all 
suffer from performance loss in every case.

68



Robustness 2D Visual 
Object Tracking 
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Object detection and 
tracking
• Requirements similar to 2D visual detection/tracking:

• Method: Embedded DNNs.

• Hardware: GP-GPU equipped computing boards (e.g., 
Xavier).

• Software: Linux + Python.

• Training: Massive, annotated, domain-specific datasets.
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Human posture estimation

71

a) Original image; b) Body joints heatmap; c) Human posture estimation.



Human-drone interaction

• Goals: The UAV/Aerial Co-Worker:
• Can verify that the technician follows pre-set safety rules at all times.

• May perceive the technician’s current activity (e.g., climbing a pole) 
in order to get into suitable position for assisting him.

• Is able to interact visually with the technician by interpreting pre-
defined communication hand gestures.

• AUTH may also potentially employ semantic image/instance 
segmentation for assisting in the above tasks and for augmenting 
algorithm performance.
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Human posture estimation

73
Human posture estimation.



Human posture estimation
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a) Original image; b) Body joints heatmap; c) Human posture estimation.



Human action 
recognition

75



Human pose estimation

Facial pose estimation.
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Gesture recognition

Language of visual gestures for drone control:
• Extend one arm to the side​

• Cross arms (form X with forearms)​

• Raise one arm upwards

• Palms together (namaste gesture)

• Victory sign

• Ok sign (thumbs up)

78



Gesture recognition

• A gesture dataset was created for training, using three data 
sources:
• UAV gestures dataset (thumbs up, cross arms, victory, palms 

together) [PER2018]​.

• NTU dataset (thumbs up, cross arms, raise one arm upwards) 
[SHA2019]​.

• Video acquisition performed by AUTH.

• A novel gesture recognition method was developed, relying 
on CNNs and LSTM networks, yielding a maximum test set 
classification accuracy of 89.22%.
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Human posture estimation

• AUTH developed a novel 2D human posture/body joint/skeleton 

estimation method based on deep CNNs using an image segmentation 

approach, utilizing a multi-task segmentation + I2I (GAN) network 

architecture.

• It receives an image of a localized person as input and predicts a 

dense heatmap for  each body joint in a predefined joints set (skeleton).

• The final 2D pixel coordinates of each joint are obtained by post-

processing the body joint heatmaps.
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Human posture – 
gesture recognition
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Human posture – 
gesture recognition
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Gesture-based control
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Coordination of a 
Heterogeneous Team of ACWs 

• 3 main ACW activities:

• Safety-ACW - equipped with a 
surveillance camera (blue).

• Inspection-ACW – inspection 
sensor (red).

• Physical-ACW - equipped with a 
manipulator to provide tools 
required by workers
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Infrastructure Inspection

• Overview
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• Drone operations
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Autonomous 
landing/perching
• Develop an autonomous landing and perching scheme (i.e., 

planning and control) that allows different flying platforms to 
land in confined spaces and perch on complex surfaces, 
such as, e.g., tower structures or electrical power lines.

• The system will be able to evaluate different landing positions 
for their feasibility and plan landing paths in real time that 
guide the aerial robots safely to the desired landing or 
perching spot while avoiding any obstacles. 
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Autonomous landing
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Autonomous perching

• Sensor fusion to exploit synergies:

• Perching steps:

• Preparation

• Multi-sensor detection & tracking of perching candidates

• LIDAR

• Fast approach to perching zone

• Multi-sensor Visual Servoing:

• event cameras

• Short distance approach & perching

• Multi-sensor Visual Servoing.
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End-effectors for 
holding/grabbing 
• Bio-inspired actuators for compliant co-working and close 

range inspection.
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Manipulation while 
holding/perching
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Manipulation while 
holding/perching

91

Voltage check with custom end-effector.



Manipulation while flying, 
holding and perching

92

Main challenges outdoor scenario:

• Physical interaction on flight during installation.

• Motion constraints during the installation phase.

• Positioning accuracy, dependent on GPS 

visibility.



Morphing
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Morphing
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C. Vourtsis, D. Floreano, N. S. Müller, W. J. Stewart, and V. C. Rochel, “Method for wind harvesting and wind rejection in flying drones,” 2022, PCT 

patent pending



Morphing
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Morphing
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Morphing
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C. Vourtsis, D. Floreano, N. S. Müller, W. J. Stewart, and V. C. Rochel, “Method for wind harvesting and wind rejection in flying drones,” 2022, PCT 

patent pending



Morphing
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Simulations
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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