

C. Georgiadis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 4.1

- **Image noise**
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

Image noise

• *White additive noise*:

 $x(i, j) = s(i, j) + n(i, j),$

• *White multiplicative noise*:

 $x(i,j) = s(i,j)n(i,j),$

• *White signal-dependent noise*:

 $x(i, j) = s^{\gamma}(i, j) n(i, j),$

• Noise can have various distributions: Gaussian, uniform, Laplacian.

Artificial Intelligence & Information Analysis Lab

Image noise

• *Salt-pepper noise* consists of black and/or white image impulses:

> $g(i, j) = \{$ $z(i, j)$, with probability p . $f(i, j)$, with probability $1 - p$.

Image noise

- Uniform noise has a *shorttailed* probability distribution.
- Laplacian noise has a *longtailed* probability distribution.
- Gaussian noise is at the borderline between long- and short *A*tailed probability distributions.

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- Median filter algorithms
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

- Image noise
- **2D FIR filters**
- Moving average filters
- **Spatial filters**
- Median filter algorithms
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

2D FIR Digital Filters

The output of a 2D FIR filter is given by a *linear convolution*:

$$
y(n_1, n_2) = \sum_{k_1=0}^{M_1-1} \sum_{k_2=0}^{M_2-1} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2).
$$

for a *filter* window (region of support) $[0, M_1 - 1] \times [0, M_2 - 1]$.

• For centered filter window $[-v_1, v_1] \times [-v_2, v_2]$, $M_i = 2v_i + 1$, $i = 1, 2$:

$$
y(n_1, n_2) = \sum_{k_1=-\nu_1}^{\nu_1} \sum_{k_2=-\nu_2}^{\nu_2} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2).
$$

- Image noise
- 2D FIR filters
- **Moving average filters**
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

2D FIR Digital Filters

Moving Average filter:

$$
y(n_1, n_2) = \left(\frac{1}{M_1 M_2}\right) \sum_{k_1 = -\nu_1}^{\nu_1} \sum_{k_2 = -\nu_2}^{\nu_2} x(n_1 - k_1, n_2 - k_2),
$$

where
$$
M_i = 2v_i + 1
$$
, $i = 1, 2$.

Properties:

- It is a linear FIR *low-pass filter*.
- It tends to blur edges and image details (e.g., lines, fine texture).
- It degrades image quality, particularly for large filter windows.

Moving Average Filter

 3×3 arithmetic moving average filter structure.

Moving Average Filter

 5×5 moving average image filtering [PIT2000].

2D FIR Digital Filters

Moving average filter properties:

• It is optimal in removing additive white Gaussian noise:

$$
f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}.
$$

• Arithmetic mean \bar{x} is the optimal estimator of location μ , as it minimizes the L_2 norm:

$$
\sum_{i=1}^{n} (x_i - \bar{x})^2 \to \min.
$$

 mean filter: **Mean Filter**

$$
y(n_1, n_2) = \frac{1}{M_1 M_2} \left(\sum_{k_1 = -\nu_1}^{\nu_1} \sum_{k_2 = -\nu_2}^{\nu_2} x^p (n_1 - k_1, n_2 - k_2) \right)^{1/p},
$$

where
$$
M_i = 2v_i + 1
$$
, $i = 1, 2$.

Properties:

- For large values, it tends to the maximum filter.
- *mean filter* is optimal in removing *Rayleigh noise* (e.g., for ultrasound images).

Mean Filter

a) Ultrasound image; b) Output of an L_2 filter [PIT2000].

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

Gaussian smoothing is performed by the 2D filter kernel:

$$
g(x,y)=\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}.
$$

- This kernel has zero mean.
- σ : *standard deviation* of the *Gaussian kernel.*
- The Gaussian kernel has low-pass frequency characterics: $G(\omega_x, \omega_y) = e^{-2\pi^2(\omega_x^2 + \omega_y^2)\sigma^2}$.
.
.
- It can be used to blur images and remove detail and noise.
- The degree of smoothing is determined by σ .

 5×5 discrete approximation of a Gaussian kernel for $\sigma = 1$.

3.18

Unsharp Filter enhances image edges and other high frequency image features, by:

- subtracting a smoothed version of the image from the original to create an edge image.
- Adding the amplified edge image on the original image.

$$
f_u(n_1, n_2) = f(n_1, n_2) + k g(n_1, n_2).
$$

$$
g(n_1, n_2) = f(n_1, n_2) - f_s(n_1, n_2),
$$

- $f(n_1, n_2)$: original image.
- $f_s(n_1, n_2)$: smoothed version of $f(n_1, n_2)$.
- $g(n_1, n_2)$: edge image.
- $f_u(n_1, n_2)$: output image.

 $-k$: scaling constant between 0.2 and 0.7. Information Analysis Lab

VML

Unsharp Filter

Conservative smoothing assumes that noise has a high spatial frequency.

- It can be attenuated by a local operation which ensures pixel intensity consistency in local image neighborhoods.
- It ensures that pixel intensities are bounded within the intensity *range* of its neighbors, defined by their *minimum* and *maximum* intensity values.
- If the central pixel intensity lies within the intensity range of its neighbors, it remains unchanged.
- If it is greater/smaller than the maximum/minmum value, it is set equal to the maximum/minimum value, respectively.

Conservative smoothing

• The central pixel intensity is 150, so it will be replaced with the maximum intensity value (127) of its 8 nearest neighbors.

Conservative smoothing in a local pixel neighborhood.

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

VML

 x_i , $i = 1, ..., n, n = 2\nu + 1$:

$$
x_{(1)} < x_{(2)} < \cdots < x_{(n)}
$$

 $\sum |x_i - \text{med}| \rightarrow \text{min.}$

- $x_{(1)}$: *minimum*, $x_{(n)}$ *maximum* data samples.
- Median is a special type of *order statistics*.

 \overline{n}

 $i=1$

It minimizes the L_1 norm:

2D median filter:

 $y(i, j) = \text{med}\{x(i + r, j + s), (r, s) \in A, (i, j) \in Z^2\}.$

Median filter properties:

- They have low-pass characteristics and remove additive white noise.
- They are very efficient in the removal of: •impulsive noise, •noise with long-tailed distribution (e.g., having Laplacian distribution).

Median filter properties:

- Median becomes corrupted, if more than 50% of the data samples are outliers.
- Median *robustness* renders it very suitable for impulse noise filtering.
- Median filtering preserves and, possibly, enhances image edge sharpness.
- Median filter smooths noise in homogeneous image regions but tends to produce regions of constant or nearly constant intensity (blobs).

a) Baboon image corrupted by mixed impulsive noise; b) 7×7 median filter output; c) 7×7 moving average filter output [PIT2000].

Separable 2D median filter:

1D median filtering of length $n=2v+1$ along image rows and columns:

$$
y_{i,j}=\text{med}(z_{i,j-v},\ldots,z_{i,j},\ldots,z_{i,j+v}),
$$

$$
z_{i,j} = \text{med}(x_{i-v,j}, \dots, x_{i,j}, \dots, x_{i+v,j}),
$$

- Low computational complexity, compared to non-separable median filter:
	- \bullet It sorts *n* numbers two times, instead of ordering n^2 numbers.

Recursive median filter:

 $y_{i,j}$ =med $(y_{i-v},..., y_{i-1,}, x_i, ..., x_{1+v}).$

- Its output tends to be much more correlated, than that of the standard median filter.
- Recursive median filters have higher immunity to impulsive noise than the non-recursive median filters.

Separable recursive median filter:

$$
y_{i,j} = \text{med}(y_{i,j-v}, \dots, y_{i,j-1}, z_{i,j}, \dots, z_{i,j+v}),
$$

\n
$$
z_{i,j} = \text{med}(z_{i-v,j}, \dots, z_{i-1,j}, x_{i,j}, \dots, x_{i+v,j}).
$$

VML

Weighted median is the estimator T that minimizes the weighted L_1 norm:

$$
\sum_{i=1}^{n} w_i |x_i - T| \to \min.
$$

It is described by:

 $y_i = \text{med}\{w_{-v} \,^{\Box} x_{i-v}, \, \dots, w_v \,^{\Box} x_{i+v}\},\$

where w^{dx} denotes duplication of x, w times to {x,..., x}.

 $\boldsymbol{\eta}$

Multistage median filter:

 $y_{i,j}$ =med(med($z_1, z_2, x_{i,j}$), med($z_3, z_4, x_{i,j}$), $x_{i,j}$),

$$
z_{1} = \text{med}(x_{i,j-v}, \ldots, x_{i,j}, \ldots, x_{i,j+v}),
$$

\n
$$
z_{2} = \text{med}(x_{i-v,j}, \ldots, x_{i,j}, \ldots, x_{i+v,j}),
$$

\n
$$
z_{3} = \text{med}(x_{i+v,j-v}, \ldots, x_{i,j}, \ldots, x_{i-v,j+v}),
$$

\n
$$
z_{4} = \text{med}(x_{i-v,j-v}, \ldots, x_{i,j}, \ldots, x_{i+v,j+v}).
$$

It preserves edges in horizontal, vertical and diagonal directions.

Artificial Intelligence & Information Analysis Lab

VML

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- **Digital filters based on order statistics**
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

Order Statistics Filters

Ranked order filters:

An r -th ranked filter y_i output is the r -th order statistic of signal x_i samples $\{x_{i-v},...,x_i,...,x_{i+v}\}$, $n = 2\nu + 1$ that exist in a *running filter* window.

- It introduces a strong bias in the estimation of the mean, when the rank is small or large (tending to *min* or *max filters*).
- The bias is even stronger when the input data have a long-tailed distribution.

Order Statistics Filters

Max/min filters:

Running maximum $x_{(n)}$ and **minimum** $x_{(1)}$ are the two extremes of the ranked-order filters.

- Maximum filter effectively removes negative impulses in an image.
- Minimum filter removes positive impulses.
- Both filters fail in the removal of mixed impulse noise.
- Both filters have good edge preservation properties (but shift edges).
- Max/min filters tend to enhance bright and dark image regions, respectively.

Max/min filters

a) Baboon image corrupted by mixed impulsive noise; b) The output of a cascade of max and min filters [PIT2000].

Order Statistics Filters *Running implementation of max filter*:

 $\sqrt{ }$

$$
y_{i} = \begin{cases} x_{i}, & \text{if } x_{i} \ge y_{i-1}, \\ y_{i-1}, & \text{if } x_{i} < y_{i-1} \text{ and } x_{i-n} < y_{i-1}, \\ \max(x_{i}, \dots, x_{i-n+1}), & \text{if } x_{i} < y_{i-1} \text{ and } x_{i-n} = y_{i-1}. \end{cases}
$$

- In average, only 3 comparisons are needed.
- A similar algorithm exists for min filtering.

α-trimmed mean filters:

• It rejects $\alpha\%$ of the smaller and $\alpha\%$ of the larger observation data. • It is a compromise between the median filter and the moving average filter for varying α.

• Its performance is poor for short-tailed distributions.

Midpoint filter:

$$
MP = \frac{1}{2} (x_{(1)} + x_{(n)})
$$

is optimal for uniform noise.

Modified trimmed mean filter ():

$$
y_{ij} = \frac{\Sigma \Sigma_A a_{rs} x_{i+r,j+s}}{\Sigma \Sigma_A a_{rs}},
$$

$$
a_{rs} = \begin{cases} 1, & |x_{i+r,j+s} - \text{med}\{x_{ij}\}| \le q \\ 0, & \text{otherwise.} \end{cases}
$$

- MTM trims out pixels deviating strongly from the local median.
- It removes outliers.

Double window modified trimmed mean (*DW MTM*):

• A variation of MTM, it uses two different sized filter windows to achieve good robustness and edge preservation.

Modified nearest neighbour filter (*MNN*):

$$
a_{rs} = \begin{cases} 1, & |x_{i+r,j+s} - x_{ij}| \le q \\ 0, & \text{otherwise.} \end{cases}
$$

- MNN trims out pixels deviating strongly from the central pixel value.
- It has good edge preservation properties.

L-filter (or L-order statistic) definition:

Location Invariance constraint:

$$
\sum_{j=1}^{n} a_j = \mathbf{a}^T \mathbf{e} = 1, \qquad \mathbf{e} = [1, ..., 1]^T.
$$

3.43

In the case of additive noise:

$$
x_i = s_i + n_i,
$$

the coefficient vector a can be obtained after MSE minimization:

$$
MSE = E\{(s_i - y_i)^2\} = E\left\{ \left(\sum_{j=1}^n a_j x_{(j)} - s_i \right)^2 \right\} = \mathbf{a} \; \mathbf{R}^T \mathbf{a},
$$

$$
\mathbf{a} = \frac{\mathbf{R}^{-1} \mathbf{e}}{\mathbf{e}^T \mathbf{R}^{-1} \mathbf{e}}.
$$

• R: $n \times n$ correlation matrix of vector $\mathbf{n} = [n_{(1)},...,n_{(n)}]$ \overline{T} .

 Ω

- The optimal L-filter:
	- for Gaussian noise is the moving average.
	- for Laplacian noise is the median filter.
	- for uniform noise is the midpoint.

• L-filter has no streaking effects, provided that its coefficients are not similar to those of the median filter.

• It has greater computational complexity than both the median and the moving average filter.

- Midpoint filters optimal estimators in the case of additive white uniform noise.
- Arithmetic moving average filters are optimal estimators in the case of additive white Gaussian noise $N(0,1)$:

$$
f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}.
$$

• Median filters are optimal estimators in the case of additive white Laplacian noise:

.

$$
f_X(x) = \frac{1}{2}e^{-|x|}
$$

Digital Image Filtering

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- **Adaptive order statistic filters**
- Anisotropic Diffusion
- Image interpolation
- Neural image filtering

VML

Minimal Mean Square Error (*MMSE*) *filter*: **Adaptive Order Statistic Filters**

$$
\hat{S}_{ij} = \left(1 - \frac{\sigma_n^2}{\sigma_x^2}\right) x_{ij} + \frac{\sigma_n^2}{\sigma_x^2} \widehat{m}_x,
$$

$$
x_{ij} = s_{ij} + n_{ij}.
$$

- It is an *adaptive filter*:
	- It performs like arithmetic mean in homogeneous image regions.
	- It performs no filtering close to edges.

• It preserves edges, as it does not filter the noise in edge regions. \bullet Various choices of the local measures of \widehat{m}_x , σ_x^2 , σ_n^2 . 3.48 **Information Analysis Lab**

Adaptive Order Statistic Filters *Decision-directed filters*:

- They take into account both edge and noise information.
- Impulses, when detected, can be removed from the estimation of the local mean, median and standard deviation.
- When an edge is detected, the window of the filter can become smaller, so that edge blurring is minimized.
- Adaptive window edge detection (AWED) filter: • AWED filter window size/shape can be adapted.

Adaptive Order Statistic Filters

Modified

Median Filter

Window Adaptation

Signal-adaptive median (SAM) filter:

• It is an adaptive filter based on the two-component image model:

$$
y_{1ij} = \widehat{m}_x + b_{ij}(x_{ij} - \widehat{m}_x).
$$

$$
y_{ij} = r^{-1}(y_{1ij}).
$$

• It has excellent performance in noise filtering, edge and image detail preservation.

 $r^{1}()$

 b_{ii}

Impulse Detection ocal SNR Estimation

Adaptive Order Statistic Filters

a) Original image; b) Image corrupted by Gaussian noise (variance=100) and mixed impulsive noise; c) SAM filter output [PIT2000].

(VML

Digital Image Filtering

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- **Anisotropic Diffusion**
- Image interpolation
- Neural image filtering

Image intensity $f(i, j)$ can be considered as **pixel** *temperature* that can be diffused over the entire image domain, in an iterative process described by $f(i, j, t)$ over various steps t.

Isotropic diffusion filtering can perform image smoothing:

$$
\frac{\partial f}{\partial t} = \operatorname{cdiv}(\nabla f) = c \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right).
$$

- \cdot c : diffusion coefficient.
- Diffusion is also used for image segmentation.

Limitations:

- While it smooths noise, isotropic diffusion filtering also blurs important image features, such as edges.
- As iteration number increases, the image will tend to a constant mean average image, hence destroying all image information.
- It dislocates edges, when moving from finer to coarser scales (correspondence problem).
- Some smoothing properties of linear diffusion filtering are only suitable for 1D filtering.

Anisotropic diffusion depends on local image properties, e.g., local image edges.

• It reduces diffusion at image edges:

 ∂f ∂t $=$ div(($c(f)\nabla f$).

- div: divergence operator.
- ∇f : image $f(i, j, t)$ differentiation (edge detection) at iteration t.
- Diffusion close to edges is reduced, because of the form of $c(f)$: $\mathbf 1$

 $\nabla f|^2$

, $\lambda > 0$.

 λ^2

1+

 $c(f) =$

Anisotropic image diffusion equation:

$$
\frac{df(i,j,t)}{dt} = div(c(i,j,t)\nabla f) = c(i,j,t)\Delta f + \nabla c \nabla f.
$$

• Δ: Laplacian operator.

performs simultaneous noise reduction and contrast enhancement across image regions, while deriving consistent deterministic scale-space image descriptions.

• It smooths homogeneous image regions while retaining image edges.

The 4-nearest North, South, East and West neighbors of the Laplacian operator can be used:

$$
f(i,j,t+1) = f(i,j,t) + \lambda [c_N \nabla_N f + c_S \nabla_S f + c_E \nabla_E f + c_W \nabla_W f](i,j,t).
$$

• $0 \leq \lambda \leq$ 1 4 : ensures numerical stability. • ∇_N , ∇_S , ∇_E , ∇_W are nearest-neighbor differences:

$$
\nabla_N f(i,j,t) \triangleq f(i-1,j,t) - f(i,j,t),
$$

\n
$$
\nabla_S f(i,j,t) \triangleq f(i+1,j,t) - f(i,j,t),
$$

\n
$$
\nabla_E f(i,j,t) \triangleq f(i,j+1,t) - f(i,j,t),
$$

\n
$$
\nabla_W f(i,j,t) \triangleq f(i,j+1,t) - f(i,j,t).
$$

- Iterating this scheme can be thought as moving towards coarser image resolutions in *scale-space*.
- Diffusion coefficients are updated at every iteration as a function of the image intensity gradient:

$$
c_N(i,j,t) = g\left(\left\|\nabla f\left(i + \frac{1}{2}, j, t\right)\right\|_2^2\right),
$$

\n
$$
c_S(i,j,t) = g\left(\left\|\nabla f\left(i - \frac{1}{2}, j, t\right)\right\|_2^2\right),
$$

\n
$$
c_E(i,j,t) = g\left(\left\|\nabla f\left(i, j + \frac{1}{2}, t\right)\right\|_2^2\right),
$$

\n
$$
c_W(i,j,t) = g\left(\left\|\nabla f\left(i, j - \frac{1}{2}, t\right)\right\|_2^2\right).
$$

,

Artificial Intelligence & Information Analysis Lab

a) Original image; b-d) Various anisotropic diffusion iterations.

a) Original Byzantine painting with cracks.

- b) Localized cracks.
- c) Filled cracks using anisotropic diffusion.

Artificial Intelligence & Information Analysis Lab

3.60

Digital Image Filtering

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- **Image interpolation**
- Neural image filtering

Image interpolation is an important operation with many applications:

- Image zooming (e.g., for video games)
- Image upsampling (e.g., in neural autoencoders or in neural semantic region segmentation.
- Image magnification/upsampling.
	- Video format conversion.

Zero-order (hold) interpolation: pixel (x, y) is assigned the value of the geometrically closest pixel in the image array:

$$
f_i(n_1, n_2) = f([n_1/2], [n_2/2]).
$$

- Repeated application: zooming by a factor of $2^n \times 2^n$.
	- For large n , regions of constant intensity (image blobs) are visible.
- It is sometimes used in video effect creation.

Linear interpolation:

$$
f(x,y) = (1 - \Delta_1) (1 - \Delta_1) f(n_1, n_2) + (1 - \Delta_1) \Delta_2 f(n_1, n_2 + 1)
$$

+ $\Delta_1 (1 - \Delta_2) f(n_1 + 1, n_2) + \Delta_1 \Delta_2 f(n_1 + 1, n_2 + 1),$

- It is a first-order polynomial interpolation.
- It produces smoother interpolated images.

Artificial Intelligence & Information Analysis Lab

where:

In *p*-order interpolation, the image is interpolated with zeros:

$$
f'(n_1, n_2) = \begin{cases} f\left(\frac{n_1}{p}, \frac{n_2}{p}\right) & \text{if } n_1 = pk, n_2 = pl \\ 0 & \text{otherwise.} \end{cases}
$$

• Then, image f' is convolved p times with convolution matrix H. **Example of a convolution matrix H:**

> $H \equiv$ $1/4$ $1/2$ $1/4$ $1/2 \n\begin{array}{ccc} 1 & 1/2 \n\end{array}$ $1/4$ $1/2$ $1/4$

.
.
.

EDITE: BUT Interpolation.

BABOON Image.

CVML

Zero-order interpolation.

Linear Interpolation.

Cubic spline Interpolation.

Digital Image Filtering

- Image noise
- 2D FIR filters
- Moving average filters
- **Spatial filters**
- **Median filters**
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation
- **Neural image filtering**

VML

Neural image filtering

A classic autoencoder consists of:

- *Encoder layers*
- *Latent View Representation (code)*
- *Decoder layers*

Autoencoder architecture.

Artificial Intelligence & Information Analysis Lab

Neural image filtering

Tries to:

- 1. Encode the input from a corrupted version of it
- 2. Undo the effect of the corruption process

Data corruption typically in 30-50% of the pixels

In the loss function the output values are compared with the original input & not the corrupted output!

Artificial Intelligence & Information Analysis Lab Denoising Autoencoder.

Neural image filtering

Medical image denoising using convolutional denoising autoencoders.

Objective:

• Denoise medical images as a preprocessing step in medical image analysis

Methodology:

- Combination of convolutional, denoising & stacked autoencoder
- 2 datasets used, consisting of 722 high resolution images
- Gaussian & Poisson distribution introduced, with various noise proportion.

Neural image filtering

Medical image denoising using convolutional denoising autoencoders

Neural image filtering

Image de-raining [DER2023].

Neural image filtering

Image de-fogging.

References

[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis " , China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television " , Createspace/Amazon, 2013. [NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000. [PIT2000] I. Pitas, Digital Image Processing Algorithms, J. Wiley 2000. [FIS2003] R. Fisher, S. Perkins, A. Walker, E. Wolfart 2003 homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm

[Weickert 1998] J. Weickert, "Anisotropic Diffusion in Image Processing", Teubner, 1998.

[MIN2017] Min Chen et al. "Deep features learning for medical image analysis with convolutional autoencoder neural network". IEEE Transactions on Big Data (2017). [DER2023] https://github.com/TheLethargicOwl/Single-Image-De-Raining-Keras

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

