

17th International Conference on Machine Vision (ICMV 2024)

X-ray Anomaly Detection in Industrial Pipelines

Diamantis Rafail Papadam, Christos Papaioannidis, Alexandros Zamioudis, and Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki, Greece

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

Introduction

- The <u>SIMAR</u> project aims at **automating** the **inspection** of **insulated pipes** in industrial facilities.
- Such automation allows for:
 - Lowered risk for human workers.
 - Inspection without the need of insulation removal.
- Pipes are inspected in two ways:
 - Pulsed Eddy Current (PEC) signals.
 - X-ray (Radiography).
- In our paper, we analyze X-ray images of insulated pipes to detect the presence of corrosion.

Dataset Description

- X-ray images are taken outside the insulation.
- The upper part (black), shows the pipe which is not penetrated by the X-ray.
- The lower part (grey), shows the **insulation** which is **penetrated** by the X-ray.

VML

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

Methodology

- We tested several state-of-the-art Anomaly Detection algorithms to assess how well they can deal with our novel X-ray task.
- We simulated two types of noise that can occur in our setting:
 - **Poisson Noise**.
 - Motion Blur Noise. (horizontal)
- We evaluated a subset of the **Anomaly Detection** algorithms in terms of robustness to:
 - 3 Levels of Poisson Noise.
 - 3 Levels of Motion Blur Noise.
 - 1 Level of Combined Noise.

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

Algorithm	AUROC	F ₁ Score	Accuracy	Precision	Recall
C-Flow	0.516	0.669	0.513	0.507	0.988
DFKDE	0.959	0.911	0.905	0.856	0.975
DFM	0.952	0.896	0.895	0.879	0.914
FastFlow	0.969	0.918	0.917	0.904	0.933
GANomaly	0.833	0.789	0.788	0.785	0.794
PaDiM	0.915	0.889	0.879	0.819	0.974
Patchcore	0.983	0.945	0.945	0.939	0.951
R-KDE	0.843	0.826	0.805	0.744	0.930
STFPM	0.962	0.909	0.905	0.875	0.945
U-Flow	0.991	0.948	0.948	0.949	0.947

Table 1: Algorithm Performance without Noise

Algorithm	AUROC	F ₁ Score	Accuracy
DFKDE	(0.957/0.869/0.818)	$(\underline{0.916}/0.813/0.765)$	$(\underline{0.911}/0.786/0.734)$
DFM	(0.949/0.798/0.795)	(0.879/0.752/0.731)	(0.881/0.709/0.698)
FastFlow	(0.848/0.622/0.695)	(0.791/0.712/0.718)	(0.749/0.623/0.636)
PaDiM	(0.911/0.825/0.768)	(0.883/0.808/0.749)	(0.877/0.784/0.724)
Patchcore	(0.982/0.945/0.928)	(0.944 / 0.877 / 0.845)	(0.943 / 0.869 / 0.833)
STFPM	$(\underline{0.960}/\underline{0.873}/\underline{0.885})$	$(0.901/\underline{0.838}/\underline{0.811})$	$(0.898/\underline{0.814}/\underline{0.779})$
U-Flow	(0.780/0.776/0.782)	(0.742/0.743/0.763)	(0.694/0.690/0.721)
T 11 0		·11 D · N · /	1 / 1 / 1 · 1)

Table 2: Algorithm Performance with Poisson Noise (low/medium/high)

Algorithm	AUROC	F ₁ Score	Accuracy
DFKDE	$(\underline{99.8}\%/90.6\%/85.3\%)$	(100.5%/89.2%/84%)	(100.7%/86.9%/81.1%)
DFM	(99.7%/83.8%/83.5%)	(98.1%/83.9%/81.6%)	(98.4%/79.2%/78%)
FastFlow	(87.5%/64.2%/71.7%)	(86.2%/77.6%/78.2%)	(81.7%/67.9%/69.4%)
PaDiM	(99.6%/90.2%/83.9%)	(99.3%/90.9%/84.3%)	$(\underline{99.8}\%/89.2\%/82.4\%)$
Patchcore	(99.9%/96.1%/94.4%)	$(\underline{99.9}\%/92.8\%/89.4\%)$	$(\underline{99.8}\%/92\%/88.1\%)$
STFPM	$(\underline{99.8}\%/\underline{90.7}\%/\underline{92}\%)$	$(99.1\%/\underline{92.2}\%/\underline{89.2}\%)$	$(99.2\%/\underline{89.9}\%/\underline{86.1}\%)$
U-Flow	(78.7%/78.3%/78.9%)	(78.3%/78.4%/80.5%)	(73.2%/72.8%/76.1%)

Table 3: Algorithm Robustness to Poisson Noise (low/medium/high)

Algorithm	AUROC	F ₁ Score	Accuracy
DFKDE	(0.901/0.789/0.697)	$\left(0.828/0.730/0.687 ight)$	$\left(0.814/0.703/0.653 ight)$
DFM	(0.650/0.497/0.468)	$\left(0.712/0.694/0.690 ight)$	$\left(0.601/0.566/0.559 ight)$
FastFlow	(0.494/0.422/0.372)	$\left(0.702/0.689/0.690 ight)$	$\left(0.585/0.558/0.556 ight)$
PaDiM	(0.908/0.857/0.825)	$\left(0.872/0.807/0.775 ight)$	$\left(0.868/0.793/0.761 ight)$
Patchcore	(0.980 / 0.952 / 0.903)	(0.942 / 0.908 / 0.835)	(0.942 / 0.909 / 0.837)
STFPM	$(\underline{0.943}/\underline{0.916}/\underline{0.890})$	$(\underline{0.887}/\underline{0.847}/\underline{0.832})$	$(\underline{0.882}/\underline{0.849}/\underline{0.827})$
U-Flow	(0.842/0.764/0.657)	$\left(0.803/0.713/0.694 ight)$	$\left(0.815/0.708/0.563 ight)$
TT 1 1 4 4	1 11 D C	11 M DI NT	(1 / 1. /1.1)

Table 4: Algorithm Performance with Motion Blur Noise (low/medium/high)

Algorithm	AUROC	$\mathbf{F_1}$ Score	Accuracy
DFKDE	(94%/82.3%/72.7%)	(90.9%/80.1%/75.4%)	(89.9%/77.7%/72.2%)
DFM	(68.3%/52.2%/49.2%)	(79.5%/77.5%/77%)	(67.2%/63.2%/62.5%)
FastFlow	(51%/43.6%/38.4%)	(76.5%/75.1%/75.2%)	(63.8%/60.9%/60.6%)
PaDiM	$(\underline{99.2}\%/93.7\%/90.2\%)$	$(\underline{98.1}\%/90.8\%/87.2\%)$	$(\underline{98.7}\%/90.2\%/86.6\%)$
Patchcore	$(99.7\%/96.8\%/\underline{91.9}\%)$	$(\mathbf{99.7\%}/\mathbf{96.1\%}/\underline{88.4}\%)$	$(\mathbf{99.7\%}/\mathbf{96.2\%}/\underline{88.6}\%)$
STFPM	$(98\%/\underline{95.2}\%/92.5\%)$	$(97.6\%/\underline{93.2}\%/91.5\%)$	$(97.5\%/\underline{93.8}\%/91.4\%)$
U-Flow	(85%/77.1%/66.3%)	(84.7%/75.2%/73.2%)	(86%/74.7%/59.4%)

Table 5: Algorithm Robustness to Motion Blur Noise (low/medium/high)

Algorithm	AUROC	F ₁ Score	Accuracy	Precision	Recall
DFKDE	0.804	0.756	0.719	0.668	0.873
DFM	0.542	0.689	0.549	0.526	<u>0.999</u>
FastFlow	0.428	0.682	0.543	0.523	0.981
PaDiM	0.795	0.795	0.771	0.720	0.888
Patchcore	0.900	0.847	0.843	0.823	0.874
STFPM	0.745	0.751	0.691	0.628	0.933
U-Flow	0.695	0.686	0.546	0.524	0.992

 Table 6: Algorithm Performance with medium-level Combined Noise

Algorithm	AUROC	F ₁ Score	Accuracy
DFKDE	83.8%	83%	79.4%
DFM	56.9%	76.9%	61.3%
FastFlow	44.2%	74.3%	59.2%
PaDiM	86.9%	89.4%	<u>87.7</u> %
Patchcore	91.6 %	89.6 %	89.2 %
STFPM	77.4%	82.6%	76.4%
U-Flow	70.1%	72.4%	57.6%

 Table 7: Algorithm Robustness to medium-level Combined Noise

- Most **robust** algorithms to **Poisson noise**:
 - Patchcore (memory bank) Ο
 - STFPM (teacher-student) Ο
 - DFKDE (memory bank)
- Most **robust** algorithms to **motion blur noise**:
 - Patchcore (memory bank) Ο
 - (teacher-student) STFPM Ο
 - PaDiM (memory bank) 0
- Most robust algorithms to combined noise:
 - Patchcore (memory bank) 0
 - (memory bank) PaDiM 0
 - (memory bank) DFKDE

0

Conclusions

- Current state-of-the-art **Anomaly Detection** algorithms are capable of **effectively** dealing with our **novel X-ray task**.
- The most **robust-to-noise** algorithms are based on:
 - Memory Banks.

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

• Teacher-Student architectures.

Thank you very much for your attention!

Diamantis Rafail Papadam, Christos Papaioannidis, Alexandros Zamioudis, and Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki, Greece

Contact: pitas@csd.auth.gr

