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Introduction

« Automated drone-based inspection with Al improves safety and
efficiency in industries.

Fig. 1: Drone inspection on powerlines [1]. Fig. 2: Drone inspection on insulated
pipes [2].
[ 1 ] Aerial Core H2020 Project, https://aerial-core.eu/

[2 ] Piloting uses cases. PILOTING H2020 Project. (2023, December 19). https.//piloting-project.eu/piloting-uses-cases/
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Introduction VML

« Early detection on pipe damages prevents leaks, ensuring operational
effectiveness and environmental sustainability.

(b) DNN results for pipe segmentation and
damage detection.

ks

(a) RGB image.

Fig. 3: DNN inspection results on insulated pipes from AUTH.



Introduction

* Advanced DNN models often
struggle on real-world
applications.

« Outdoor industrial settings are
typically cluttered and noisy.

« Significant challenges under | ,
these harsh conditions. Fig. 4: PDI dataset [3] images.

[3] P. Mentesidis, C. Papaioannidis, and |. Pitas, “ADVANCING INDUSTRIAL INSPECTION: A DATASET FOR AUTOMATED DAMAGE DETECTION IN INSULATED PIPES,” 2024.




Method

« Knowledge of pipe regions
improved performance of the
detection model.

« Obtaining pipe regions during
inference is non-trivial.
« Slower system performance.
« Potential errors may propagate.

(RB & SF)

(RB & EF)
Fig. 5: Image preprocessing.
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Method

* Model-agnostic Knowledge
Distillation (KD) framework.

 Ultilize the foreground
knowledge of the pipeline mask
only at training.

« Enhance vision based damage
detection in cluttered
environment.

Fig. 6: Architecture overview.
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* Improves the performance
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Fig. 7: mAP results. Fig. 8: Results.
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Conclusion

* Model-agnostic KD approach.
 Ultilize the foreground knowledge.

* 12% increase in mean average precision (mAP)
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Q&A

Thank you very much for your attention!
loannis Pitas

Aristotle University of Thessaloniki,
pitas@csd.auth.gr
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