

A. Kaimakamidis, N. Tzavidas, D. Papaioannou, Prof. I. Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr <u>www.aiia.csd.auth.gr</u> Version 7.6





- Decentralized DNN Architectures
- Learning-by-Education Node Community (LENC) Framework
- LENC Framework Applications
- LENC Framework Experiments
- LENC Architecture Implementation

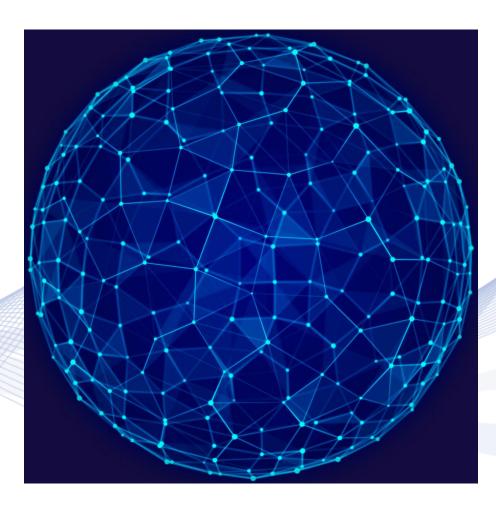




#### Definition

**Decentralized Deep Neural Network architectures** distribute computation and decision-making across multiple nodes or devices, offering advantages in:

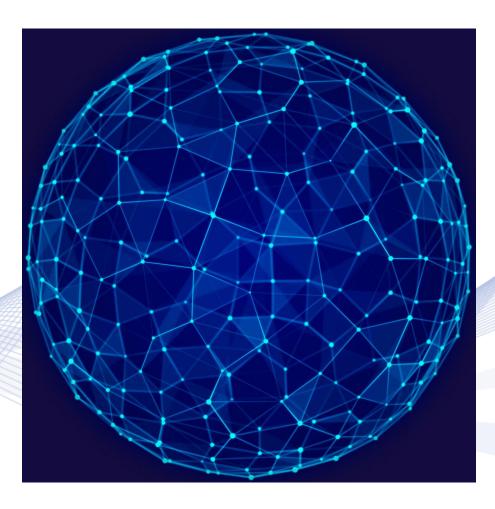
- scalability,
- privacy, and
- robustness.





#### **Decentralized DNN advantages**

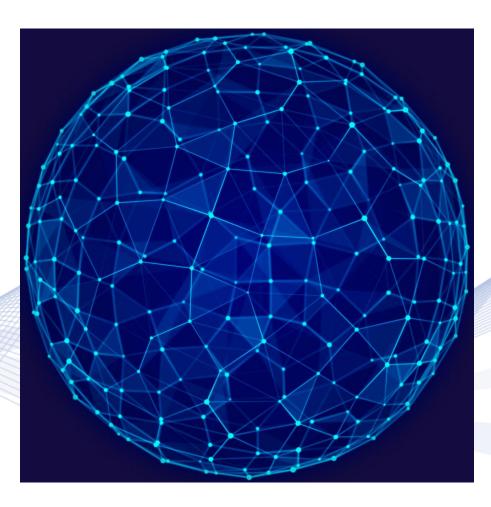
- **Distribution**: Data and computations are spread across multiple nodes or devices.
- **Collaboration**: Nodes can cooperate for DNN model training or inference.
- Privacy Preservation: Data remain local, thus enhancing privacy and security.
- Fault Tolerance: Resilience to individual node failures or attacks.





#### **Decentralized DNN computation**

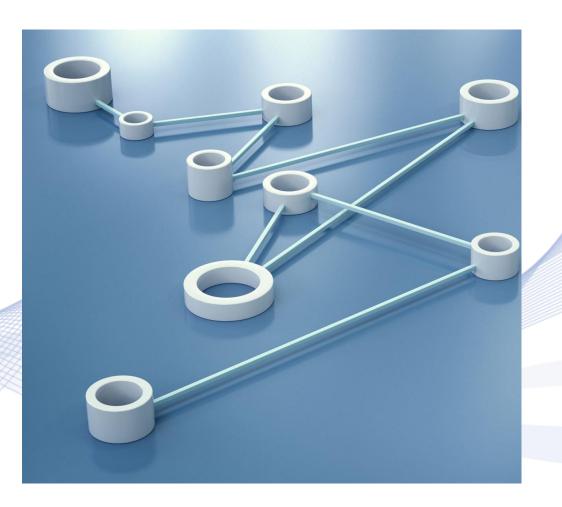
- Peer-to-Peer Networks:
  Collaborative learning (training)
  among peers, without a central server.
- Cloud DNN Computing: Running DNN training and/or inference on cloud nodes.
- Edge Computing: Running DNN inference or lightweight training directly on edge devices.





#### Peer-to-peer DNN computing.

- **Decentralization**: Reduced dependency on central servers, enhancing scalability and robustness.
- Resource Efficiency: Idle computational resource utilization across peers.
- **Resilience** to node failures or attacks.
- **Community-driven Innovation** through collaborative research and knowledge exchange.





### **Edge DNN Computing**

- Low Latency: Decision-making without reliance on distant servers.
- **Bandwidth Efficiency**: No transfer of large data volumes to central servers.
- Privacy Preservation: Sensitive data can be processed locally, enhancing privacy.
- Offline Capability: DNN operation in disconnected or low-connectivity environments.



Artificial Intelligence & Information Analysis Lab

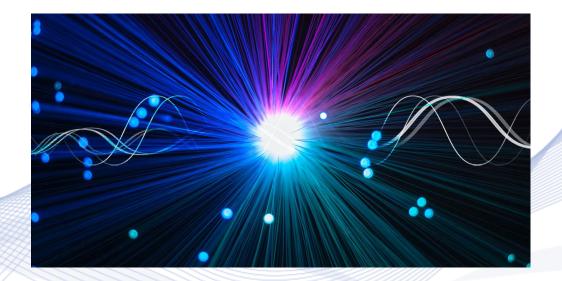


- Decentralized DNN Architectures
- Learning-by-Education Node Community (LENC) Framework
- LENC Framework Applications
- LENC Framework Experiments
- LENC Architecture Implementation



In *Knowledge Distillation*, a compact DNN model (*student model*), learns from a larger, more complex DNN model (*teacher model*), by mimicking its outputs or internal representations.

Teacher-Student DNN architectures.

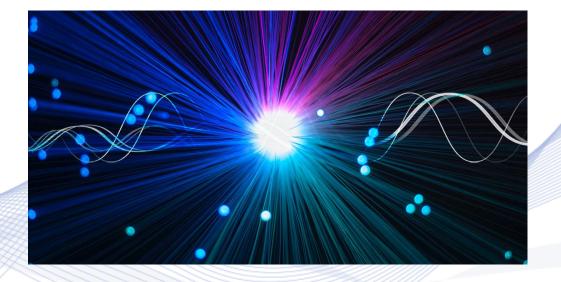




**VML** 



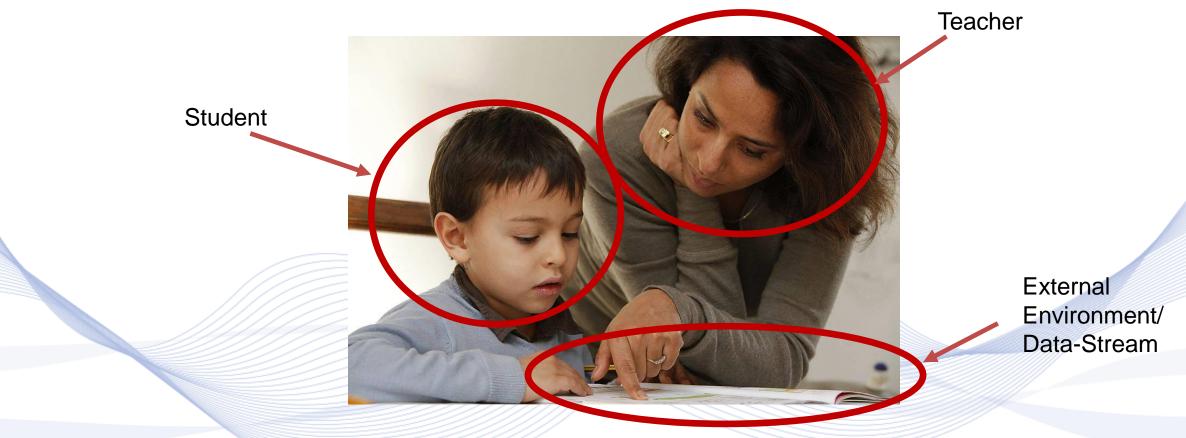
- **Training**: The Student DNN model is trained using a combination of the original training data and the Teacher DNN model predictions or intermediate representations.
  - **Objective Function**: The KD objective is to minimize the discrepancy between the student DNN predictions/ representations from the teacher DNN ones.





**VML** 

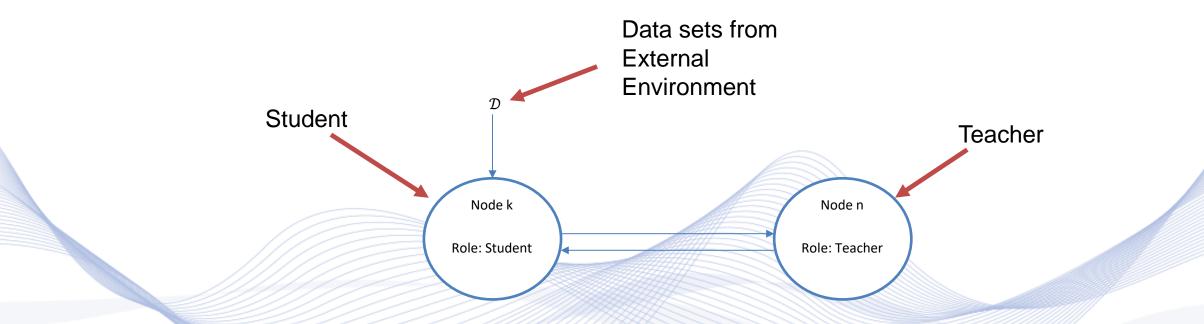




Teacher-Student Learning for Humans: The student asks for tutoring on Artificient Intelligence & Artif



The LENC framework is a network of N interacting LENC nodes.



Teacher-Student Learning for the LENC framework nodes: The Student LENC nodes asks for tutoring from a Teacher LENC node on unknown data.





- A LENC class can have one Teacher and multiple Student nodes.
- LENC can support multiple Teachers and Students.
- Students can choose their Teacher that knows best their task.
- Teachers may learn as well.
- Teacher/student roles may reverse for certain tasks.
- A classification task is defined on a group of semantic classes.
- Regression or clustering taks can be defined as well.





- Students can cooperate with each other during learning.
- Teachers can pull together their knowledge.
- LENC nodes can have a *cooperating* or *competing* behavior.
- Some LENC nodes may be *malicious*.



#### LENC node structure.

Each LENC node can be trained on various DNN tasks (data classes  $1, \dots, T$ ).

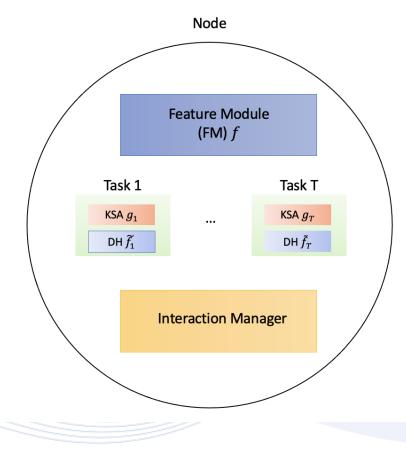
• Feature Module (FM) f.

Artificial Intelligence &

Information Analysis Lab

- **Decision Heads** (DH)  $\tilde{f}_i$ ,  $i = 1, \dots, T$  (one per task).
- Knowledge Self-Assessment (KSA) Modules  $g_i$ ,  $i = 1, \dots, T$ .
- Interaction Manager (IM) interacts with other LENC Ims and receives external environment data sets D.





#### Feature Module

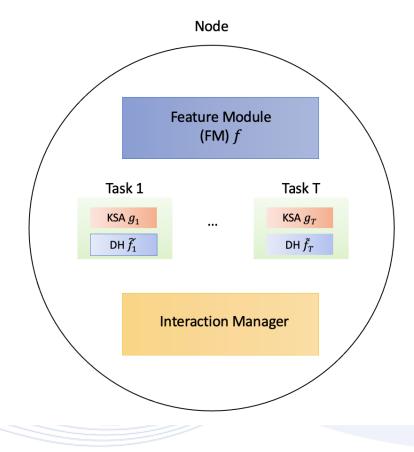
Feature Module (FM) DNN is shared among tasks:

 $\mathbf{f} = f(\mathbf{x}; \mathbf{w}_s).$ 

Its structure is described by  $S_s$ .

• It is parametrized by w<sub>s</sub>.







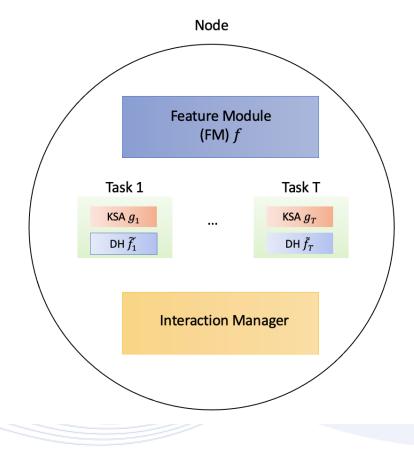
#### Knowledge Self-Assessment Module

- It decides whether input data x of an input dataset  $\mathcal{D}$  belongs to the same probability distribution of the data used for LENC node training for each task.
- It comprises an *Out-of-Distribution* (OOD) detector:

 $g_i(\mathbf{x}): \mathcal{D} \longrightarrow \{0,1\}, \quad i = 1, \cdots, T.$ 

• It classifies new data samples  $x \in \mathcal{D}$  as inor out-of-distribution for each task.





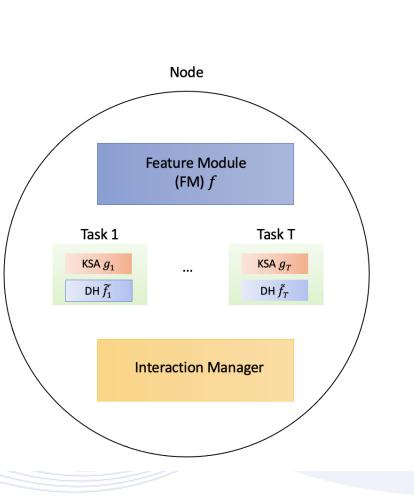
- The KSA module is used to automatically detect the Decision Head j out of  $\tilde{f}_i$ ,  $i = 1, \dots, T$  that will be used for LENC node decision making.
- The decision minimizes:

Artificial Intelligence &

nformation Analysis Lab

 $argmin_j(g_1, \cdots, g_T).$ 

• Decision Head  $\tilde{f}_j$  has been trained on sample data that are similar to current input **x**.



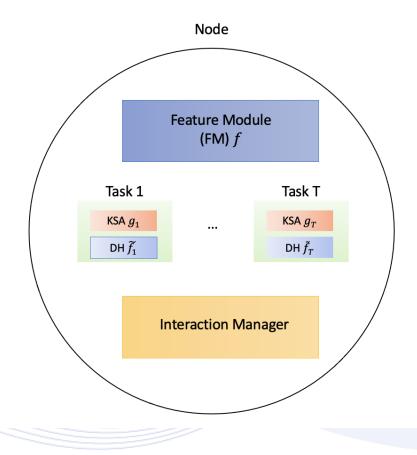


#### **Decision Heads**

- There are *T* Decision Heads  $\tilde{f}_i$ ,  $i = 1, \dots, T$  (one per task).
- $S_i$ ,  $\mathbf{w}_i$ ,  $i = 1, \dots, T$  : DH structure description and parameter vector.
- LENC Node Decision is made by concatenating FM and DH inference:
  - $\mathbf{f} = f(\mathbf{x}; \mathbf{w}_s), \tilde{y}_j = \tilde{f}_j(\mathbf{f}; \mathbf{w}_j), \\ j = argmin(g_1, \cdots, g_T).$

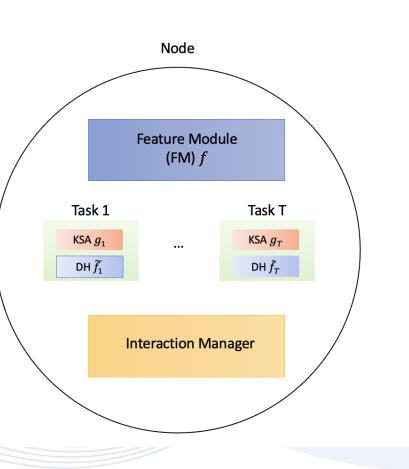
x: input vector.





#### Interaction Manager handles:

- Inter-node communications.
- Communications between the nodes and the external environment.
- Communication of LENC nodes components, such as data, activations, weights and structure.





Key Interaction Manager Functions for LENC node *k*:

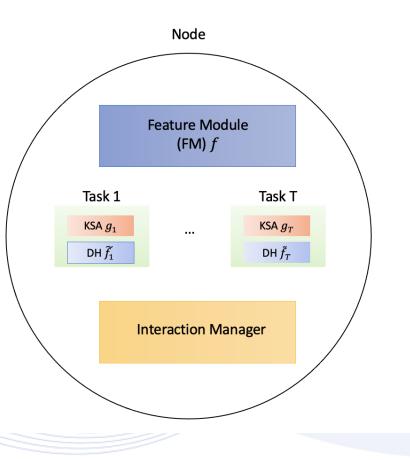
- It receives data sets  $\ensuremath{\mathcal{D}}$  from the environment.
- It transmits data sets  $\mathcal{D}^\prime$  to other nodes and receives their responses:

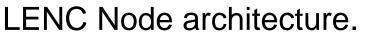
 $\mathcal{D}' = \{q_i, i = 1, \cdots, N, i \neq k\}.$ 

- $q_k = 0$ , if the node is not aware of the task or,
- $q_k$  is a scalar number measuring its knowledge on the task.

Artificial Intelligence &

nformation Analysis Lab

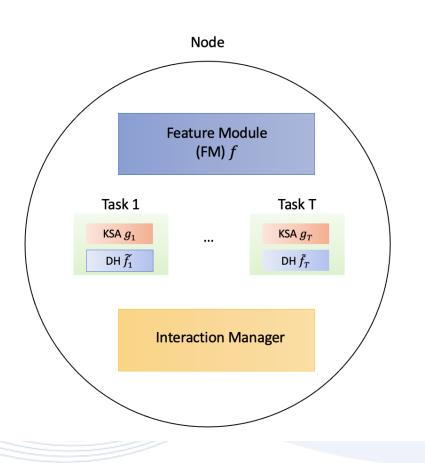






Policies to compute  $q_k$  for teacher selection when the  $k^{th}$  node is aware about the task:

- **Accuracy**:  $q_k$  can be the optionally stored average classification accuracy  $a_i^n$ .
- **ODD score**:  $q_k$  can be a function of an ODD score  $g_j$  internally computed by the  $j^{th}$  KSA module of the  $k^{th}$  node given  $\mathcal{D}'$ .
- **Disagreement**:  $q_k$  can be a scalar measure of the disagreement between the current Student LENC node and the  $k^{th}$  LENC node.



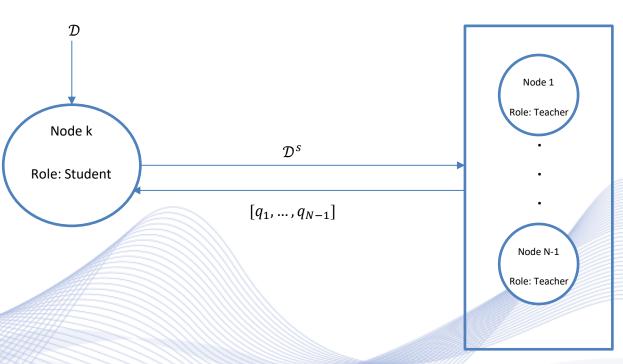






#### LENC Teacher selection.

- The External Environment sends an input data set  $\mathcal{D}$  to LENC student node k.
- Its KSA Module checks if the data distribution is known.
- If not, the data stream is sent to other nodes.
- The nodes respond with  $q_i$ ,  $i = 1, \dots, N, i \neq k$ .
- The student selects one (best) or more teachers, based on the scalar metric  $q_i$  measuring their performance on  $\mathcal{D}$ .



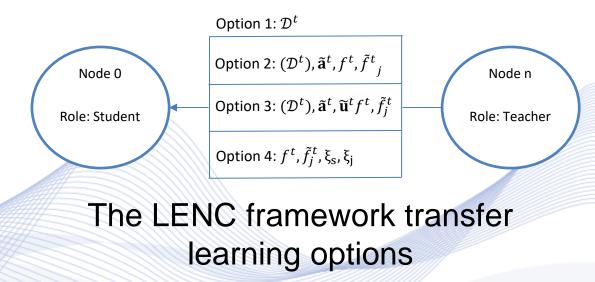
LENC Teacher selection.



# LENC Student node training (option 1):

#### Training Data Transmission.

- The Teacher LENC node sends its related training data set  $\mathcal{D}^t$  to the Student LENC node.
- The Student LENC uses these training data to learn the new task.





#### LENC Student node training (option 2): Soft-Output Activation Transmission.

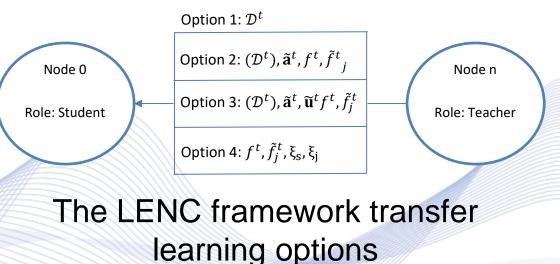
- The Teacher LENC Node sends its training data set  $\mathcal{D}^t$ , its soft-output activations  $\tilde{a}^t$  and its FM structure  $\mathcal{S}_s$  (for and DH structure  $\mathcal{S}_j$  for the task j.
- The Student LENC node uses KD to for training using Teacher LENC node
   guidance.





#### LENC Student node training (option 3): Feature Activation Transmission.

- LENC Teacher node sends its training data set D<sup>t</sup>, its soft-output activations ã<sup>t</sup>, its feature activations ũ<sup>t</sup> and its structure S<sub>s</sub> and S<sub>i</sub> for the task j.
- Student LENC node uses KD to for training using the teacher's guidance.



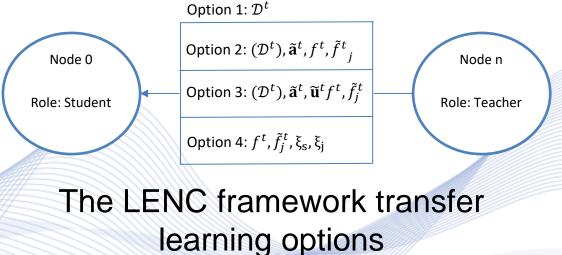




• LENC Student node training (option 4):

#### DNN weights transmission.

- Teacher LENC node sends its FM and DH structures S<sub>s</sub>, S<sub>j</sub> and its FM and DH weights w<sub>s</sub>, w<sub>j</sub> for the task j.
- The Student LENC node just copies of the Teacher model f<sup>t</sup> and f<sup>t</sup><sub>i</sub>.



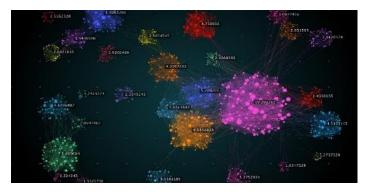




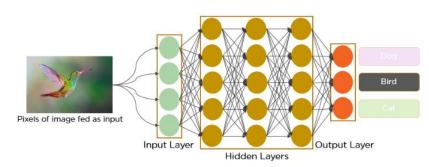
- Decentralized DNN Architectures
- Learning-by-Education Node Community (LENC) Framework
- LENC Framework Applications
- LENC Framework Experiments
- LENC Architecture Implementation



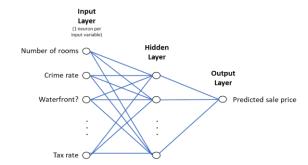




Clustering.



Classification.



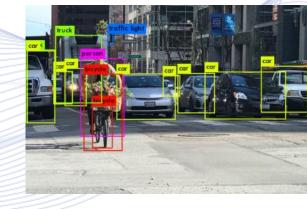
Regression.



Image segmentation.

Artificial Intelligence &

**Information Analysis Lab** 



Object detection.



*Federated Learning*: Training a global DNN model across decentralized nodes, while keeping data on-device.

- **Privacy Preservation**: Data remain on local devices, ensuring privacy.
- **Communication efficiency**: No large data volume transfer to a central server is needed.
- Scalability: Large-scale diverse data sources can be accomodated.
- Adaptability: Non-identically distributed data can be supported.
- **Distributed** rather than decentralized DNN FL computing.





#### Federated Learning

- One LENC node is the master node (aggregator).
- All LENC nodes have the same structure *S* and are trained using their local data.
- The master node uses training option 4 to receive the weights of all other nodes with the same structure within the community.
- The master node aggregates the weights of all participating nodes.
- The process is repeated until convergence.



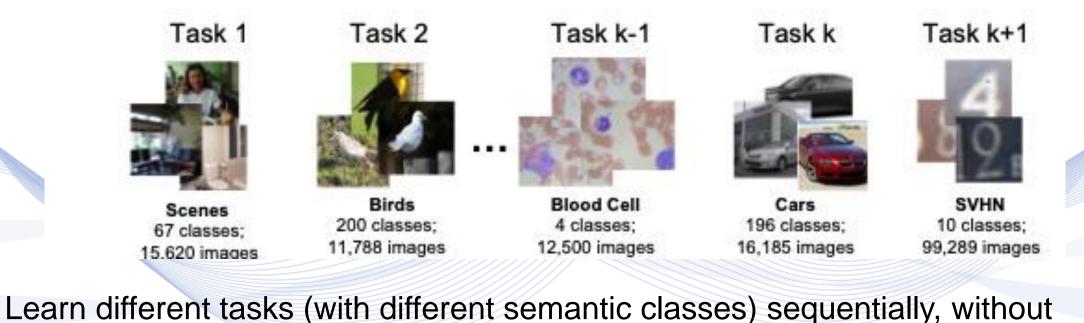
#### **Peer-to-Peer Learning**

- LENC node training options 1-4 constitute forms of Peer-to-Peer Learning.
- Nodes act exclusively to enhance their knowledge.
- No need for a central server.
- Retaining knowledge within the node community.





#### **Continual Learning**



forgetting.

Artificial Intelligence & Information Analysis Lab



#### Edge Computing – Decentralized Inference

- Raw data is processed locally on LENC nodes.
- Nodes use real-time inference on their data.
- Lightweight training of Decision Modules is done directly on nodes.
- A master node (server) can be defined to aggregate inference results.
- Inference can local without centralized decision-making.





#### DNN performance Reproducibility - Privacy

- DNN node 1 is the model of a published paper.
- DNN node 2 wants to replicate the model and the experiments.
- Using variations of Options 1-4 DNN node 2 can replicate the initial DNN model behavior and also consider possible privacy constraints.
- Private weights, architecture, training dataset, etc.





- Decentralized DNN Architectures
- Learning-by-Education Node Community (LENC) Framework
- LENC Framework Applications
- LENC Framework Experiments
- LENC Architecture Implementation





# **Collaborative Knowledge Distillation** (CKD) **Experiment**.

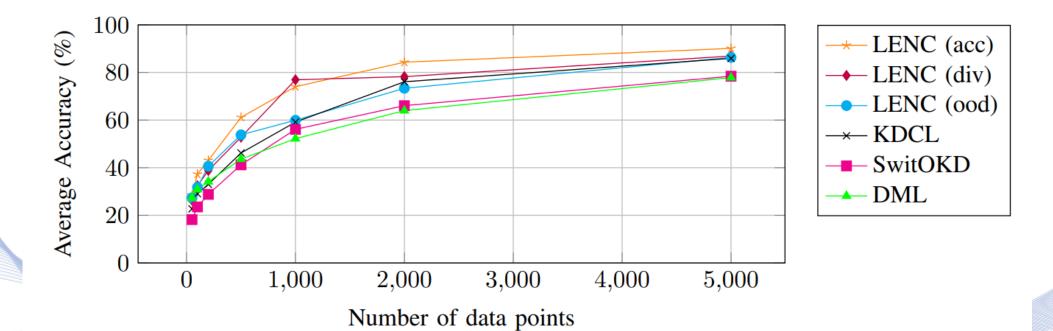
- Four LENC nodes are initialized.
- One of them (Teacher LENC node) is pretrained on a *classification* dataset (CIFAR10, SVHN, MNIST, FashionMNIST).
- Each node (including the Teacher) takes the LENC Student role exactly once every *education cycle*.
- All Student LENC nodes use the LENC framework option 2 (Knowledge Distillation).
- After 5 education cycles, we observe the results.



Average test classification accuracy (%) of the 3 student LENC nodes and of competing CKD methods, for incoming data sets  $D^t$  having 1000 or 5000 samples (from C10 or C100 CIFAR).

| Dataset | Students                                  | Stream Size | DML                                                             | KDCL                                                                      | SwitOKD                                                             | LENC (proposed)                                                    |  |
|---------|-------------------------------------------|-------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--|
| C10     | ResNet-18 & ResNet-18<br>WRN-16-4 & VGG11 | 1000        | $52.20 \pm 0.52$<br>$51.17 \pm 0.71$                            | $\begin{array}{c} 62.23 {\pm} 0.15 \\ 62.09 {} {\pm} {} 0.21 \end{array}$ | $56.15 \pm 0.73$<br>$57.85 \pm 0.80$                                | $76.93{\pm}0.71$<br>$70.16{\pm}0.82$                               |  |
|         | ResNet-18 & ResNet-18<br>WRN-16-4 & VGG11 | 5000        | $\begin{array}{c} 77.85{\pm}0.31 \\ 75.56{\pm}0.82 \end{array}$ | $\begin{array}{c} 85.76{\pm}0.07\\ 84.47{\pm}0.08\end{array}$             | $79.08 {\pm} 0.70$<br>$78.79 {\pm} 0.68$                            | $\begin{array}{c} 86.31 {\pm}~0.32 \\ 87.12 {\pm}0.24 \end{array}$ |  |
| C100    | ResNet-18 & ResNet-18<br>WRN-16-4 & VGG11 | 1000        | $9.77 \pm 0.25$<br>$6.12 \pm 0.38$                              | $25.16 \pm 0.12$<br>$27.59 \pm 0.19$                                      | $\begin{array}{c} 13.71 {\pm} 0.57 \\ 14.72 {\pm} 0.61 \end{array}$ | 34.96±0.47<br>29.75±0.49                                           |  |
|         | ResNet-18 & ResNet-18<br>WRN-16-4 & VGG11 | 5000        | $31.53 \pm 0.31$<br>$8.30 \pm 0.16$                             | $58.70 \pm 0.09$<br>$56.94 \pm 0.12$                                      | 35.31±0.29<br>37.27±0.45                                            | 65.02±0.13<br>58.18±0.17                                           |  |





Average student LENC node classification accuracy (%) for varying *D<sup>s</sup>* sizes in the CIFAR-10 dataset for 3 alternative LENC teacher selection policies against that of competing methods.



#### **Experimental conclusions**

- LENC framework outperforms existing CKD methods, when digesting un-labelled incoming data samples, under the assumption that the sole expert indeed knows data similar to the incoming ones.
- LENC proves to be the most tolerant to small batch sizes, thus showcasing its usability in an important real world use-case: when a node faces unknown current input data and needs to acquire relevant knowledge as soon as possible, in order to respond immediately.



### **CL Experiment**

#### Continual Learning (CL) Experiment.

- Six LENC nodes are initialized for each dataset.
- Five of them (Teacher LENC nodes) are trained on a task of the *classification* datasets (SPLIT-MNIST, SPLIT-CIFAR-10 and SPLIT-CIFAR-100).
- For example for the SPLIT-MNIST dataset: Node 1 knows classes {0,1}, Node 2 knows classes {2,3} etc.
- The Student LENC node encounters all tasks for a single education cycle and picks the correct teacher for each task.
- The Student LENC nodes use the LENC framework option 2 (Knowledge Distillation) and a *specialized CL loss* to learn new tasks without forgetting.
- After 5 education cycles, we observe the results.



### **CL Experiment**

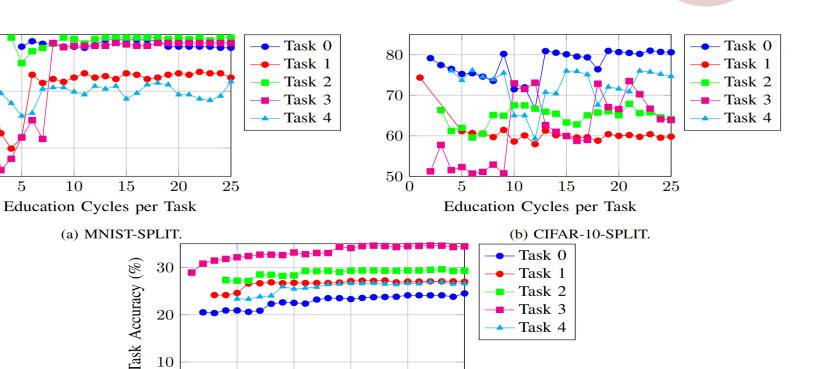
10

20

10

0





25

- Task 3

---- Task 4

Student classification accuracy per task for a) SPLIT-MNIST, b) SPLIT-CIFAR-10 and c) SPLIT-CIFAR-100.

20

15

10

Education Cycles per Task

 $\mathbf{5}$ 

Artificial Intelligence & Information Analysis Lab

100

98

96

0

5

Task Accuracy (%)

VML

### **CL Experiment**



#### Experimental conclusions.

• The LENC framework can achieve continual learning and adaptation with only a few randomly sampled batches.



# Federated Learning Experiment (VML

- Decentralized DNN Architectures
  - Federated Learning
  - Edge Computing
  - Peer-to-Peer Learning
- Learning-by-Education Node Community (LENC) Framework
- Collaborative Knowledge Distillation (CKD) Experiment
- Federated Learning Experiment
- Decentralized DNN (D-DNN) Consensus Inference Experiment
- LENC Framework Applications
  - Deep Learning Tasks Supported by LENC Framework
  - Teacher-Classroom Classification
  - Federated Learning
  - Peer-to-Peer Learning
  - Continual Learning
  - Edge Computing Decentralized Inference
  - Reproducibility Privacy
- LENC Architecture Implementation

Artificial Intelligence & Information Analysis Lab

# Federated Learning Experiment (VML

#### Federated Learning Experiment Setup

- 1 master LENC node (aggregator), 2 student LENC nodes with unique datasets.
- Students are trained locally for 50 epochs and send output to Aggregator.
- Aggregator calculates the mean DNN model weights (global) and sends them to student nodes.
  - 4 FL rounds in total.



#### Federated Learning Experiment (VML 80 70 60 Accuracy 50 40 aggregator accuracy student1 accuracy after 10 epochs student2 accuracy after 10 epochs 30 2 З Current Run

Accuracy report (%) of the aggregator and the two students after each federated run on Cifar 10 test dataset.

Artificial Intelligence & Information Analysis Lab

### **D-DNN Inference**



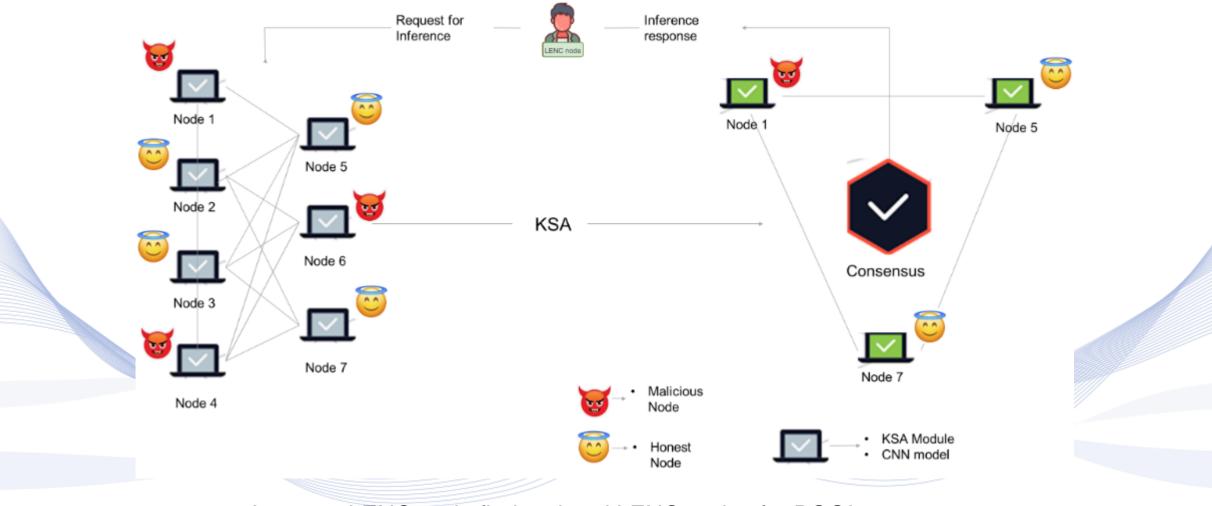
#### Decentralized DNN (D-DNN) Consensus Inference

- Any LENC (master) node can make a request to the LENC community to perform *Decentralized DNN* (D-DNN) *inference* by providing its own dataset.
- Through the KSA module, LENC nodes that are familiar with the master node data distribution are selected to carry out the inference.
- **Proof of Quality Inference** (POQI) Consensus Protocol, is used to establish consensus between the selected teachers regarding their DNN Inference outputs.
- Security and integrity of the inference results reported to the client are ensured by detecting and excluding malicious DNN nodes.

#### **D-DNN Inference**

**Information Analysis Lab** 





A master LENC node finds related LENC nodes for POQI consensus.

48

#### **D-DNN Inference**



| Dataset  | Faulty Nodes | Method                                      | Accuracy (%)                   |                                |                                |                                |                                |                                |                                |
|----------|--------------|---------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|          |              |                                             | N1                             | N2                             | N3                             | N4                             | N5                             | N6                             | N7                             |
| Cifar-10 | 0            | Weighted Average<br>Majority Voting<br>PoQI | 95.12<br>95.05<br><b>95.27</b> |
| Cifar-10 | 1            | Weighted Average<br>Majority Voting<br>PoQI | 16.40<br>94.63<br><b>94.99</b> | 15.87<br>94.86<br><b>94.99</b> | 15.92<br>94.76<br><b>94.99</b> | 16.24<br><b>95.02</b><br>94.99 | 15.35<br>94.72<br><b>94.99</b> | 16.11<br>94.56<br><b>94.99</b> | -<br>-<br>-                    |
| SVHN     | 1            | Weighted Average<br>Majority Voting<br>PoQI | 15.27<br>93.21<br><b>93.42</b> | 15.41<br>93.36<br><b>93.42</b> | 15.37<br>93.17<br><b>93.42</b> | 15.33<br>93.12<br><b>93.42</b> | -<br>-                         | 15.13<br>93.04<br><b>93.42</b> | 15.52<br><b>93.77</b><br>93.42 |
| SVHN     | 3            | Weighted Average<br>Majority Voting<br>PoQI | -<br>-                         | 11.14<br>92.56<br><b>93.18</b> | 11.40<br>93.12<br><b>93.18</b> | -<br>-                         | 11.16<br>92.94<br><b>93.18</b> | 11.36<br>91.82<br><b>93.18</b> | -<br>-<br>-                    |

LENC node N1-M7 classification accuracy (%) comparison in the presence of 1-3 malicious nodes.





#### **Decentralized DNN Architectures**

- Decentralized DNN Architectures
- Learning-by-Education Node Community (LENC) Framework
- LENC Framework Applications
- LENC Framework Experiments
- LENC Architecture Implementation





- Decentralized DNN Architectures
  - Federated Learning
  - Edge Computing
  - Peer-to-Peer Learning
- Learning-by-Education Node Community (LENC) Framework
- Collaborative Knowledge Distillation (CKD) Experiment
- Federated Learning Experiment
- Decentralized DNN (D-DNN) Consensus Inference
- LENC Framework Applications
  - Deep Learning Tasks Supported by LENC Framework
  - Teacher-Classroom Classification
  - Federated Learning
  - Peer-to-Peer Learning
  - Continual Learning
  - Edge Computing Decentralized Inference
  - Reproducibility Privacy
- LENC Architecture Implementation

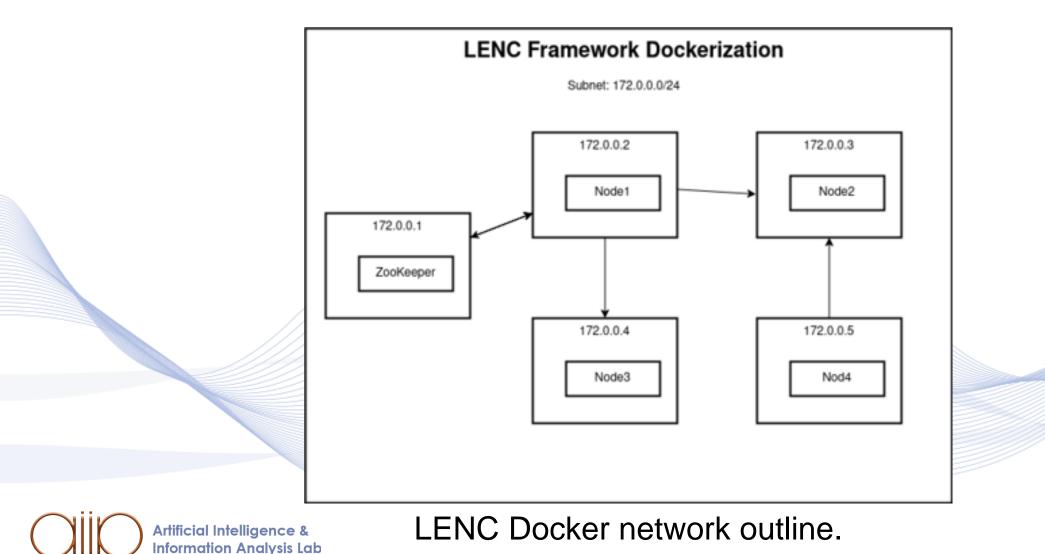
Artificial Intelligence & Information Analysis Lab

- We implement the LENC framework on multiple devices by using *Docker* and *Zookeeper*.
- Now each LENC node is physically located in a single terminal.
- The LENC nodes use the Zookeeper for "online" node discovery and receive the IP addresses of all "online" LENC nodes.



- Each LENC node occupies one *Docker container*.
- Zookeeper-like instance for service discovery and coordination.
- Environment simulation using Docker network capabilities:
  - The network has a predefined IP mask (172.0.0.0/24).
  - Each container has its own virtual IP address (172.0.0.1-.256).
- All communications (including file sharing) use sockets:
  - Each node acts both as a server and client.
  - All listening on port 60.000.
  - Zookeeper webservice listens on port 8080.





# **VML**

#### **LENC Architecture Implementation**

#### **Dockerized LENC training procedure**

- Teacher LENC nodes download datasets and teach their underlying DNNs by creating new tasks.
- A Student LENC node with a novel dataset can search for the most suitable Teacher by sending "EVAL" requests, along with the dataset to all available LENC nodes.
- They test the dataset to their networks and return the resulting accuracy score to the Student LENC node.
- The Student LENC node picks the best teacher, e.g., the one with the max recognition score.

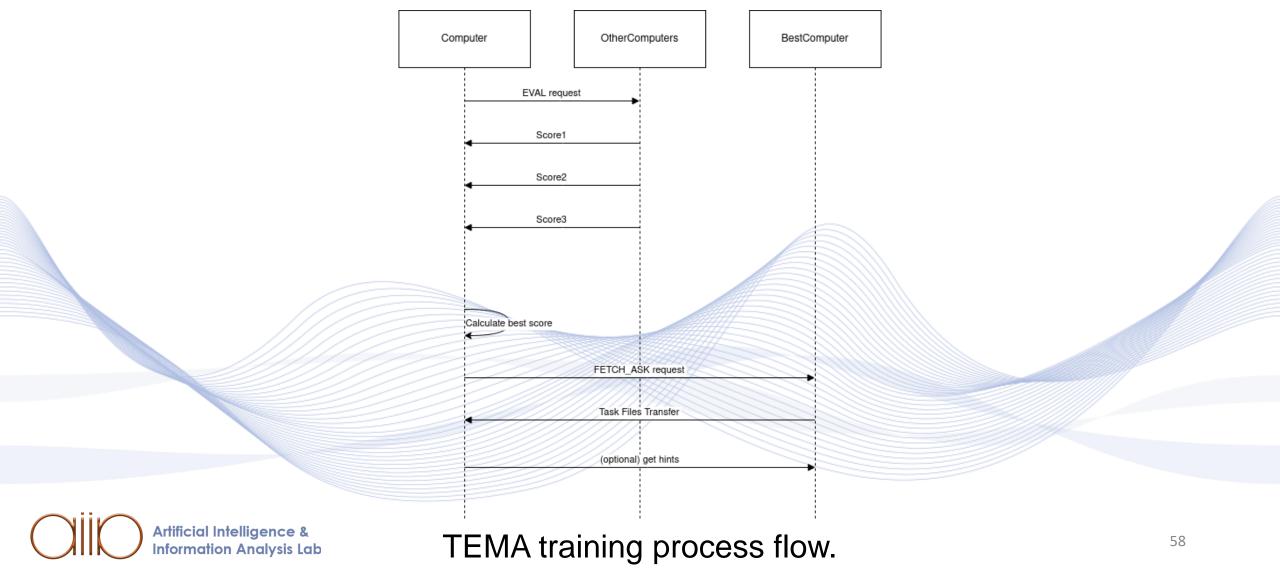




- The Student LENC node requests the files needed according to the option configuration (FETCH TASK request) from the picked potential Teacher LENC node.
- Files are '.bin' for datasets and '.pth' for teacher soft-output activation, weights and structure.
- The Student LENC node uses the received files to train a new Decision Head, but without forgetting the previous tasks learned.







## Bibliography



[1] I. Pitas, "Artificial Intelligence Science and Society Part A: Introduction to AI Science and Information Technology", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156460?ref\_=pe\_3052080\_397514860

[2] I. Pitas, "Artificial Intelligence Science and Society Part B: AI Science, Mind and Humans", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156479?ref\_=pe\_3052080\_397514860

[3] I. Pitas, "Artificial Intelligence Science and Society Part C: AI Science and Society", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156487?ref\_=pe\_3052080\_397514860

[4] I. Pitas, "Artificial Intelligence Science and Society Part D: AI Science and the Environment", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156495?ref\_=pe\_3052080\_397514860



### Bibliography



[KAI2024] Kaimakamidis, A., Mademlis, I., & Pitas, I. (2024). Collaborative Knowledge Distillation via a Learning-by-Education Node Community. *arXiv preprint arXiv:2410.00074*.

[KAI2023] Kaimakamidis, A., & Pitas, I. (2023). Facilitating Experimental Reproducibility in Neural Network Research with a Unified Framework. In Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies (BDCAT '23) (Article 14, 1–5). Association for Computing Machinery.

[PAP2024] D. Papaioannou, V. Mygdalis, I. Pitas. (2024). Proof of Quality Inference (PoQI): An AI Consensus Protocol for Decentralized DNN Inference Frameworks. In Proceedings of the IEEE/ISCC 4th International Workshop on Distributed Intelligent Systems.



### Bibliography



[ZHA2021] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning. Knowledge-Based Systems, 216, 106775.

[MAS2020] Masinde, N., & Graffi, K. (2020). Peer-to-peer-based social networks: A comprehensive survey. SN Computer Science, 1(5), 299.

[BEL2021] Bellavista, P., Foschini, L., & Mora, A. (2021). Decentralised learning in federated deployment environments: A system-level survey. ACM Computing Surveys (CSUR), 54(1), 1-38.







#### Thank you very much for your attention!

# More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

