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Definition

Decentralized Deep Neural Network

architectures distribute computation

and decision-making across multiple

nodes or devices, offering advantages in:

• scalability,

• privacy, and

• robustness.
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Decentralized DNN advantages

• Distribution: Data and computations

are spread across multiple nodes or

devices.

• Collaboration: Nodes can cooperate

for DNN model training or inference.

• Privacy Preservation: Data remain

local, thus enhancing privacy and

security.

• Fault Tolerance: Resilience to

individual node failures or attacks.

1. Types:
1. Federated Learning: Training a global 

model across decentralized devices while 
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Decentralized DNN computation

• Peer-to-Peer Networks:

Collaborative learning (training)

among peers, without a central server.

• Cloud DNN Computing: Running

DNN training and/or inference on

cloud nodes.

• Edge Computing: Running DNN

inference or lightweight training

directly on edge devices.
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Peer-to-peer DNN computing.
• Decentralization: Reduced

dependency on central servers,
enhancing scalability and robustness.

• Resource Efficiency: Idle
computational resource utilization
across peers.

• Resilience to node failures or attacks.

• Community-driven Innovation through
collaborative research and knowledge
exchange.
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Edge DNN Computing

• Low Latency: Decision-making without

reliance on distant servers.

• Bandwidth Efficiency: No transfer of

large data volumes to central servers.

• Privacy Preservation: Sensitive data

can be processed locally, enhancing

privacy.

• Offline Capability: DNN operation in

disconnected or low-connectivity

environments.
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In Knowledge Distillation, a compact

DNN model (student model), learns from

a larger, more complex DNN model

(teacher model), by mimicking its outputs

or internal representations.

• Teacher-Student DNN architectures.
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Knowledge Distillation process.

• Training: The Student DNN model is

trained using a combination of the

original training data and the Teacher

DNN model predictions or intermediate

representations.

• Objective Function: The KD objective

is to minimize the discrepancy between

the student DNN predictions/

representations from the teacher DNN

ones.
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LENC Framework

11

External 

Environment/ 

Data-Stream

Teacher

Student

Teacher-Student Learning for Humans: The student asks for tutoring on 
unknown data coming from her/his external environment.
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𝒟

Node k

Role: Student

Node n

Role: Teacher

Teacher
Student

Data sets from 

External 

Environment

Teacher-Student Learning for the LENC framework nodes: The Student LENC 
nodes asks for tutoring from a Teacher LENC node on unknown data.

The LENC framework is a network of 𝑁 interacting LENC nodes.



• A LENC class can have one Teacher and multiple Student

nodes.

• LENC can support multiple Teachers and Students.

• Students can choose their Teacher that knows best their task.

• Teachers may learn as well.

• Teacher/student roles may reverse for certain tasks.

• A classification task is defined on a group of semantic classes.

• Regression or clustering taks can be defined as well.
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• Students can cooperate with each other during learning.

• Teachers can pull together their knowledge.

• LENC nodes can have a cooperating or competing behavior.

• Some LENC nodes may be malicious.
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LENC node structure.

Each LENC node can be trained on various DNN

tasks (data classes 1,⋯ , 𝑇).

• Feature Module (FM) 𝑓.

• Decision Heads (DH) ሚ𝑓i , 𝑖 = 1,⋯ , 𝑇 (one per

task).

• Knowledge Self-Assessment (KSA)

Modules 𝑔𝑖 , 𝑖 = 1,⋯ , 𝑇.

• Interaction Manager (IM) interacts with other

LENC Ims and receives external environment

data sets 𝒟.
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Feature Module

• Feature Module (FM) DNN is shared among

tasks:

𝐟 = 𝑓 𝐱;𝐰𝑠 .

• Its structure is described by 𝒮𝑠.

• It is parametrized by 𝐰𝑠.
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Knowledge Self-Assessment Module

• It decides whether input data 𝐱 of an input

dataset 𝒟 belongs to the same probability

distribution of the data used for LENC node

training for each task.

• It comprises an Out-of-Distribution (OOD)

detector:

𝑔𝑖 𝐱 :𝒟 ⟶ 0,1 , 𝑖 = 1,⋯ , 𝑇.

• It classifies new data samples 𝐱 ∈ 𝒟 as in-

or out-of-distribution for each task.
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• The KSA module is used to automatically

detect the Decision Head 𝑗 out of ሚ𝑓𝑖 , 𝑖 =
1,⋯ , 𝑇 that will be used for LENC node

decision making.

• The decision minimizes:

𝑎𝑟𝑔𝑚𝑖𝑛𝑗 𝑔1, ⋯ , 𝑔𝑇 .

• Decision Head ሚ𝑓𝑗 has been

trained on sample data that are similar to

current input 𝐱.
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Decision Heads

• There are 𝑇 Decision Heads ሚ𝑓𝑖 , 𝑖 =
1,⋯ , 𝑇 (one per task).

• 𝒮𝑖 , 𝐰𝑖 , 𝑖 = 1,⋯ , 𝑇 : DH structure

description and parameter vector.

• LENC Node Decision is made by

concatenating FM and DH inference:

𝐟 = 𝑓 𝐱;𝐰𝑠 , 𝑦𝑗 = ሚ𝑓𝑗 𝐟; 𝐰𝑗 ,

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔1, ⋯ , 𝑔𝑇 .

𝐱: input vector.
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Interaction Manager handles:

• Inter-node communications.

• Communications between the nodes and the

external environment.

• Communication of LENC nodes components,

such as data, activations, weights and

structure.
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Key Interaction Manager Functions for

LENC node 𝑘:

• It receives data sets 𝒟 from the environment.

• It transmits data sets 𝒟′ to other nodes and

receives their responses:

𝒟′ = 𝑞𝑖 , 𝑖 = 1,⋯ ,𝑁, 𝑖 ≠ 𝑘 .

• 𝑞𝑘 = 0, if the node is not aware of the task or,

• 𝑞𝑘 is a scalar number measuring its

knowledge on the task.
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Policies to compute 𝑞𝑘 for teacher selection

when the 𝑘𝑡ℎ node is aware about the task:

• Accuracy: 𝑞𝑘 can be the optionally stored

average classification accuracy 𝑎𝑗
𝑛.

• ODD score: 𝑞𝑘 can be a function of an ODD

score 𝑔𝑗 internally computed by the 𝑗𝑡ℎ KSA

module of the 𝑘𝑡ℎ node given 𝒟′.

• Disagreement: 𝑞𝑘 can be a scalar measure

of the disagreement between the current

Student LENC node and the 𝑘𝑡ℎ LENC node.
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LENC Teacher selection.

• The External Environment sends an input

data set 𝒟 to LENC student node 𝑘.

• Its KSA Module checks if the data

distribution is known.

• If not, the data stream is sent to other

nodes.

• The nodes respond with 𝑞𝑖 , 𝑖 =
1,⋯ ,𝑁, 𝑖 ≠ 𝑘.

• The student selects one (best) or more

teachers, based on the scalar metric 𝑞𝑖
measuring their performance on 𝒟.
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[𝑞1, … , 𝑞𝑁−1]

𝒟
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.
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𝒟𝑠



LENC Student node training

(option 1):

Training Data Transmission.

• The Teacher LENC node sends its

related training data set 𝒟𝑡 to the

Student LENC node.

• The Student LENC uses these training

data to learn the new task.
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The LENC framework transfer 

learning options

Node 0

Role: Student

Node n

Role: Teacher

Option 1: 𝒟𝑡

Option 2: (𝒟𝑡), 𝐚𝑡, 𝑓𝑡, ሚ𝑓𝑡
𝑗

Option 3: (𝒟𝑡), 𝐚𝑡, 𝐮𝑡𝑓𝑡 , ሚ𝑓𝑗
𝑡

Option 4: 𝑓𝑡, ሚ𝑓𝑗
𝑡 , ξs, ξj



LENC Student node training (option 2):

Soft-Output Activation Transmission.

• The Teacher LENC Node sends its

training data set 𝒟𝑡 , its soft-output

activations 𝐚𝑡 and its FM structure 𝒮𝑠 (for

and DH structure 𝒮𝑗 for the task 𝑗.

• The Student LENC node uses KD to for

training using Teacher LENC node

guidance.
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The LENC framework transfer 

learning options

Node 0

Role: Student

Node n

Role: Teacher

Option 1: 𝒟𝑡

Option 2: (𝒟𝑡), 𝐚𝑡, 𝑓𝑡, ሚ𝑓𝑡
𝑗

Option 3: (𝒟𝑡), 𝐚𝑡, 𝐮𝑡𝑓𝑡 , ሚ𝑓𝑗
𝑡

Option 4: 𝑓𝑡, ሚ𝑓𝑗
𝑡 , ξs, ξj



LENC Student node training (option 3):

Feature Activation Transmission.

• LENC Teacher node sends its training

data set 𝒟𝑡, its soft-output activations

𝐚𝑡 , its feature activations 𝐮𝑡 and its

structure 𝒮𝑠 and 𝒮𝑗 for the task 𝑗.

• Student LENC node uses KD to for

training using the teacher’s guidance.
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The LENC framework transfer 

learning options

Node 0

Role: Student

Node n

Role: Teacher

Option 1: 𝒟𝑡

Option 2: (𝒟𝑡), 𝐚𝑡, 𝑓𝑡, ሚ𝑓𝑡
𝑗

Option 3: (𝒟𝑡), 𝐚𝑡, 𝐮𝑡𝑓𝑡 , ሚ𝑓𝑗
𝑡

Option 4: 𝑓𝑡, ሚ𝑓𝑗
𝑡 , ξs, ξj



• LENC Student node training

(option 4):

DNN weights transmission.

• Teacher LENC node sends its FM and DH

structures 𝒮𝑠, 𝒮𝑗 and its FM and DH

weights 𝐰𝑠, 𝐰𝑗 for the task 𝑗.

• The Student LENC node just copies of the

Teacher model 𝑓𝑡 and ሚ𝑓𝑗
𝑡.

27

LENC Framework

The LENC framework transfer 

learning options

Node 0

Role: Student

Node n

Role: Teacher

Option 1: 𝒟𝑡

Option 2: (𝒟𝑡), 𝐚𝑡, 𝑓𝑡, ሚ𝑓𝑡
𝑗

Option 3: (𝒟𝑡), 𝐚𝑡, 𝐮𝑡𝑓𝑡 , ሚ𝑓𝑗
𝑡

Option 4: 𝑓𝑡, ሚ𝑓𝑗
𝑡 , ξs, ξj
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LENC Framework Applications

Classification. Regression.

Image segmentation. Object detection.

Clustering.



Federated Learning: Training a
global DNN model across
decentralized nodes, while keeping
data on-device.
• Privacy Preservation: Data remain on local

devices, ensuring privacy.

• Communication efficiency: No large data
volume transfer to a central server is needed.

• Scalability: Large-scale diverse data
sources can be accomodated.

• Adaptability: Non-identically distributed data
can be supported.

• Distributed rather than decentralized DNN
FL computing.
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LENC Framework Applications

Federated Learning

• One LENC node is the master node (aggregator).

• All LENC nodes have the same structure 𝒮 and are trained

using their local data.

• The master node uses training option 4 to receive the weights of

all other nodes with the same structure within the community.

• The master node aggregates the weights of all participating

nodes.

• The process is repeated until convergence.
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Peer-to-Peer Learning

• LENC node training options 1-4 constitute forms of Peer-to-

Peer Learning.

• Nodes act exclusively to enhance their knowledge.

• No need for a central server.

• Retaining knowledge within the node community.
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LENC Framework Applications

Continual Learning

Learn different tasks (with different semantic classes) sequentially, without 

forgetting.



Edge Computing – Decentralized Inference

• Raw data is processed locally on LENC nodes.

• Nodes use real-time inference on their data.

• Lightweight training of Decision Modules is done directly on

nodes.

• A master node (server) can be defined to aggregate

inference results.

• Inference can local without centralized decision-making.
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DNN performance Reproducibility - Privacy

• DNN node 1 is the model of a published paper.

• DNN node 2 wants to replicate the model and the

experiments.

• Using variations of Options 1-4 DNN node 2 can replicate

the initial DNN model behavior and also consider possible

privacy constraints.

• Private weights, architecture, training dataset, etc.
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Collaborative Knowledge Distillation (CKD)

Experiment.
• Four LENC nodes are initialized.

• One of them (Teacher LENC node) is pretrained on a

classification dataset (CIFAR10, SVHN, MNIST,

FashionMNIST).

• Each node (including the Teacher) takes the LENC

Student role exactly once every education cycle.

• All Student LENC nodes use the LENC framework option

2 (Knowledge Distillation).

• After 5 education cycles, we observe the results.

CKD Experiment
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CKD Experiment

Average test classification accuracy (%) of the 3 student LENC nodes and of 

competing CKD methods, for incoming data sets 𝒟𝑡 having 1000 or 5000
samples (from C10 or C100 CIFAR). 
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CKD Experiment

Average student LENC node classification accuracy (%) for varying 𝐷𝑠 sizes 

in the CIFAR-10 dataset for 3 alternative LENC teacher selection policies 

against that of competing methods.



Experimental conclusions

• LENC framework outperforms existing CKD methods, when

digesting un-labelled incoming data samples, under the assumption

that the sole expert indeed knows data similar to the incoming ones.

• LENC proves to be the most tolerant to small batch sizes, thus

showcasing its usability in an important real world use-case: when a

node faces unknown current input data and needs to acquire

relevant knowledge as soon as possible, in order to respond

immediately.
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Continual Learning (CL) Experiment.
• Six LENC nodes are initialized for each dataset.

• Five of them (Teacher LENC nodes) are trained on a task of

the classification datasets (SPLIT-MNIST, SPLIT-CIFAR-10

and SPLIT-CIFAR-100).

• For example for the SPLIT-MNIST dataset: Node 1 knows

classes {0,1}, Node 2 knows classes {2,3} etc.

• The Student LENC node encounters all tasks for a single

education cycle and picks the correct teacher for each task.

• The Student LENC nodes use the LENC framework option 2

(Knowledge Distillation) and a specialized CL loss to learn

new tasks without forgetting.

• After 5 education cycles, we observe the results.

CL Experiment



42

CL Experiment

Student classification accuracy per task for a) SPLIT-MNIST, b) SPLIT-

CIFAR-10 and c) SPLIT-CIFAR-100. 



Experimental conclusions.

• The LENC framework can achieve continual learning and adaptation

with only a few randomly sampled batches.
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Federated Learning Experiment Setup

• 1 master LENC node (aggregator), 2 student LENC nodes with

unique datasets.

• Students are trained locally for 50 epochs and send output to

Aggregator.

• Aggregator calculates the mean DNN model weights (global) and

sends them to student nodes.

• 4 FL rounds in total.
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Federated Learning Experiment

Accuracy report (%) of the aggregator and the two students after each federated 

run on Cifar 10 test dataset. 



Decentralized DNN (D-DNN) Consensus Inference

• Any LENC (master) node can make a request to the LENC community

to perform Decentralized DNN (D-DNN) inference by providing its own

dataset.

• Through the KSA module, LENC nodes that are familiar with the master

node data distribution are selected to carry out the inference.

• Proof of Quality Inference (POQI) Consensus Protocol, is used to

establish consensus between the selected teachers regarding their

DNN Inference outputs.

• Security and integrity of the inference results reported to the client are

ensured by detecting and excluding malicious DNN nodes.

47

D-DNN Inference



48

D-DNN Inference

A master LENC node finds related LENC nodes for POQI consensus.
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D-DNN Inference

LENC node N1-M7  classification accuracy (%) comparison in the presence of 1-3 malicious 

nodes.
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• We implement the LENC framework on multiple devices by

using Docker and Zookeeper.

• Now each LENC node is physically located in a single

terminal.

• The LENC nodes use the Zookeeper for “online” node

discovery and receive the IP addresses of all “online”

LENC nodes.
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• Each LENC node occupies one Docker container.

• Zookeeper-like instance for service discovery and

coordination.

• Environment simulation using Docker network capabilities:

• The network has a predefined IP mask (172.0.0.0/24).

• Each container has its own virtual IP address (172.0.0.1-.256).

• All communications (including file sharing) use sockets:

• Each node acts both as a server and client.

• All listening on port 60.000.

• Zookeeper webservice listens on port 8080.
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LENC Architecture Implementation

LENC Docker network outline.

LEMA Framework  Dockerization



Dockerized LENC training procedure

• Teacher LENC nodes download datasets and teach their underlying

DNNs by creating new tasks.

• A Student LENC node with a novel dataset can search for the most

suitable Teacher by sending "EVAL" requests, along with the

dataset to all available LENC nodes.

• They test the dataset to their networks and return the resulting

accuracy score to the Student LENC node.

• The Student LENC node picks the best teacher, e.g., the one with

the max recognition score.
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Dockerized LENC training procedure

• The Student LENC node requests the files needed according to the

option configuration (FETCH TASK request) from the picked

potential Teacher LENC node.

• Files are ‘.bin’ for datasets and ’.pth’ for teacher soft-output

activation, weights and structure.

• The Student LENC node uses the received files to train a new

Decision Head, but without forgetting the previous tasks learned.
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LENC Architecture Implementation

TEMA training process flow.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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