

Deep Object Detection

V. Nousi, P. Mentesidis, E. Patsiouras, A. Tefas, I. Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 5.0

Object Detection for UAV sports **CML** cinematography

Object Detection for UAV sports **VML** cinematography

Artificial Intelligence & Information Analysis Lab

Object Detection for UAV sports **CML** cinematography

Target/object examples: athletes, boats, bicycles.

Many deep object detectors exist that are pretrained on IMAGENET:

- Faster R-CNN [REN2015]
- Single Shot Detection (SSD) [LIU2016]
- You Only Look Once (YOLO) [RED2016], [RED2017], [RED2018].

The performance of such detectors for on-drone deployment has been tested extensively [NOU2018].

- Object detection = classification + localization:
- Find *what* is in a picture as well as *where* it is.

Classification

CAT

Classification + Localization

Object Detection

CAT, DOG, DUCK

Figure: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

CAT

- Input: an image.
- Output: bounding boxes containing depicted objects.
 - Each image may contain a different number of detected objects.
- Old approach: train a specialized classifier and deploy in sliding-window style to detect all object of that class.
 - Very inefficient, quite ineffective.
- Goal: combine classification and localization into a single architecture for multiple, multiclas object detection.

Classification/Recognition/ Identification

- Given a set of classes $C = \{C_i, i = 1, ..., m\}$ and a sample $\mathbf{x} \in \mathbb{R}^n$, the ML model $\hat{\mathbf{y}} = f(\mathbf{x}; \mathbf{\theta})$ predicts a class label vector $\hat{\mathbf{y}} \in [0, 1]^m$ for input sample \mathbf{x} , where $\mathbf{\theta}$ are the learnable model parameters.
- Essentially, a probabilistic distribution $P(\hat{\mathbf{y}}|\mathbf{x})$ is computed.
- Interpretation: likelihood of the given sample x belonging to each class C_i .
 - Single-target classification:
 - classes C_i , i = 1, ..., m are mutually exclusive: $\|\hat{\mathbf{y}}\|_1 = 1$.
- Multi-target classification:
 - classes C_i , i = 1, ..., m are not mutually exclusive : $||\hat{\mathbf{y}}||_1 \ge 1$.

Classification/Recognition/ Identification

• A sufficient large training sample set \mathcal{D} is required for Supervised Learning (regression, classification):

 $\mathcal{D} = \{ (\mathbf{x}_i, \mathbf{y}_i), i = 1, \dots, N \}.$

- $\mathbf{x}_i \in \mathbb{R}^n$: *n*-dimensional input (feature) vector of the *i*-th training sample.
- \mathbf{y}_i : its target label (output).
- Target vector y can be:
 - real-valued vector: $\mathbf{y} \in [0, 1]^m, \mathbf{y} \in \mathbb{R}^m$;
 - binary-valued vector $\mathbf{y} \in \{0,1\}^m$ or even categorical.

Classification/Recognition/ Identification

- **Training**: Given N pairs of training samples $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in [0,1]^m$, estimate $\boldsymbol{\theta}$ by minimizing a loss function: $\min_{\boldsymbol{\theta}} J(\mathbf{y}, \hat{\mathbf{y}})$.
- Inference/testing: Given N_t pairs of testing examples $\mathcal{D}_t = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N_t\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in [0,1]^m$, compute (predict) $\hat{\mathbf{y}}_i$ and calculate a performance metric, e.g., classification accuracy.

Regression

Given a sample $\mathbf{x} \in \mathbb{R}^n$ and a function $\mathbf{y} = f(\mathbf{x})$, the model predicts *real-valued quantities* for that sample: $\hat{\mathbf{y}} = f(\mathbf{x}; \mathbf{\theta})$, where $\hat{\mathbf{y}} \in \mathbb{R}^m$ and $\mathbf{\theta}$ are the learnable parameters of the model.

- **Training**: Given *N* pairs of training examples $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in \mathbb{R}^m$, estimate $\boldsymbol{\theta}$ by minimizing a loss function: $\min_{\boldsymbol{\theta}} J(\mathbf{y}, \hat{\mathbf{y}})$.
- **Testing**: Given N_t pairs of testing examples $\mathcal{D}_t = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N_t\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in \mathbb{R}^m$, compute (predict) $\hat{\mathbf{y}}_i$ and calculate a performance metric, e.g., MSE.

Artificial Intelligence & Information Analysis Lab

Regression

• Regression:

- Example: In object detection, localize the object:
- regress object ROI parameters: ROI center (x_c, y_c), width w, height
 h).
- Function approximation: it is essentially regression, when the function y = f(x) is known.

Object detection is a *multitask machine learning* problem:

- combination of classification and regression.
- Given a set of classes $C = \{C_i, i = 1, ..., m\}$ and an image sample $\mathbf{x} \in \mathbb{R}^n$, the model predicts (for one object instance only) an output vector $\hat{\mathbf{y}} = [\hat{\mathbf{y}}_1^T | \hat{\mathbf{y}}_2^T]^T$ consisting of:
 - A class vector $\hat{\mathbf{y}}_1 \in [0, 1]^m$ and
 - A bounding box parameter vector $\hat{\mathbf{y}}_2 = [x, y, w, h]^T$ corresponding to object ROI.
 - Optimization of a joint cost function:

 $\min_{\mathbf{A}} J(\mathbf{y}, \hat{\mathbf{y}}) = \alpha_1 J_1(\mathbf{y}_1, \hat{\mathbf{y}}_1) + \alpha_2 J_2(\mathbf{y}_2, \hat{\mathbf{y}}_2).$

• The above vector pair will be computed for every possible target detected in the image sample \mathbf{x} .

Object Detection with CNNs

Object detection: CNN pipeline for bounding box regression.

CNN Object Detection

Region proposal-based detectors

- R-CNN, Fast R-CNN, Faster R-CNN
- R-FCN

Single Stage Detectors

- YOLO
- SSD
- YOLO v2, v3, v4
- RetinaNet, RBFnet
- CornerNet, CenterNet
- **Transformer Detectors**

VML

R-CNN

Regions with CNN features (R-CNN).

- Three step approach:
 - Extract *region proposals* using an external proposal method (i.e., Selective Search). Cropped and resized proposed input image regions form *crops*, always having the same size.
 - 2. Extract CNN features for each crop.
 - 3. a) *Classify* features with an SVM.

b) **Regress** Region Of Interest (ROI) width *w* and height *h*, based on the proposed and validated crops.

Artificial Intelligence & Information Analysis Lab

R-CNN

R-CNN: Regions with CNN features

R-CNN structure [GIR2014].

R-CNN

Artificial Intelligence & Information Analysis Lab

Fast R-CNN

Input image is passed once from a CNN to generate a CNN feature map (big speedup).

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Rol conv features: C x h x w for region proposal

ROI pooling.

Artificial Intelligence & Information Analysis Lab

SSD

Single-Shot Detector (SSD).

- Region-based object detection (R-CNN, Fast R-CNN, Faster R-CNN, R-FCN): accurate, but too slow for real-time applications.
- SSD approach: Combine a classification network and bounding box regression into single architecture, without any external steps or duplicated computations.
- It uses anchors (ROIs of precomputed size and aspect ratio). No region proposals are used.

Artificial Intelligence & Information Analysis Lab

SSD architecture [HUA2017].

Single Shot Detector

 Anchors overlap at various spatial locations, aspect ratios and scales of the feature maps on various CNN layers.

 During training, anchor location and size are *refined via regression* to better fit objects.

CNN Object Detection architectures

- ResNet, MobileNet, VGG etc.
- Neck is extra object detector layers that go on top of the backbone. They extract different feature maps from different stages of the backbone.
 - FPN, PANet, Bi-FPN etc.
- Head network performs actual object detection: classification (probability of m + 1 classes) and regression of Rol parameters (x, y, h, w).

Artificial Intelligence & Information Analysis Lab

YOLO (You Only Look Once) architecture:

- Darkenet19 convolutional network plus FC layer.
- Prediction only at the final convolutional feature map.

- YOLO divides the input image into an $S \times S$ grid.
- If the *center* of an object falls within a cell of the grid, that cell is responsible for detecting that object.
- *N* is the maximal number of bounding boxes that each grid cell can detect.
- Each cell predicts *N* **bounding boxes** and confidence and classification scores for those boxes.
- The maximal number of detected objects is $N \times S \times S$.

Artificial Intelligence & Information Analysis Lab Yolo object detection [RED2016].

Each ROI is assigned five object predicted values: x, y, w, h and **confidence**:

$$Pr(Object) \times J(\mathcal{A}, \mathcal{B}) = Pr(Object) \times \frac{|\mathcal{A} \cap \mathcal{B}|}{|\mathcal{A} \cup \mathcal{B}|}$$

• \mathcal{A}, \mathcal{B} : estimated, ground truth bounding boxes.

It takes into account:

- a) confidence on object box existence/classification.
- b) how accurate the predicted box is.

- Fully convolutional, no densely-connected layers:
 It may be run at varying input sizes.
- It can utilize *multi-scale capabilities* during training as well.
- Very fast architecture and implementation.
- Uses precomputed anchors.

- **Deeper ResNet-based backbone architecture**: 53 convolutional layers with skip connections.
- Multiscale Detection: detection occurs at multiple layers at different points in the architecture, to detect objects of different scales.
- Much better mAP, but significantly slower.
- Much better at detecting small objects [RED2018].

[BOC2020]

- *Backbone*: CSPDarknet53.
- Neck: Spatial pyramid pooling (SPP) and Path Aggregation Network (PAN).
- Head: Same as YOLO v3.

 It achieves state-of-the-art results on both accuracy and inference time, surpassing all previous object detectors [BOC2020].

• It can be trained on a single conventional GPU with 8/16 GB of VRAM, such as an Nvidia 1080Ti or a 2080Ti GPU.

- Detection at Multiple Layers: Object detection at three scales, improving identification of large and small objects.
- Auto-Learning Bounding Box Anchors: Automatic learning of optimal anchors during training, enhancing performance.
- Data Augmentation Techniques: Use of Mosaic and MixUp methods for improved robustness and generalization.

Artificial Intelligence & Information Analysis Lab

- EfficientRep Backbone: RepVGG and CSPStackRep blocks are combined to optimize speed and accuracy across model sizes.
- **Rep-PAN Neck**: RepVGG and CSPStackRep blocks are used to enhance feature integration at multiple scales.
 - Efficient Decoupled Head: a hybrid-channel strategy is used to reduce the computation costs.

YOLOv6 Architecture [LI2022].

YOLO models

YOLO versions have evolved significantly, each uniquely enhancements to the single-stage detector architecture:

- YOLOX
- YOLOv7
- YOLOv8
- YOLOv9
- YOLOv10.

Each model improves detection accuracy, speed, and robustness for various applications.

RetinaNet

- ResNet is used as a backbone for feature extraction.
- Feature Pyramid Network (FPN) is used as a neck on top of ResNet for constructing a rich multi-scale feature pyramid from one single resolution image.

RFBNet

- It is inspired by the structure of receptive fields in human visual system [LIU2018].
- Use of multiple dilated convolutions with different kernel sizes in each convolutional layer.

· State-of-the-art results and fast inference

Artificial Intelligence & Information Analysis Lab

Spatial Array

rate=3

3x3 conv

rate=5

5x5 conv

rate=1

1x1 conv

CornerNet

- CornetNet [LAW2018] eliminates the use of anchor boxes and directly predicts a bounding box (Rol) by a pair of keypoints, i.e., its top-left and the bottom-right corner.
- A CNN outputs a heatmap for all top-left and bottom-right corners, as well as an embedding vector for each detected corner, that describes a local neighborhood region.
- CornetNet is trained to predict similar embeddings for corners that belong to same object, by utilizing these heatmaps.

CornerNet

• Each set of heatmaps has C channels and is of size $h \times w$ pixels (C is the number of categories to detect).

CornerNet

 CornetNet uses an *hourglass network* as a backbone, which is followed by two prediction modules, one for the top-left and one for the bottom-right Rol corners.

- Detection Transformer (DETR) views object detection as a direct set prediction problem, while removing many handdesigned components like Non-Maximum Suppression (NMS) or anchor generation.
- DETR utilizes an encoder-decoder sequence processing model called *Transformer* [VAS2017] and a bipartite matching loss.

DETR architecture has three main components:

- A RestNet50/101 CNN backbone for feature extraction.
- An encoder-decoder transformer model.
- A feed-forward head network makes the final detection predictions.

DETR architecture [CAR2020].

Given a set of ground truth $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N\}$ of *N* images and a set of predictions $\hat{\mathbf{y}}_i, i = 1, ..., N$ we search for a permutation of *N* elements $\sigma \in \mathcal{G}_N$ with the lowest cost:

Bipartite matching loss *J* is a pair-wise matching cost between ground truth \mathbf{y}_i and a prediction $\hat{\mathbf{y}}_{\sigma(i)}$.

- $\mathbf{y}_i = {\mathbf{y}_{1i}, \mathbf{y}_{2i}}$ where \mathbf{y}_{1i} is the target class label and \mathbf{y}_{2i} defines ground truth box coordinates.
- J significantly reduces low-quality predictions and eliminates the need for output reductions, e.g., by using NMS.

Co-DETR

- Vision Transformer (ViT) as backbone.
- Novel collaborative hybrid assignments training scheme to learn more efficient and effective DETR-based detectors from versatile label assignment manners.

Co-DETR

Co-DETR architecture [ZON2023].

RT-DETR

- **Real-Time DEtection TRansformer** (**RT-DETR**) extends DETR to the real-time detection scenario and achieves state-of-the-art performance.
- Efficient hybrid encoder that expeditiously processes multiscale features.
- Uncertainty-minimal query selection that improves the quality of initial object queries.

Artificial Intelligence & Information Analysis Lab

RT-DETR

RT-DETR architecture [ZHA2024].

Object detector speedup

- Fine-tuning a pretrained model on a new domain (e.g., boat/bicycle detection), instead of training from scratch usually yields better results
- Tiny versions of the proposed detectors (e.g., Tiny YOLO) can increase the detection speed (but at the cost of accuracy).
 Training datasets created by AUTH

Dataset	Train	Positive	Negative	Test
Crowd	40000	20000	20000	11550
Football	80000	40000	40000	10000
Bicycles	51200	25600	25600	7000
Face	140000	70000	70000	7468

Object detector speedup

- Reducing the input image size can also increase the detection speed.
- However, this can *significantly impact the accuracy* when detecting very small objects (which is the case for drone shooting).

ooting).	Model	Input Size	Pascal 2007 test mAP*
	YOLO v.2	544x544	77.44
	YOLO v.2	416x416	74.60
	YOLO v.2	288x288	67.12
	YOLO v.2	160x160	48.72
	YOLO v.2	128x128	40.68

Object detector speedup

Artificial Intelligence & Information Analysis Lab

- We evaluated the faster detector (YOLO) on an GPU accelerated embedded system (NVIDIA TX2).
- Adjusting the input image size allows throughput increase.
- Detection with satisfactory accuracy is not real-time.

Model	Input Size	FPS				
YOLO v.2	604x604	3				
YOLO v.2	544x544	4				
YOLO v.2	416x416	7				
YOLO v.2	308x308	10				
Tiny YOLO	604x604	9				
Tiny YOLO	416x416	15				

• Intersection over Union (IoU):

$$J(\mathcal{A},\mathcal{B})=\frac{|\mathcal{A}\cap\mathcal{B}|}{|\mathcal{A}\cup\mathcal{B}|}.$$

- *A*, *B*: estimated, ground truth ROIs (sets, bounding boxes).
- $|\mathcal{A}|$: set cardinality (area counted in pixels).
- Also called Jaccard Similarity Coefficient or Overlap Score.

Object Localization Performance Metrics

(VML

Object localization performance: a) $J(\mathcal{A}, \mathcal{B}) = 0.67$; b) $J(\mathcal{A}, \mathcal{B}) = 0.27$.

- Let us have N_t test images. Object detection consists of:
- Object classification
 - Performance measured by, e.g., top5error.
- Object localization
 - find object ROI (bounding box) parameters [x, y, h, w] through (CNN) regression.
 - Performance measured by the Jaccard similarity coefficient.

Top-5 Classification Error.

• Given the ground truth object class label C_i and top 5 predicted class labels C_{i1}, \ldots, C_{i5} the prediction is correct, if $C_{ij} = C_i, j = 1, \ldots, 5$. The error of a single prediction is:

$$e_{CLS}(\mathcal{C}_{ij}, \mathcal{C}_i) = \begin{cases} 1, & \mathcal{C}_{ij} \neq \mathcal{C}_i, & \forall j \in [1, 5] \\ 0, & \text{otherwise.} \end{cases}$$

• The top-5 error is the fraction of N_t test images on which the prediction is wrong:

$$top5error_{CLS} = \frac{1}{N_t} \sum_{i=1}^{N_t} \min_{j} \{e_{CLS}(\mathcal{C}_{ij}, \mathcal{C}_i)\}, \quad j = 1, ..., 5.$$

Classification Results (CLS)

Information Analysis Lab

Object detection performance history.

- Object detection on images $i = 1, ..., N_t$: bounding boxes A_{ii} and confidence scores s_{ii} .
- If \mathcal{A}_{ij} is matched to a ground truth box \mathcal{B}_{ik} :

 $J(\mathcal{A}_{ij}, \mathcal{B}_{ik}) > T(\mathcal{B}_{ik}), \text{ then } z_{ij} = 1.$

• The threshold $T(\mathcal{B}_{ik})$ depends on the box size:

 $T(\mathcal{B}_{ik}) = \min(0.5, hw/(h+1)(w+1)).$

For *M* ground truth object ROIs on all N_t images:

- Let $n_{ij} = 1$ for a successful classification at *confidence threshold* t $(s_{ij} \ge t)$:
- Recall, Precision definitions (modified):

$$r(t) = \frac{\sum_{ij} n_{ij} z_{ij}}{M},$$

$$p(t) = \frac{\sum_{ij} n_{ij} z_{ij}}{\sum_{ij} n_{ij}}$$

Mean Average Precision (mAP):

• It is calculated over N levels of confidence threshold $t_n, n = 1, ..., N$:

$$mAP = \frac{1}{N} \Sigma_n p(t_n).$$

Box mAP on COCO test-dev [PWC].

Top-5 Localization Error:

For each test image $i = 1, ..., N_t$, let us have:

- a pair of ground truth a) label C_i and b) bounding box B_{ik} ,
- a set of classification/localization predictions $\{(\mathcal{C}_{ij}, \mathcal{A}_{ij})\}_{j=1}^{5}$ of class labels \mathcal{C}_{ij} with corresponding bounding boxes \mathcal{A}_{ij} .

Top-5 Localization Error definition:

λŢ

$$e_{LOC}(\mathcal{A}_{ij}, \mathcal{B}_{ik}) = \begin{cases} 1, & J(\mathcal{A}_{ij}, \mathcal{B}_{ik}) \leq 0.5 \\ 0, & J(\mathcal{A}_{ij}, \mathcal{B}_{ik}) > 0.5 \end{cases},$$

$$top5error_{LOC} = \frac{1}{N_t} \sum_{i=1}^{N_t} \min_j \{e_{LOC}(\mathcal{A}_{ij}, \mathcal{B}_{ik})\}, \qquad j = 1, \dots, 5$$

- False Positive (FP) vs
 True positive (TP) plots, as a function of detection threshold e.g., for various training stages.
 - The closer the curve is to the upper left corner, the better.

Real-Time Object Detectors

Real time object detectors comparison on COCO dataset [WAN2024].

Face detection examples

Face detection examples

Face detection examples

Object Detection for UAV sports cinematography

Artificial Intelligence & Information Analysis Lab

Bicycle detection.

Object Detection for UAV sports cinematography

Bicycle detection.

Object Detection for UAV sports **CML** cinematography

Football player detection.

Boat detection.

Object Detection for UAV sports cinematography

Artificial Intelligence & Information Analysis Lab

Parkour athlete detection.

Object Detection for UAV powerline **VML** inspection

Artificial Intelligence & Information Analysis Lab

Insulator, dumper & tower detection.

Forest Fire Detection

Information Analysis Lab

Real Time Detection Transformer (RT-DETR) for forest fire detection.

Pipe Defect Detection

DETR pipe defect detection.

[NOU2018] P. Nousi, E. Patsiouras, A. Tefas, I. Pitas, <u>Convolutional Neural Networks for Visual</u> <u>Information Analysis with Limited Computing Resources</u>, 2018 IEEE International Conference on Image Processing (ICIP), Athens, Greece, October 7-10, 2018.

[REN2015] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in Neural Information Processing Systems. 2015.

[LIU2016] Liu, Wei, et al. "SSD: Single Shot Multibox Detector." European Conference on Computer Vision. 2016.

[RED2016] J.Redmon, et al. "You only look once: Unified, real-time object detection." IEEE Conference on Computer Vision and Pattern Recognition. 2016.

[RED2017] J.Redmon, A. Farhadi. "YOLO9000: Better, Faster, Stronger." IEEE Conference on Computer Vision and Pattern Recognition. 2017.

[RED2018] J.Redmon, A. Farhadi, "YOLOv3: An Incremental Improvement " arxiv, 2018 [BOC2020] A. Bochkovskiy, CY Wang and HY M. Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection". arXiv, 2020.

References

[SER2014] P. Sermanet et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." *International Conference on Learning Representations (ICLR2014), CBLS, April 2014.* 2014. [GIR2014] R. Girshick et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2014.

[GIR2015] R. Girshick, "Fast R-CNN." Computer Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015.

[HUA2017] J. Huang, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." *IEEE CVPR*. 2017.

[LIN2017] T.Y. Lin, et al. "Focal loss for dense object detection." *Proceedings of the IEEE international conference on computer vision.* 2017.

[LIU2018] S. Liu, D. Huang. "Receptive field block net for accurate and fast object detection." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018.

References

[HOW2017] A. Howard, Andrew G., et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications."2017.

[LAW2018] H. Law, J. Deng. "CornerNet: detecting objects as paired keypoints". arXiv, 2019.

[DUA2019] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian. "CenterNet: keypoints triplets for object detection". arXiv, 2019.

[VAS2017] A. Vaswani, Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. "Attention is all you need". NeurIPS (2017).

[CAR2020] N. Carion, F. Massa, G. Synnaeve, N. Usanier, A. Kirillov, S. Zagoruyko. "End-to-end object detection with transformers". arXiv, 2020.

[PYT] https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection

[PWC] https://paperswithcode.com/sota/object-detection-on-coco

[ZON2023] Z.Zong, G.Song, Y.Liu "DETRs with Collaborative Hybrid Assignments Training". ICCV (2023).

[LI2022] C.Li, L.Li, H.Jiang, et al. "YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications". arXiv, 2022.

[ZHA2024] Y.Zhao, W.Lv, S.Xu et al. "DETRs Beat YOLOs on Real-time Object Detection". arXiv, 2024.

[WAN2024] A.Wang, H.Chen, et al. "YOLOv10: Real-Time End-to-End Object Detection". arXiv, 2024.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

