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Target/object examples: athletes, boats, bicycles.
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Object Detection

Many deep object detectors exist that are pretrained on IMAGENET:

• Faster R-CNN [REN2015]

• Single Shot Detection (SSD) [LIU2016]

• You Only Look Once (YOLO) [RED2016], [RED2017], [RED2018].

The performance of such detectors for on-drone deployment has been

tested extensively [NOU2018].



Object Detection

• Object detection = classification + localization:

• Find what is in a picture as well as where it is.

Figure: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf



Object Detection

• Input: an image.

• Output: bounding boxes containing depicted objects.

• Each image may contain a different number of detected objects.

• Old approach: train a specialized classifier and deploy in

sliding-window style to detect all object of that class.

• Very inefficient, quite ineffective.

• Goal: combine classification and localization into a single

architecture for multiple, multiclas object detection.



Classification/Recognition/

Identification
• Given a set of classes 𝒞 = 𝒞𝑖 , 𝑖 = 1, … , 𝑚 and a sample 𝐱 ∈ ℝ𝑛, the ML

model ො𝐲 = 𝒇(𝐱; 𝛉) predicts a class label vector ො𝐲 ∈ 0, 1 𝑚 for input

sample 𝐱, where 𝛉 are the learnable model parameters.

• Essentially, a probabilistic distribution 𝑃(ො𝐲|𝐱) is computed.

• Interpretation: likelihood of the given sample 𝐱 belonging to each class 𝒞𝑖 .

• Single-target classification:

• classes 𝒞𝑖 , 𝑖 = 1, … , 𝑚 are mutually exclusive: ||ො𝐲||1 = 1.

• Multi-target classification:

• classes 𝒞𝑖 , 𝑖 = 1, … , 𝑚 are not mutually exclusive : ||ො𝐲||1 ≥ 1.



• A sufficient large training sample set 𝒟 is required for Supervised

Learning (regression, classification):

𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1, … , 𝑁}.

• 𝐱𝑖 ∈ ℝ𝑛 : 𝑛 –dimensional input (feature) vector of the 𝑖-th training sample.

• 𝐲𝑖: its target label (output).

• Target vector 𝐲 can be:

• real-valued vector: 𝐲 ∈ 0, 1 𝑚, 𝐲 ∈ ℝ𝑚;

• binary-valued vector 𝐲 ∈ {0,1}𝑚 or even categorical.

Classification/Recognition/

Identification



Classification/Recognition/

Identification
• Training: Given 𝑁 pairs of training samples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1, … , 𝑁},

where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, estimate 𝛉 by minimizing a loss

function: min
𝛉

𝐽(𝐲, ො𝐲).

• Inference/testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖
= 1, … , 𝑁𝑡} , where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, compute (predict) ො𝐲𝑖 and

calculate a performance metric, e.g., classification accuracy.



Regression

Given a sample 𝐱 ∈ ℝ𝑛 and a function 𝐲 = 𝒇(𝐱), the model predicts real-

valued quantities for that sample: ො𝐲 = 𝒇(𝐱; 𝛉), where ො𝐲 ∈ ℝ𝑚 and 𝛉 are the

learnable parameters of the model.

• Training: Given 𝑁 pairs of training examples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1, … , 𝑁},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ ℝ𝑚, estimate 𝛉 by minimizing a loss function:

min
𝛉

𝐽(𝐲, ො𝐲) .

• Testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1, … , 𝑁𝑡},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ ℝ𝑚 , compute (predict) ො𝐲𝑖 and calculate a

performance metric, e.g., MSE.



Regression

• Regression:

• Example: In object detection, localize the object:

• regress object ROI parameters: ROI center (𝑥𝑐, 𝑦𝑐), width 𝑤, height

ℎ).

• Function approximation: it is essentially regression, when the

function 𝐲 = 𝒇 𝐱 is known.
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Object Detection

Object detection is a multitask machine learning problem: 
• combination of classification and regression. 

• Given a set of classes  𝒞 = {𝒞𝑖 , 𝑖 = 1, … , 𝑚} and an image sample 𝐱 ∈ ℝ𝑛, 

the model predicts (for one object instance only) an output vector ො𝐲 =
[ො𝐲𝑇

1| ො𝐲𝑇
2]𝑇 consisting of:

• A class vector ො𝐲1 ∈ 0, 1 𝑚 and

• A bounding box parameter vector ො𝐲2= 𝑥, 𝑦, 𝑤, ℎ 𝑇 corresponding to 

object ROI.

• Optimization of a joint cost function: 

min
𝛉

𝐽 𝐲, ො𝐲 = α1 𝐽1 𝐲1, ො𝐲1 + α2 𝐽2 𝐲2, ො𝐲2 .

• The above vector pair will be computed for every possible 

target detected in the image sample 𝐱.



Object Detection with 

CNNs

Object detection: CNN pipeline for bounding box regression.



CNN Object Detection
Region proposal-based detectors

• R-CNN, Fast R-CNN, Faster R-CNN

• R-FCN

Single Stage Detectors

• YOLO

• SSD

• YOLO v2, v3, v4

• RetinaNet, RBFnet

• CornerNet, CenterNet

Transformer Detectors

• DETR.



R-CNN

Regions with CNN features (R-CNN).

• Three step approach:

1. Extract region proposals using an external proposal method (i.e.,

Selective Search). Cropped and resized proposed input image

regions form crops, always having the same size.

2. Extract CNN features for each crop.

3. a) Classify features with an SVM.

b) Regress Region Of Interest (ROI) width 𝑤 and height ℎ, based

on the proposed and validated crops.



R-CNN

R-CNN structure [GIR2014].



R-CNN



Fast R-CNN

ROI pooling.

Input image is passed once from a CNN to generate a CNN feature

map (big speedup).



SSD

Single-Shot Detector (SSD).

• Region-based object detection (R-CNN, Fast R-CNN, Faster

R-CNN, R-FCN): accurate, but too slow for real-time

applications.

• SSD approach: Combine a classification network and

bounding box regression into single architecture,

without any external steps or duplicated computations.

• It uses anchors (ROIs of precomputed size and aspect

ratio). No region proposals are used.



SSD

SSD architecture [HUA2017].



Single Shot Detector
• Anchors overlap at various
spatial locations, aspect
ratios and scales of the
feature maps on various
CNN layers.

• During training, anchor
location and size are refined
via regression to better fit
objects.



• Backbone refers to a CNN used for image feature extraction:

• ResNet, MobileNet, VGG etc.

• Neck is extra object detector layers that go on top of the

backbone. They extract different feature maps from different

stages of the backbone.

• FPN, PANet, Bi-FPN etc.

• Head network performs actual object detection: classification

(probability of 𝑚 + 1 classes) and regression of RoI parameters

(𝑥, 𝑦, ℎ, 𝑤).

CNN Object Detection 

architectures



YOLO

YOLO (You Only Look Once) architecture:

• Darkenet19 convolutional network plus FC layer.

• Prediction only at the final convolutional feature map.

[LIU2016]



YOLO
• YOLO divides the input image into an 𝑆 × 𝑆 grid.

• If the center of an object falls within a cell of the grid, that

cell is responsible for detecting that object.

• 𝑁 is the maximal number of bounding boxes that each grid 

cell can detect.

• Each cell predicts 𝑁 bounding boxes and confidence and 

classification scores for those boxes.

• The maximal number of detected objects is 𝑁 × 𝑆 × 𝑆.



YOLO

Yolo object detection [RED2016].



YOLO

Each ROI is assigned five object predicted values: 𝑥, 𝑦, 𝑤, ℎ
and confidence:

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐽 𝒜, ℬ = 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ×
𝒜 ∩ ℬ

𝒜 ∪ ℬ
.

• 𝒜, ℬ: estimated, ground truth bounding boxes.

It takes into account:

• a) confidence on object box existence/classification.

• b) how accurate the predicted box is.



YOLO v2

• Fully convolutional, no densely-connected layers:

○ It may be run at varying input sizes.

• It can utilize multi-scale capabilities during training as

well.

• Very fast architecture and implementation.

• Uses precomputed anchors.



YOLO v3

• Deeper ResNet-based backbone architecture: 53

convolutional layers with skip connections.

• Multiscale Detection: detection occurs at multiple layers

at different points in the architecture, to detect objects of

different scales.

• Much better mAP, but significantly slower.

• Much better at detecting small objects [RED2018].



YOLO v4 design:

• Backbone: CSPDarknet53.

• Neck: Spatial pyramid pooling (SPP) and Path Aggregation 

Network (PAN).

• Head: Same as YOLO v3.

YOLO v4

[BOC2020]



• It achieves state-of-the-art results on both accuracy and

inference time, surpassing all previous object detectors

[BOC2020].

• It can be trained on a single conventional GPU with 8/16

GB of VRAM, such as an Nvidia 1080Ti or a 2080Ti GPU.

YOLO v4



YOLO v5

• Detection at Multiple Layers: Object detection at three

scales, improving identification of large and small objects.

• Auto-Learning Bounding Box Anchors: Automatic

learning of optimal anchors during training, enhancing

performance.

• Data Augmentation Techniques: Use of Mosaic and

MixUp methods for improved robustness and

generalization.



YOLO v6

• EfficientRep Backbone: RepVGG and CSPStackRep

blocks are combined to optimize speed and accuracy

across model sizes.

• Rep-PAN Neck: RepVGG and CSPStackRep blocks are

used to enhance feature integration at multiple scales.

• Efficient Decoupled Head: a hybrid-channel strategy is

used to reduce the computation costs.



YOLO v6

YOLOv6 Architecture 

[LI2022].



YOLO models 

YOLO versions have evolved significantly, each uniquely

enhancements to the single-stage detector architecture:

● YOLOX

● YOLOv7

● YOLOv8

● YOLOv9

● YOLOv10.

Each model improves detection accuracy, speed, and

robustness for various applications.



RetinaNet
• ResNet is used as a backbone for feature extraction.

• Feature Pyramid Network (FPN) is used as a neck on top

of ResNet for constructing a rich multi-scale feature pyramid

from one single resolution image.

RetinaNet architecture [LIN2017].



RFBNet

• It is inspired by the structure of receptive

fields in human visual system [LIU2018].

• Use of multiple dilated convolutions with

different kernel sizes in each

convolutional layer.

• State-of-the-art results and fast inference

time.



• CornetNet [LAW2018] eliminates the use of anchor boxes

and directly predicts a bounding box (RoI) by a pair of

keypoints, i.e., its top-left and the bottom-right corner.

• A CNN outputs a heatmap for all top-left and bottom-right

corners, as well as an embedding vector for each detected

corner, that describes a local neighborhood region.

• CornetNet is trained to predict similar embeddings for

corners that belong to same object, by utilizing these

heatmaps.

CornerNet



CornerNet

CornerNet pipeline [LAW2018].

• Each set of heatmaps has 𝐶 channels and is of size ℎ × 𝑤
pixels (𝐶 is the number of categories to detect).



• CornetNet uses an hourglass network as a backbone,

which is followed by two prediction modules, one for the

top-left and one for the bottom-right RoI corners.

CornerNet

CornerNet overview [LAW2018].



• Detection Transformer (DETR) views object detection as

a direct set prediction problem, while removing many hand-

designed components like Non-Maximum Suppression

(NMS) or anchor generation.

• DETR utilizes an encoder-decoder sequence processing

model called Transformer [VAS2017] and a bipartite

matching loss.

DETR



DETR architecture has three main components:

• A RestNet50/101 CNN backbone for feature extraction.

• An encoder-decoder transformer model.

• A feed-forward head network makes the final detection

predictions.

DETR



DETR

DETR architecture [CAR2020].



Given a set of ground truth 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1, … , 𝑁} of 𝑁
images and a set of predictions ො𝐲𝑖 , 𝑖 = 1, … , 𝑁 we search for a

permutation of 𝑁 elements 𝜎 ∈ 𝒢𝑁 with the lowest cost:

ො𝜎 = arg min
𝜎∈𝒢𝑁

෍

𝑖

𝑁

𝐽(𝐲𝑖 , ො𝐲𝜎 𝑖 ) .

DETR



Bipartite matching loss 𝐽 is a pair-wise matching cost

between ground truth 𝐲𝑖 and a prediction ො𝐲𝜎(𝑖).

• 𝐲𝑖 = {𝐲1𝑖 , 𝒚2𝑖} where 𝐲1𝑖 is the target class label and 𝐲2𝑖

defines ground truth box coordinates.

• 𝐽 significantly reduces low-quality predictions and eliminates

the need for output reductions, e.g., by using NMS.

DETR



• Vision Transformer (ViT) as backbone.

• Novel collaborative hybrid assignments training scheme to

learn more efficient and effective DETR-based detectors

from versatile label assignment manners.

Co-DETR



Co-DETR

Co-DETR architecture [ZON2023].



• Real-Time DEtection TRansformer (RT-DETR) extends

DETR to the real-time detection scenario and achieves

state-of-the-art performance.

• Efficient hybrid encoder that expeditiously processes

multiscale features.

• Uncertainty-minimal query selection that improves the

quality of initial object queries.

RT-DETR



RT-DETR

RT-DETR architecture [ZHA2024].



Object detector speedup

• Fine-tuning a pretrained model on a new domain (e.g.,

boat/bicycle detection), instead of training from scratch

usually yields better results

• Tiny versions of the proposed detectors (e.g., Tiny

YOLO) can increase the detection speed (but at the cost

of accuracy). Training datasets created by AUTH



• Reducing the input image size can also increase the

detection speed.

• However, this can significantly impact the accuracy

when detecting very small objects (which is the case for

drone shooting).

Object detector speedup



• We evaluated the faster detector (YOLO) on an GPU

accelerated embedded system (NVIDIA TX2).

• Adjusting the input image size allows throughput increase.

• Detection with satisfactory accuracy is not real-time.

Object detector speedup



Object Localization 

Performance Metrics

• Intersection over Union (IoU):

𝐽(𝒜, ℬ) =
|𝒜∩ℬ|

|𝒜∪ℬ|
.

• 𝒜, ℬ: estimated, ground truth ROIs (sets, bounding boxes).

• |𝒜|: set cardinality (area counted in pixels).

• Also called Jaccard Similarity Coefficient or Overlap

Score.



Object Localization 

Performance Metrics

Object localization performance: a) 𝐽 𝒜, ℬ = 0.67; b) 𝐽 𝒜, ℬ = 0.27. 



Object Detection 
Performance Metrics

• Let us have 𝑁𝑡 test images. Object detection consists of:

• Object classification

• Performance measured by, e.g., top5error.

• Object localization

• find object ROI (bounding box) parameters [𝑥, 𝑦, ℎ, 𝑤]

through (CNN) regression.

• Performance measured by the Jaccard similarity

coefficient.



Object Detection 
Performance Metrics
Top-5 Classification Error:

• Given the ground truth object class label 𝒞𝑖 and top 5

predicted class labels 𝒞𝑖1, … , 𝒞𝑖5 the prediction is correct, if

𝒞𝑖𝑗 = 𝒞𝑖 , 𝑗 = 1, … , 5. The error of a single prediction is:

𝑒𝐶𝐿𝑆 𝒞𝑖𝑗 , 𝒞𝑖 = ቊ
1, 𝒞𝑖𝑗 ≠ 𝒞𝑖 , ∀𝑗 ∈ [1, 5]

0, otherwise.



Object Detection 
Performance Metrics
• The top-5 error is the fraction of 𝑁𝑡 test images on which the

prediction is wrong:

𝑡𝑜𝑝5𝑒𝑟𝑟𝑜𝑟𝐶𝐿𝑆 =
1

𝑁𝑡

෍

𝑖=1

𝑁𝑡

min
𝑗

𝑒𝐶𝐿𝑆 𝒞𝑖𝑗 , 𝒞𝑖 , 𝑗 = 1, … , 5.



Object Detection 
Performance Metrics

AlexNet ZFNet GoogLeNet
(Inception v1)

ResNet-192 TRIMPS SE-Net

(T
o

p
-5

)

Object detection performance history.



Object Detection 

Performance Metrics

• Object detection on images 𝑖 = 1, … , 𝑁𝑡:

bounding boxes 𝒜𝑖𝑗 and confidence scores 𝑠𝑖𝑗 .

• If 𝒜𝑖𝑗 is matched to a ground truth box ℬ𝑖𝑘:

𝐽(𝒜𝑖𝑗 , ℬ𝑖𝑘) > 𝑇(ℬ𝑖𝑘),      then 𝑧𝑖𝑗 = 1.

• The threshold 𝑇(ℬ𝑖𝑘) depends on the box size:

𝑇(ℬ𝑖𝑘) = min(0.5, ℎ𝑤/(ℎ + 1)(𝑤 + 1)).



Object Detection 

Performance Metrics

For 𝑀 ground truth object ROIs on all 𝑁𝑡 images:

• Let 𝑛𝑖𝑗 = 1 for a successful classification at confidence

threshold 𝑡 (𝑠𝑖𝑗 ≥ 𝑡):

• Recall, Precision definitions (modified):

𝑟(𝑡) =
σ𝑖𝑗 𝑛𝑖𝑗𝑧𝑖𝑗

𝑀
,

𝑝(𝑡) =
σ𝑖𝑗 𝑛𝑖𝑗𝑧𝑖𝑗

σ𝑖𝑗 𝑛𝑖𝑗
.



Object Detection 

Performance Metrics

Mean Average Precision (mAP):

• It is calculated over 𝑁 levels of confidence threshold

𝑡𝑛, 𝑛 = 1, … , 𝑁:

𝑚𝐴𝑃 =
1

𝑁
Σ𝑛 𝑝(𝑡𝑛).



Object Detection 
Performance Metrics

Box mAP on COCO test-dev [PWC].



Object Detection 
Performance Metrics

Top-5 Localization Error:

For each test image 𝑖 = 1, … , 𝑁𝑡 , let us have:

• a pair of ground truth a) label 𝒞𝑖 and b) bounding box 𝐵𝑖𝑘 ,

• a set of classification/localization predictions 𝒞𝑖𝑗 , 𝒜𝑖𝑗 𝑗=1

5
of

class labels 𝒞𝑖𝑗 with corresponding bounding boxes 𝒜𝑖𝑗.



Object Detection 
Performance Metrics
Top-5 Localization Error definition:

𝑒𝐿𝑂𝐶(𝒜𝑖𝑗 , ℬ𝑖𝑘) = ൝
1, 𝐽(𝒜𝑖𝑗 , ℬ𝑖𝑘) ≤ 0.5

0, 𝐽(𝒜𝑖𝑗 , ℬ𝑖𝑘) > 0.5
, 

𝑡𝑜𝑝5𝑒𝑟𝑟𝑜𝑟𝐿𝑂𝐶 =
1

𝑁𝑡

෍

𝑖=1

𝑁𝑡

min
𝑗

𝑒𝐿𝑂𝐶(𝒜𝑖𝑗 , ℬ𝑖𝑘) , 𝑗 = 1, … , 5.



Object Detection 

Performance Metrics

• False Positive (FP) vs

True positive (TP) plots,

as a function of detection

threshold e.g., for various

training stages.

• The closer the curve is to

the upper left corner, the

better.



Real-Time Object 

Detectors 

Real time object detectors comparison on COCO dataset  [WAN2024].



Face detection examples



Face detection examples



Face detection examples



Object Detection for UAV sports 

cinematography

Bicycle detection.



Object Detection for UAV sports 

cinematography

Bicycle detection.



Object Detection for UAV sports 

cinematography

Football player detection.



Object Detection for UAV sports 

cinematography

Boat detection.



Object Detection for UAV sports 

cinematography

Parkour athlete detection.



Object Detection for UAV powerline 

inspection

Insulator, dumper & tower detection.
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Forest Fire Detection

Real Time Detection Transformer (RT-DETR) for forest fire detection.



152

Pipe Defect Detection

DETR pipe defect detection.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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