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Introduction

Large Language Models (LLMs) are machine learning models

equipped to handle Natural Language Processing (NLP) use

cases.

In contrast to traditional NLP algorithms state of the art LLMs

have an infinite reference window because of the Transformers

based architecture they use.
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Introduction

• In theory, transformers have an infinite reference window.

4

Hypothetical reference window of RNNs, LSTMs and Transformers.



Introduction

The main NLP tasks handled by LLMs are [YAN2023] :

• Natural Language Understanding (NLU). Uses

generalization of the LLMs on out of distribution data or cases

with few training data. Taks of NLU include:
• text categorization

• content analysis

• sentiment analysis

• Knowledge-intensive tasks. Tasks requiring domain specific

expertise or general world knowledge.
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Introduction

The main NLP tasks handled by LLMs are [YAN2023] :

• Natural Language Generation (NLG). Creation of coherent,

contextually relevant and high-quality text. Includes question

answering, text summarization, machine translation, and

chatbots.

• Reasoning ability. Perform decision making and problem

solving in different contexts.
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Introduction

State of the art LLMs are

categorized into three types

[YAN2023]:

• Encoder-only LLMs

• Decoder-only LLMs

• Encoder-Decoder LLMs
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The evolutionary tree of modern LLMs traces the 
development of language models in recent years [YAN2023].
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LLM Building Blocks

LLM Building Blocks [AJI2023]:

• Tokenization: Text compression in order to minimize the size

of the encoded token while retaining the ability to represent

text sequences. Byte Pair Encoding (BPE) and WordPiece

are the main algorithms used.

• Embedding: Representation of tokens to vectors capturing

the semantic meaning in high-dimensional space. The

embeddings are processed by the NN and are learned during

the training.
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LLM Building Blocks

• Attention: Self attention mechanism used in Transformers

assigns different weights to input tokens capturing long-range

dependencies by focusing on the relevant information.

• Pre-Training: LLM unsupervised or self-supervised

training on large datasets. Allows fine-tuning on smaller task-

specific labeled dataset.

• Transfer Learning allows LLM fine-tuning on smaller task-

specific dataset to achieve high-performance.

10



LLM Building Blocks

Tokenization [PHU2022]:

A tokenizer breaks the unstructured data of text and creates

discrete elements of chucks of information. The raw text is

converted to a sequence of integers according to a vocabulary

through an iterative process, such as the Byte Pair Encoding (BPE).

• First step in language modeling

• Applied on the corpus 𝒞 to obtain tokens.

• The tokens are used to create the vocabulary 𝒱, which is the set

of unique tokens in the corpus.
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LLM Building Blocks

Byte-Pair Encoding (BPE) tokenization [PHU2022]:
• Step 0: Define the alphabet set 𝒜 𝑎𝑖 of the 𝑁 characters in the

corpus and map them through an injective function to an initial

vocabulary set 𝒱0 consisting of all 256 bytes. New corpus

𝒞0 ≔ ℰ 𝑎𝑖 𝑖∈𝐼
where 𝐼 is the interval 0,… , 𝑁 − 1 .

• Step 1: Add the most frequent bigram (a pair of consecutive written

units such as letters, syllables, or words) 𝑏, 𝑏′ of the corpus 𝒞0 in the

set 𝒱0 as 𝑠 = 𝑏𝑏′ and replace every 𝑏, 𝑏′ with 𝑠 in 𝒞0. New corpus 𝒞1
and vocabulary set 𝒱1 = 𝒱0 ∪ 𝑏𝑏′ .

• Step 2: Repeat step 1 until the size of the vocabulary set 𝒱 is 𝑛𝑣.
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LLM Building Blocks

Word embedding [PHU2022]:

The embedding learns to represent each vocabulary element as

a vector in ℛ𝑑𝑚.

Input: 𝐗 ∈ ℛ𝐿 × 𝑛𝑣, token IDs

Output: 𝐗′ ∈ ℛ𝐿 ×𝑑𝑚, vector representations of the token.

Parameters: 𝐖𝐸 ∈ ℛ
𝑑𝑚×𝑛𝑣, the token embedding matrix.
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LLM Building Blocks

Word embedding:

• The vocabulary 𝒱 is one-hot encoded resulting in a set of

one-hot tokens σ 𝒱 ⊂ ℛ𝑛𝑣.

• The model takes as input parts of the training dataset of size 𝐿
called context window.

Using the vocabulary, the one-hot encoding and the context

window parameter a string 𝑆 of real text of 𝐿 𝑆 = 𝐿 forms to a

matrix 𝐗 ∈ ℛ𝐿 ×𝑛𝑣.

14



LLM Building Blocks

Word embedding:

The matrix 𝐗 ∈ ℛ𝐿 ×𝑛𝑣 is embedded to a smaller vector space

through a 𝑑𝑚 × 𝑛𝑣 projection matrix:

𝐗 → 𝐗′ = 𝐗𝐖𝐄
𝑇 , 𝐖𝐸: ℛ

𝑛𝑣 ⟶ℛ𝑑𝑚

In unembedding, a 𝑛𝑣 × 𝑑𝑚 projection matrix projects the

output of the model on ℛ𝑛𝑣:

𝐗′ → 𝐗 = 𝐗′𝐖𝐔
𝑇 , 𝐖𝑈: ℛ

𝑑𝑚 ⟶ℛ𝑛𝑣
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LLM Building Blocks

Attention:

Computes a single masked self- or cross- attention head.

Input: Vector representation of primary sequence 𝐗′ ∈ ℝ𝐿×𝑑 and

context sequence 𝐘′ ∈ ℝ𝐿′×𝑑.

Output: 𝐗′′ ∈ ℝ𝐿×𝑑𝑜𝑢𝑡updated representations of tokens in 𝐗′
combining information from tokens in 𝐘′.
Parameters: Consisting of:

𝐖𝑄 ∈ ℝ
𝑑𝑚×𝑑𝑘 , 𝐛𝑄 ∈ ℝ

𝑑𝑘

𝐖𝐾 ∈ ℝ
𝑑𝑚×𝑑𝑘 , 𝐛𝐾 ∈ ℝ

𝑑𝑘

𝐖𝑉 ∈ ℝ
𝑑𝑚×𝑑𝑜𝑢𝑡 , 𝐛𝑉 ∈ ℝ

𝑑𝑜𝑢𝑡

Hyperparameters: Mask of dimensions 𝐿 × 𝐿′.
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LLM Building Blocks

Attention:

Step 1: Compute Query 𝐐 ∈ ℝ𝐿×𝑑𝑘, Key 𝐊 ∈ ℝ𝐿′×𝑑𝑘 and Value

𝐕 ∈ ℝ𝐿′×𝑑𝑜𝑢𝑡 matrices

𝐐 = 𝐗′𝐖𝑄 + 𝟏𝐿×1𝐛𝑄
𝐊 = 𝐘′𝐖𝐾 + 𝟏𝐿′×1𝐛𝐾
𝐕 = 𝐘′𝐖𝑉 + 𝟏𝐿′×1𝐛𝑉

Step 2: Calculate the scores 𝐒 ∈ ℝ𝐿×𝐿′: 𝐒 = 𝐐𝐊𝐓

Step 3: Apply the Mask

Step 4: Calculate the attention: 𝐗′′ = softmax 𝐒/ 𝑑𝑘 𝐕.

Step 5: For Multi-head attention the 𝐗′′ results from the linear

projection of the 𝐗𝑖
′′ concatenation: 𝐗′′ = 𝐗1

′′, … , 𝐗𝐻
′′ 𝐖𝟎
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LLM Building Blocks

Attention:

State of the art LLMs are based upon

the Transformer architecture.

• The basic building block of a

Transformer architecture is the

multi-head scaled dot-product

attention unit.

• The remaining blocks of the overall

architecture consist of normalization

and point-wise, fully connected

layers.

18Transformer architecture [VAS2017].



LLM Building Blocks

Attention:

Transformer models usually consist of an encoder-decoder

architecture, with several encoder/decoder layers stacked on top

of each other.

• The Encoder consists of two sub-layers: a multi-head self

attention module and a position-wise fully connected feed-

forward network.

• The Decoder consists of three sub-layers: a multi-head self

attention module, a position-wise fully connected feed-

forward network and a multi-head cross-attention module.
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LLM Building Blocks

Multi-head Attention:

• Counteracts the reduced effective resolution due to averaging

attention-weighted positions in single attention.

• Multi-head attention provides multiple low-scale featured map

compared to a single map obtained by single attention.

• Multiple attention head are analogous to multiple kernels in a

single layer in a CNN.
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LLM Building Blocks

Multi-head Attention:

• Jointly attend information from different representation

subspaces at different positions capturing richer

interpretations (various patterns and dependencies).

• Redundancy is introduced making the model more resilient to

noise or errors in individual heads (robustness).
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Encoder-only LLMs

Encoder-only LLMs: BERT (Google),
RoBERTa (META) and DeBERTa
(Microsoft).

BERT: A bidirectional transformer trained
on the task of mask language modeling. It
is a Discriminative model.

Mask modeling [PHU2022] : Given a text
the goal is to correctly recover the
masked-out tokens. Each input is replaced
with a mask_token with probability 𝑝𝑚𝑎𝑠𝑘.

23

Transformer encoder [VAS2017].



Encoder-only LLMs

Input: 𝐗 ∈ ℛ𝐿 × 𝑛𝑣, token IDs.

Output: 𝐏 ∈ 0,1 𝐿×𝑛𝑣 , each column denotes a probability

distribution over the vocabulary.

LLM parameter vector 𝛉 containing: 

• Token embedding/unembedding and positional matrices.

• Multi-head attention parameters for the 𝑙th layer.

• Layer-normalization parameters

• MLP weights parameters

• Final projection and layer-norm parameters.

Hyperparameters: 𝐷, 𝐿, 𝐻, 𝐿𝑚𝑙𝑝, 𝑑𝑚, 𝑑𝑚𝑙𝑝, 𝑑𝑓 ∈ ℕ.
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Encoder-only LLMs

Encoder-only model overview [PHU2022] :

Given a matrix 𝐗 ∈ ℝ𝐿×𝑛𝑣 of one-hot tokens, the full transformer

Encoder-only model 𝒯 first acts on 𝐗 via the embedding, then

via the encoder structure and then finally via unembedding:

𝒯: ℛ𝐿×𝑛𝑣
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

ℛ𝐿×𝑑𝑚
𝐸𝑛𝑐𝑜𝑑𝑒𝑟

ℛ𝐿×𝑑𝑚
GELU WfX

′′+bf1
T

ℛ𝐿×𝑑𝑚
𝑈𝑛𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

ℛ𝐿×𝑛𝑣
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Encoder-only LLMs

Encoder stack [PHU2022]:

• Let 𝐻𝑖 𝑖=1
𝐷 be a set of attention multi-heads, each 𝐻𝑖 is a set of

attention heads ℎ𝑖 𝑖=1
𝐻 and let 𝑚𝑖 𝑖=1

𝐷 be a set of MLPs. Each

multi-head has the same number of heads and the same

dimensions and each MLP has 𝐿𝑚𝑙𝑝 layers.

• The encoder stack is a composition of 𝑛 blocks of

𝐵𝑖 𝐻𝑖 , 𝑚𝑖 𝑖=1
𝑛 building hierarchical text representations to capture

high level text features and dependencies:

ℛ𝑛×𝑑
𝐵1 𝐻1,𝑚1

ℛ𝑛×𝑑
𝐵2 𝐻2,𝑚2

…
𝐵𝐷−1 𝐻𝐷−1,𝑚𝐷−1

ℛ𝑛×𝑑
𝐵𝐷 𝐻𝐷,𝑚𝐷

ℛ𝑛×𝑑 .
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Encoder-only LLMs

Encoder stack stages [PHU2022]:

single attention 𝐻𝑖 , Feed Forward ( 𝐹𝐹 ) model, multi-layer

perceptron 𝑚𝑖:

𝐻𝑖: 𝐗
′′ = 𝐗′ + ෍

ℎ𝑗∈𝐻𝑖

ℎ𝑗 𝐗
′, 𝑀𝑎𝑠𝑘 ≡ 1 ,

𝐹𝐹: 𝐗′′′ = 𝐗′′ +𝑚𝑖 𝐗
′′ ,

𝑚𝑖 𝐗
′′ = 𝐖𝑚𝑙𝑝𝟐GELU 𝐖𝑚𝑙𝑝1𝐗

′′ + 𝐛𝑚𝑙𝑝1𝟏
𝑇 + 𝐛𝑚𝑙𝑝2𝟏

𝑇 ,

𝐵𝑖 𝐗
′ = 𝐗′′ +𝑚 𝐗′ + ෍

ℎ𝑗∈𝐻𝑖

ℎ𝑗 𝐗
′, 𝑀𝑎𝑠𝑘 ≡ 1 .
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Encoder-only LLMs

Bidirectional Encoder:

• Encoder-only LLMs use no masking hence the self-

attention implementation is ℎ 𝐗,Mask ≡ 1 .

• As a result, given a sequence of token representations all

tokens are treated as context X = Z.

28



BERT Training

Bidirectional Encoder Representations from Transformers

(BERT) architecture:

• Multi-layer bidirectional Transformer encoder.

• BERT unsupervised pre-training consists of two tasks:

• Mask Language Model finds the masked/hidden words by

looking at their context.

• Next Sentence Prediction predicts the appearance order

two input sentences A, B.

29



30

Next sentence prediction.Masked Language Model.

BERT pre-training

BERT Training



Bert Fine-tuning: supervised training on a specific 

task.

31

BERT Training
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Leaderboards

BERT accuracy in different tasks.

BERT Training
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Decoder-only LLMs

Decoder-only LLMs: GPTs (1, 2, 3, Chat, 4 by

OPEN-AI), LaMDA, PaLM and Bard (by

Google) and OPT, LLaMA (by Meta)

Autoregressive language modeling

[PHU2022] : Given an incomplete sentence the

goal is to predict the next token. It is a

Generative model.

Differences: In contrast to BERTs bidirectional

attention Decoder-only LLMs use unidirectional

attention and apply in a different order the

layer-normalization.
34

GPT architecture [RAD2018].



Decoder-only LLMs

Input: 𝐗 ∈ ℛ𝐿 × 𝑛𝑣, token IDs.

Output: 𝐏 ∈ 0,1 𝐿×𝑛𝑣, where the 𝑡-th column of 𝐏 represents the

probability ෡𝐏𝜃 𝐗 𝐿 + 1 |𝐗[0: 𝐿] .
Parameter vector 𝛉 comprises:

• Token embedding/unembedding and positional matrices.

• Multi-head attention parameters for the 𝑙th layer.

• Layer-normalization parameters

• MLP weights parameters

• Final layer-norm parameters.

Hyperparameters: 𝐷, 𝐿, 𝐻, 𝑑𝑒 , 𝑑𝑚𝑙𝑝 ∈ ℕ.
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Decoder-only LLMs

Decoder-only model overview [PHU2022]:

Given a matrix 𝐗 ∈ ℝ𝐿×𝑛𝑣 of one-hot tokens, the full transformer

Decoder-only model 𝒯 first acts on 𝐗 via the embedding, then

via the decoder structure and then finally via unembedding:

𝒯: ℛ𝐿×𝑛𝑣
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

ℛ𝐿×𝑑
𝐷𝑒𝑐𝑜𝑑𝑒𝑟

ℛ𝐿×𝑑
𝑈𝑛𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

ℛ𝐿×𝑛𝑣 .
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Decoder-only LLMs

Decoder stack [PHU2022] :

Let 𝐻𝑖 𝑖=1
𝐷 be a set of attention multi-heads, each 𝐻𝑖 is a set of

attention heads ℎ𝑖 𝑖=1
𝐻 and let 𝑚𝑖 𝑖=1

𝐷 be a set of MLPs. Each multi-

head has the same number of heads and the same dimensions and

each MLP has 𝐿𝑚𝑙𝑝 layers. The Decoder stack is a composition of 𝑛

blocks of 𝐵𝑖 𝐻𝑖 , 𝑚𝑖 𝑖=1
𝑛 . The multiple stacked decoder blocks build

hierarchical representations to capture high level features and

dependencies.

ℛ𝑛×𝑑
𝐵1 𝐻1,𝑚1

ℛ𝑛×𝑑
𝐵2 𝐻2,𝑚2

…
𝐵𝐷−1 𝐻𝐷−1,𝑚𝐷−1

ℛ𝑛×𝑑
𝐵𝐷 𝐻𝐷,𝑚𝐷

ℛ𝑛×𝑑 .
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Decoder-only LLMs

Decoder stack [PHU2022].

Single attention model 𝐻𝑖, the Feed Forward model 𝐹𝐹, multi-

layer perceptron 𝑚𝑖:

𝐻𝑖: 𝐗′′ = 𝐗′ + ෍

ℎ𝑗∈𝐻𝑖

ℎ𝑗 𝐗
′, 𝑀𝑎𝑠𝑘 𝑡, 𝑡; ≡ 𝑡 ≤ 𝑡′ ,

𝐹𝐹: 𝐗′′′ = 𝐗′′ +𝑚𝑖 𝐗
′′ ,

𝑚𝑖 𝐗
′′ = 𝐖𝑚𝑙𝑝𝟐GELU 𝐖𝑚𝑙𝑝1𝐗

′′ + 𝐛𝑚𝑙𝑝11
T + 𝐛𝑚𝑙𝑝2𝟏

𝑇 ,

𝐵𝑖 𝐗
′ = 𝐗′′ +𝑚 𝐗′ + ෍

ℎ𝑗∈𝐻𝑖

ℎ𝑗 𝐗
′, 𝑀𝑎𝑠𝑘 𝑡, 𝑡; ≡ 𝑡 ≤ 𝑡′ .

38



Decoder-only LLMs

Decoder autoregressive masking [PHU2022]:

The Decoder-only LLMs implement unidirectional attention

instead of bidirectional. Hence in self attention for each token

only the preceding tokens are treated as context. The applied

mask is an 𝐿 × 𝐿 matrix:

𝐌 =
0 −∞ −∞
0 0 −∞
0 0 0

, 𝑚𝑖𝑗= ቊ
0, 𝑖 ≤ 𝑗
−∞, 𝑒𝑙𝑠𝑒

.

As a result of the unidirectional attention this causal

autoregressive version can be used only for online prediction.

39



GPT Training stages

Unsupervised Pre-training stage:

• Training dataset: BooksCorpus [ZHU2015].

• Objective: Standard language modeling [RAD2018].

Fine-tuning stage:

• Training dataset: a labelled dataset corresponding to the fine-

tuning task

• Objective: GPT model parameters adaptation to the

supervised target task and language modeling [RAD2018].

40



In-context Learning

• Zero-shot learning: GPT model input is: a) a task description

b) prompt.

• Example: Translate English to French (task description),

cheese (prompt).

• One-shot learning: GPT model input is: a) task description

and b) a single task example (from the training dataset).

• Few-shot learning: GPT model input is: a) task description

and b) few task examples (from the training dataset).

41



ChatGPT Fine-Tuning

A pre-trained 3rd generation GPT

DNN for language tasks is acquired.

• Step 1: Fine-tune the pre-trained

GPT DNN on a labelled dataset

[OPE2023].

42ChatGPT fine-tuning (step 1) [OPE2023].



ChatGPT Fine-Tuning

• Step 2: A reward model is trained

with a scalar output.

• The output quantifies how good

was the response of the fine-tuned

GPT to a given prompt.

43

Step 2 of ChatGPT fine-tuning: reward model training [OPE2023].



ChatGPT Fine-Tuning

ChatGPT reward model:

• It is trained on a dataset oof responses returned by the fine-

tuned GPT-3 for a given prompt [OPE2023].

• For each prompt the fine-tuned GPT outputs four responses

according to a decoding strategy, sampling from responses

with the highest probability.

• The responses are labelled by determining a reward

proportional to the quality of each output.

• Non toxic and factual responses are given a higher reward.

44



ChatGPT Fine-Tuning

Reinforcement Learning with
Human Feedback (RLHF).

• Step 3: The On-policy Proximal Policy
Optimization (PPO) reinforcement
learning algorithm is fine-tuned to
optimize the scalar reward output of
the reward model [OPE2023].

45
Step 3 of chatGPT fine-tuning using RLHF [OPE2023].



ChatGPT Reasoning

• Despite performing well on certain reasoning tasks, ChatGPT

is unreliable, as its responses are inconsistent [BAN2023].

• Its reasoning evaluation was performed via question

answering.

• ChatGPT has acceptable performance in deductive.

Abductive, temporal, causal and analogical reasoning

[BAN2023].

• ChatGPT has weakness in inductive, spatial, mathematical,

non-textual semantic and multi-hop reasoning [BAN2023].
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ChatGPT Reasoning

47

Categories Testset Results

Deductive ENTAILMENTBANK bAbI 28/30 

Inductive CLUTRR 13/30

Abductive αNLI 26/30

Mathematical Math 13/30

Temporal Timedial (formatted) 26/30

Spatial

SpartQA
StepGame (hard)

StepGame (diagonal)
StepGame (clock-direction)

12/30
7/30

11/20
5/20

Common sense
CommonsenseQA

Pep-3k (Hard)
27/30
28/30

Causal E-Care 24/30

Multi-hop hotpotQA 8/30

Analogical Letter string analogy 30/30

ChatGPT results on 
reasoning tasks 

[BAN2023].



ChatGPT Questionmarks

• Does ChatGPT have access to external resources?

• Knowledge graphs? Algebraic computations (Symbolic

Algebra)?

• If not, what is its knowledge storage capacity?

• Does ChatGPT have explicit reasoning mechanisms?

• Texts contain many examples of reasoning.

• Reasoning as a result of learning-by-examples?

• Implicit/approximate reasoning?

48
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Encoder – Decoder LLMs

Encoder-Decoder LLMs: Mainly T5,

Flan T5, UL2 and Flan UL2 (Google).

This model is used for sequence-to-

sequence tasks, such as machine

translation.

50

Transformer architecture [VAS2017].



Encoder-Decoder LLMs
Input: 𝐗, 𝐘 ∈ ℛ𝐿 × 𝑛𝑣, token IDs.

Output: 𝐏 ∈ 0,1 𝐿×𝑛𝑣, where the t-th column of 𝐏 represents the

probability ෡𝐏𝜃 𝐗 𝐿 + 1 |𝐗[0: 𝐿]
Parameter vector 𝛉 comprises:

• Token embedding/unembedding and positional matrices.

• Encoder: Multi-head attention parameters for each 𝑙 layer,

Layer-norm parameters and MLP weights parameters

• Decoder: Multi-head attention parameters for each 𝑙 layer,

Multi-head cross attention parameters for each 𝑙 layer, Layer-

norm parameters and MLP weights parameters.

Hyperparameters: 𝐷𝑒𝑛𝑐 , 𝐷𝑑𝑒𝑐 , 𝐿𝑒𝑛𝑐 , 𝐿𝑑𝑒𝑐 , 𝐻, 𝑑𝑒 , 𝑑𝑚𝑙𝑝 ∈ ℕ.
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Encoder-Decoder LLMs

Encoder-Decoder model overview [PHU2022]:

Given two matrices 𝐗 ∈ ℝ𝐿𝑒𝑛𝑐×𝑛𝑣 , 𝐘 ∈ ℝ𝐿𝑑𝑒𝑐×𝑛𝑣of one-hot tokens, the full

transformer model 𝒯 will be defined as first acting on the 𝐗 context

sequence via bidirectional multi-head attention, then on the 𝐘 primary

sequence first via unidirectional multi-head attention and then combined

with output of the encoder via multi-head cross attention.

𝒯 = ൞
𝐗 ∈ ℛ𝐿𝑒𝑛𝑐×𝑛𝑣𝑜𝑐𝑎𝑏

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
ℛ𝐿𝑒𝑛𝑐×𝑑

𝐸𝑛𝑐𝑜𝑑𝑒𝑟
ℛ𝐿𝑒𝑛𝑐×𝑑

𝐘 ∈ ℛ𝐿𝑑𝑒𝑐×𝑛𝑣
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

ℛ𝐿𝑑𝑒𝑐×𝑑

𝐷𝑒𝑐𝑜𝑑𝑒𝑟+
𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡

ℛ𝐿𝑑𝑒𝑐×𝑑
𝑈𝑛𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

ℛ𝐿𝑑𝑒𝑐×𝑛𝑣
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Encoder-Decoder LLMs

Encoder:

The encoder is the same one as the one used in the Encoder-only

LLMs with the difference than in the MLP instead of GELU

activation the ReLU is used.

ℛ𝐿𝑒𝑛𝑐×𝑑
𝐵1 𝐻1,𝑚1

ℛ𝐿𝑒𝑛𝑐×𝑑
𝐵2 𝐻2,𝑚2

…
𝐵𝐷𝑒𝑛𝑐 𝐻𝐷𝑒𝑛𝑐 ,𝑚𝐷𝑒𝑛𝑐

ℛ𝐿𝑒𝑛𝑐×𝑑 .
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Encoder-Decoder LLMs

Decoder:

The decoder in addition to the structure defined in the Decoder-

only LLMs uses an extra multi-head cross attention and in the

MLP instead of GELU activation the ReLU is used.

ℛ𝐿𝑑𝑒𝑐×𝑑
𝐵1 𝐻1,𝑚1

ℛ𝐿𝑑𝑒𝑐×𝑑
𝐵2 𝐻2,𝑚2

…
𝐵𝐷𝑑𝑒𝑐 𝐻𝐷𝑑𝑒𝑐 ,𝑚𝐷𝑑𝑒𝑐

ℛ𝐿𝑑𝑒𝑐×𝑑 .
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T5-Training

• T5 pre-training objective:

• Mask Language Model finds the masked/hidden words by

looking at their context. The difference from BERT is that

multiple tokens are replaced by a single keyword.

• The result is a trained LLM that inputs text and outputs

text, where the targets are a sequence, unlike BERT.

• T5 fine-training tasks:

• Language Translation, Summarization, Sentence

Similarity, etc.
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T5-Training
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Schematic of the training objective [RAF2020].



T5-Training

• T5 hyper-parameter tuning:

• Pre-training style: Autoregressive style language modeling,

BERT style Masked Language model objective and

Deshuffling denoising objective.

• Corruption scheme: Three strategies were used masking a

random word, a span and dropping a word from input.

• Corruption rate: Same performance from all rates tested

(15% slightly better).

• Corruption length: Different corruption span length were

tested. Model performance degrades as length increases.
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T5-Training
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Flow chart of the experimentation on unsupervised 

objectives [RAF2020].



Large Language Models

• Introduction

• LLM Building Blocks

• Encoder-only LLMs

• Decoder-only LLMs

• Encoder – Decoder LLMs

• LLM tasks
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LLM tasks

Word embeddings and downstream NLP tasks.

60

Text Word/sentence
embeddings

Downstream NLP task,

e.g., text 
sentiment analysis

Text 
sentiment 

classification



LLM tasks

Voice assistants are complex systems

comprising:

• Speech recognition

• Speech to text

• Language analysis

• Dialogue processing

• Information retrieval

• Text to speech output.
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LLM tasks

Question Answering.

• What is the weather like today?

• Who is Noam Chomsky?

• How many hours are there in a

year?

• Who won the 2022 US

elections?

62

IBM’s Watson competed against Jeopardy! champions.



LLM tasks
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Machine Translation.



LLM tasks

Text summarization.

• Create an abstract of an

article.

• Extract key phrases from

large piece of text.

• Simplify and condense long

documents.
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LLM tasks

Information Extraction.

Extraction of meaning from unstructured data.

65

“AP: 45 yo m w/ESRD on 
HD asthma p/w significant 
hyperkaliemia”

Attributes Text

Age 45 years old

Sex Male

Condition Hypertensive disease

Symptom Hyperkaliemia



LLM tasks

66

Text sentiment/emotion analysis.

• Text sentiment definition.

• Extract text polarity.

• Psychological theories on human

affect/emotion/sentiment.

• Useful for marketing and more.



LLM tasks
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Association strengths 

between language models 

and downstream tasks 

[LIP2022].



LLM tasks
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Summary of the features of 

the most popular LLMs 

[LIP2022].
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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