

Data Clustering

P. Papageorgiou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.5.3

Outline

- Clustering Definitions
- Distance/similarity measures
- Clustering categories
 - Exhaustive Clustering
 - Sequential Clustering
 - Clustering by optimization
 - Vector quantization
 - · Graph-based clustering.

- Data clustering: special case of unsupervised learning.
 - class labelling of the training patterns is not available.
- Goal: to reveal the *geometrical data organization* into *sensible clusters*, in order to:
 - discover data (dis)similarities.
 - discover geometrical cluster structure.
- Applications:
 - · life sciences, earth sciences and engineering.

Face clustering

Problem statement:

- To cluster facial images
- Input: many facial ROIs
- Output: facial image clusters.
- Unsupervised learning
 Applications: Biometrics Surveillance applications Video analytics.

Face Clustering

Problem statement:

- To cluster a set of facial ROIs
- Input: a set of face image ROIs

- Applications
- Cluster actor images, even if they belong to different shots.
- Cluster various views of the same actor.
- Generate the cast of a movie.
- Semilation face recognition.

- Clustering criterion in image data:
 - Color similarity: e.g., all facial image regions are pink.
 - **Texture similarity**: tree foliage regions have fine unstructured visual texture.
 - Edge similarity: building images have vertical/horizontal edges.
 - Intensity similarity: black people have dark facial images.

- Outliers: black albinos have brighter facial images.
- Clusters may consist of *sub-clusters*:
 - Caucasian and black facial images belong to 'facial image' cluster.

- Clustering criterions greatly influence clustering results.
- Clustering is a key human cognitive ability:
 - Clusters are characterized by the common data attributes.
 - Cluster labeling leads to logical concepts.

Data clustering input: data samples described by feature vectors, without neither labels nor any information about the specific desired output:

$$\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N.$$

Typically: $\mathbf{x} \in \mathbb{R}^n$. Data clustering output:

- Sample data set $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$ partition to clusters $\mathcal{C}_i, i = 1, ..., m$.
 - Cluster samples are similar and dissimilar to the samples of other clusters based on similarity/distance metric ||.||.
 - Number of clusters *m* may be unknown.

Artificial Intelligence & Information Analysis Lab

Feature types

- **Real-valued feature vectors**: $\mathbf{x} \in \mathbb{R}^n$.
- Finite discrete set feature vectors: $\mathbf{x} \in \mathcal{F}^n$.
- Discrete set cardinality k: $\mathcal{F} = \{0, 1, ..., k 1\}$.
- Special case:
 - binary set k = 2, $\mathcal{F} = \{0,1\}$.

Feature types

- Labeled (nominal) features: $\mathcal{F} = \{f_0, f_1, ..., f_{k-1}\}.$
- Feature values f_i , i = 0, ..., k 1 may have symbolic meaning (symbolic labels):
 - Facial image labels $\mathcal{F} = \{ 'John', 'Alice', ..., 'Vladimir' \}$.
- Nominal feature vectors: $\mathbf{x} \in \mathcal{F}_1 \times \mathcal{F}_2 \times \cdots \times \mathcal{F}_n$.
 - Feature vector $\mathbf{x} \in \mathcal{F}_1 \times \mathcal{F}_2$ for describing apples:
 - $\mathcal{F}_1 = \{$ 'small', 'medium', 'big' $\}$,
 - $\mathcal{F}_2 = \{$ 'red', 'yellow', 'green' $\}$.

Feature types

- Feature categorization:
 - Nominal features: \mathcal{F} is a set.
 - No feature value ordering is possible.
 - Ordinal features: e.g., $\mathcal{F} = \mathbb{R}$.
 - Feature values can be meaningfully ordered.
 - Angular features: $\mathcal{F} = [0, 2\pi]$.
 - Feature values are angles (or on a unit circle).
 - Interval-scaled: feature value difference is meaningful.
 - Ratio-scaled: feature value ratio is meaningful.

Clustering subtasks:

- *Feature selection*: Create a feature vector **x** with minimum information redundancy.
- Data similarity measurement: Quantify feature vector '(dis)similarity'.
- Clustering criterion: It quantifies clustering 'sensibility'.
 - Cost function optimization:
 - Maximize intra-class similarity and maximize inter-class dissimilarity.

Clustering subtasks:

- Choosing a clustering algorithm: to best unravel data structure.
- **Clustering validation**: verify the correctness of clustering results using appropriate tests.
- Clustering explainability: Interpretation clustering results.
- Concept creation: Cluster labeling to create logical 'concepts'.

VML

Clustering Applications

- Better data description:
 - Data set $\mathcal{D} = {\mathbf{x}_i}_{i=1}^N$, $\mathbf{x} \in \mathbb{R}^n$ cardinality N or data dimensionality n may be too large;
 - Clustering groups the data into $m \ll N$ clusters, providing much better data description.
- Data cluster visualization: clusters are well visualized if they are mapped on \mathbb{R}^2 .
- *Hypothesis generation*: Help forming and validating hypotheses on data structure.

Clustering Applications x_2 \mathcal{C}_1 , \mathcal{C}_2 . . C_3 x_1 Data cluster visualization. Artificial Intelligence &

Information Analysis Lab

Crisp/fuzzy Clustering

- Let \mathcal{D} be a feature data set: $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$.
- **Crisp clustering** is the partition of \mathcal{D} into m disjoint sets $\mathcal{C}_1, \ldots, \mathcal{C}_m$, satisfying the following conditions:
 - $\mathcal{C}_i \neq \emptyset$, $i = 1, \dots, m$,
 - $\cup_{i=1}^m \mathcal{C}_i = \mathcal{D}$,
 - $C_i \cap C_j = \emptyset$, $i \neq j$, i, j = 1, ..., m.
- Feature vectors in a cluster C_i are 'similar', while they are 'dissimilar' to the ones of other clusters C_j , $i \neq j$.

Artificial Intelligence & Information Analysis Lab

Crisp/fuzzy Clustering

- *Fuzzy clustering* of \mathcal{D} into m clusters:
 - For each sample x_i, i = 1, ..., N find m membership functions u_i:

$$u_{j}: \mathcal{D} \to [0,1], \quad j = 1, \dots, m.$$

$$\sum_{j=1}^{m} u_{j}(\mathbf{x}_{i}) = 1, \quad i = 1, \dots, N,$$

$$0 < \sum_{j=1}^{m} u_{j}(\mathbf{x}_{i}) < N, \quad j = 1, \dots, m$$

Crisp/fuzzy Clustering

- Each vector x belongs to more than one clusters simultaneously, which depends on the value of u_i in [0,1].
- Fuzzy membership values $u_j \rightarrow 1$: high cluster membership possibility.
- Fuzzy membership values $u_j \rightarrow 0$: low cluster membership possibility.
- Feature vector similarity: the membership function vector difference $|\mathbf{u}_k \mathbf{u}_n|$ for two feature vectors $\mathbf{x}_k, \mathbf{x}_n$ is small.

- Proximity or distance measures
- Similarity or dissimilarity measures.
- Distance between two feature points (feature vectors).
- Distance between a feature point and a feature point set.
- Distance between two feature point sets.

Dissimilarity measure (DM) d:

• a function $d: \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}$, satisfying:

$$\exists d_0 \in \mathbb{R}: -\infty < d_0 \le d(\mathbf{x}, \mathbf{y}) < +\infty, \forall \mathbf{x}, \mathbf{y} \in \mathcal{F}, d(\mathbf{x}, \mathbf{x}) = d_0, \forall \mathbf{x} \in \mathcal{F}, d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \mathcal{F}.$$

Typically: $d(\mathbf{x}, \mathbf{x}) = 0$.

- Also called distance measure for Euclidean spaces:
 - $\mathcal{F} = \mathbb{R}^n$.

Artificial Intelligence & Information Analysis Lab

lf:

- $d(\mathbf{x}, \mathbf{y}) = d_0$, if and only if $\mathbf{x} = \mathbf{y}$
- and triangular inequality holds:

$d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}), \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{F}.$

d is a *metric* or *norm*.

Weighted L_p metric between two real-valued feature points (vectors) $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} w_i |x_i - y_i|^p\right)^{1/p}$$

 $d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}.$

- $w_i \ge 0$: is weight coefficient.
- Unweighted L_p metric: $w_i = 1$, i = 1, ..., n.
- L_2 metric:

Mahalanobis distance:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \mathbf{A}(\mathbf{x} - \mathbf{y})}.$$

- A is a $n \times n$ symmetric, positive-definite matrix.
- Euclidean distance:

$$d(\mathbf{x},\mathbf{y}) = \sqrt{(\mathbf{x}-\mathbf{y})^T(\mathbf{x}-\mathbf{y})}.$$

• $\mathbf{A} = \mathbf{I}$.

• It is equal to the length of the straight line segment connecting points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

 \mathbf{x}_1

 x_2

Euclidean distance between two points.

 \mathbf{x}_2

 x_1

a) Euclidean equidistant points (circles);

b) Mahalanobis equidistant points (ellipses).

Artificial Intelligence & Information Analysis Lab

• Weighted L_1 *norm*:

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} w_i |x_i - y_i|.$$

Manhattan norm:

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|.$$

• L_{∞} norm:

$$d(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} |x_i - y_i|.$$

• L_{∞} norm is a special case of L_p norm for $p \rightarrow \infty$.

Discrete-Valued Vectors

- Vectors x with coordinates belonging to the finite set $\mathcal{F} =$ $\{0,1,\ldots,k-1\}, (k \text{ is a positive integer}).$
- There are exactly k^n vectors $\mathbf{x}, \mathbf{y} \in \mathcal{F}^n$.
- $k \times k$ contingency table:

 $A(\mathbf{x}, \mathbf{y}) = [a_{ij}] \quad i, j = 0, 1, ..., k - 1.$

• a_{ii} is the number of vectors x, y entries having values $i, j \in$ \mathcal{F} symbols, respectively. 30 formation Analysis Lab

Discrete-Valued Vectors

- Edit distance.
- Hamming distance:

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{k-1} \sum_{j=0, j\neq i}^{k-1} a_{ij}.$$

 Equal to the summation of all the off-diagonal elements of A, indicating the entries, where x and y differ.

Artificial Intelligence & Information Analysis Lab

• For k = 2 the Hamming distance is:

• L₁ distance:

 $d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i - y_i|.$

- Similarity measure (SM):
- a function $s: \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ such that:

 $\exists s_0 \in \mathbb{R}: -\infty < s(\mathbf{x}, \mathbf{y}) \leq s_0 < +\infty, \forall \mathbf{x}, \mathbf{y} \in \mathcal{F},$

 $s(\mathbf{x}, \mathbf{x}) = s_0, \forall x \in \mathcal{F},$ $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \mathcal{F}.$

• Typically, $s(\mathbf{x}, \mathbf{x}) = 1$.

lf:

- $s(\mathbf{x}, \mathbf{y}) = s_0$, if and only if $\mathbf{x} = \mathbf{y}$
- and:

 $s(\mathbf{x},\mathbf{y})s(\mathbf{y},\mathbf{z}) \leq [s(\mathbf{x},\mathbf{y}) + s(\mathbf{y},\mathbf{z})]s(\mathbf{x},\mathbf{z}),$

 $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{F}$

then s is a *metric SM*.

Similarity measures between two feature vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$:

• Inner vector product:

$$s(\mathbf{x},\mathbf{y}) = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i.$$

- If the vectors **x**, **y** are normalized to length $a: s \in [-a^2, a^2]$.
- Cosine similarity measure:

formation Analysi

$$s(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{||\mathbf{x}|| \, ||\mathbf{y}||}, \quad ||\mathbf{x}|| = \sqrt{\sum_{i=1}^n x_i^2}, ||\mathbf{y}|| = \sqrt{\sum_{i=1}^n y_i^2}.$$

Correlation coefficient:

$$r(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}_c^T \mathbf{y}_c}{||\mathbf{x}_c|| \, ||\mathbf{y}_c||},$$

- $r(\mathbf{x}, \mathbf{y}) \in [-1, 1].$
- Central difference vectors:

$$\mathbf{x}_{c} = [x_{1} - \bar{x}, ..., x_{n} - \bar{x}]^{T}, \mathbf{y}_{c} = [y_{1} - \bar{y}, ..., y_{l} - \bar{y}]^{T},$$

 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$

Fuzzy Similarity Measure between two vectors:

$$s(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^{n} s(x_i, y_i)\right)^{\frac{1}{q}}.$$

• Similarity between two real-valued variables x_i and y_i :

 $s(x_i, y_i) = \max(\min(1 - x_i, 1 - y_i), \min(x_i, y_i)).$

- Motivation:
 - Equivalence between two logic variables *a* and *b*:

 $(a \equiv b) = (\overline{a} \text{ AND } \overline{b}) \text{ OR } (a \text{ AND } b).$

• Fuzzy AND, OR, \bar{a} (NOT) operators: max, min, 1 - a.

Tanimoto similarity measure between two feature vectors $x, y \in \mathbb{R}^n$:

$$s(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{||\mathbf{x} - \mathbf{y}||^2} = \frac{\mathbf{x}^T \mathbf{y}}{||\mathbf{x}||^2 + ||\mathbf{y}||^2 - \mathbf{x}^T \mathbf{y}}.$$

- It is inversely proportional to the squared Euclidean distance divided by their inner product.
- Similarity measure:

$$s(\mathbf{x}, \mathbf{y}) = 1 - \frac{d_2(\mathbf{x}, \mathbf{y})}{||\mathbf{x}|| + ||\mathbf{y}||}.$$

Artificial In Maximum when $\mathbf{x} = \mathbf{y}$ and minimum when $\mathbf{x} = -\mathbf{y}$.

Tanimoto measure for discrete-valued vectors:

$$s(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{k-1} a_{ii}}{n_x + n_y - \sum_{i=1}^{k-1} \sum_{j=1}^{k-1} a_{ij}},$$
$$n_x = \sum_{i=1}^{k-1} \sum_{j=0}^{k-1} a_{ij}, n_y = \sum_{i=0}^{k-1} \sum_{j=1}^{k-1} a_{ij}.$$

- It takes into account all pairs of corresponding x and y coordinates, except when both $x_i = 0, y_i = 0$.
- Motivation: set Intersection over Union (IoU) for sets X, Y:

 $s = \frac{|\mathcal{X} \cap \mathcal{Y}|}{|\mathcal{X} \cup \mathcal{Y}|}.$

X•

 x_2

Distance between point and set (set center).

 x_1

Distance functions between a point and a set (cluster).

- Distance $d'(\mathbf{x}, \mathcal{C})$ between vector \mathbf{x} and cluster \mathcal{C} :
 - Distance to cluster center \mathbf{m} : $d'(\mathbf{x}, \mathcal{C}) = d(\mathbf{x}, \mathbf{m})$.
 - Max Distance function: $d'(\mathbf{x}, \mathcal{C}) = \max_{\mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$
 - Min Distance function: $d'(\mathbf{x}, C) = \min_{\mathbf{y} \in C} d(\mathbf{x}, \mathbf{y}).$
 - Average Distance function: $d'(\mathbf{x}, C) = \frac{1}{|C|} \sum_{\mathbf{y} \in C} d(\mathbf{x}, \mathbf{y})$
 - |C| : set C cardinality.

Cluster center is a representative vector of a data vector set:

• Mean vector:

Sensitive to outliers.

• Vector median:

 $\sum_{\mathbf{y}\in\mathcal{C}} d(\mathbf{m}_{v},\mathbf{y}) \leq \sum_{\mathbf{y}\in\mathcal{C}} d(\mathbf{z},\mathbf{y}), \, \mathbf{m}_{v}\in\mathcal{C}, \, \forall \mathbf{z}\in\mathcal{C}.$

Median center:

 $\operatorname{med}(d(\mathbf{m}_m, \mathbf{y})|\mathbf{y} \in \mathcal{C}) \leq \operatorname{med}(d(\mathbf{z}, \mathbf{y})|\mathbf{y} \in \mathcal{C}), \, \mathbf{m}_m \in \mathcal{C}, \, \forall \mathbf{z} \in \mathcal{C}.$

• med: *median* operator.

Data manifold representations:

• Hyperplane ⊞:

$$\sum_{j=1}^n a_j x_j + a_0 = \mathbf{a}^T \mathbf{x} + a_0 = 0, \qquad \mathbf{x} = [x_1, \dots, x_n]^T.$$

- Hyperplane parameters a_0 , $\mathbf{a} = [a_1, \dots, a_n]^T$.
- Distance of a point x from hyperplance \mathbb{H} :

$$d'(\mathbf{x}, \mathbb{H}) = \frac{|\mathbf{a}^T \mathbf{x} + a_0|}{||\mathbf{a}||}$$

- **Quadratic surface** S representations:
 - Hypersphere equation: $(\mathbf{x} \mathbf{c})^T (\mathbf{x} \mathbf{c}) = r^2$.
 - c, r: hypersphere center, radius.
 - Hyperellipsoid equation having parameters A, c, r: $(\mathbf{x} - \mathbf{c})^T \mathbf{A}(\mathbf{x} - \mathbf{c}) = r^2$.
- Distance of a point x from S:

$$d'(\mathbf{x}, \mathbb{S}) = \min_{\mathbf{z} \in \mathbb{S}} d(\mathbf{x}, \mathbf{z}).$$

 \mathbf{X}

(b) a a) Compact cluster; b) Linear cluster; c) Ellipsoid cluster representations.

 $\mathbf{x} d'$

C

. 'd'_**x**

Distance Measures x_{2}

Distance between set centers.

 \mathcal{C}_1

 \mathcal{C}_2

 x_1

Distance Functions between Two Sets

- If C_i, C_j are two sets of vectors the most common proximity functions are:
 - Max distance function: $d''(\mathcal{C}_i, \mathcal{C}_j) = \max_{\mathbf{x} \in \mathcal{C}_i, \mathbf{y} \in \mathcal{C}_j} d(\mathbf{x}, \mathbf{y}).$
 - Min distance function: $d''(\mathcal{C}_i, \mathcal{C}_j) = \min_{\mathbf{x} \in \mathcal{C}_i, \mathbf{y} \in \mathcal{C}_j} d(\mathbf{x}, \mathbf{y}).$
 - Min distance function is not a metric:

 $d''(\mathcal{C}_i, \mathcal{C}_j) = 0$, even if $\mathcal{C}_i \neq \mathcal{C}_j$, when $\mathcal{C}_i \cap \mathcal{C}_j \neq \emptyset$.

Distance Functions between Two Sets

• Average proximity function:

•
$$d''(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{\mathbf{x}\in\mathcal{C}} \sum_{\mathbf{y}\in\mathcal{C}} d(\mathbf{x}, \mathbf{y}).$$

Cluster center distance:

$$d''(\mathcal{C}_i,\mathcal{C}_j) = d\left(\mathbf{m}_{\mathcal{C}_i},\mathbf{m}_{\mathcal{C}_j}\right).$$

• $\mathbf{m}_{\mathcal{C}_i}$, i = 1,2: set representative vectors.

Clustering Algorithms

- Exhaustive clustering.
- Sequential Clustering:
 - Produce single clustering with straightforward and fast methods.
 - Produce compact and hypersperical/hyperellipsoidal clusters.
- Hierarchical Clustering:
 - Cluster merge: produce a decreasing number of clusters at each step, by merging two clusters into one.

• Cluster split: produce clusterings of increasing *m*.

Clustering Algorithms

- Clustering by cost function optimization:
 - Optimization of cost function *J* representing a clustering criterion.
 - Optimization by differential calculus.
- Vector quantization
- Graph-based clustering

Exhaustive Clustering

Exhaustive clustering of a vector data set \mathcal{D} :

- identify all possible partition,
- select the one optimizing a clustering criterion.
- *S*(*N*, *m*): number of all possible cluster outcomes, by clustering of *N* vectors into *m* groups.
- S(N,m) properties:
 - S(N,1) = 1 (one cluster of N vectors),
 - S(N,N) = 1 (N clusters of 1 vector each),
 - S(N,m) = 0 for m > N.

Artificial Intelligence & Information Analysis Lab

Exhaustive Clustering

• Iterative equation:

S(N,m) = mS(N-1,m) + S(N-1,m-1).

• Solution: Stirling numbers of the second kind:

$$S(N,m) = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{m-1} {m \choose i} i^{N}$$

Prohibitive computational complexity!

Iterative sequential algorithm:

- Assigning data vectors \mathbf{x} to its closest cluster \mathcal{C} .
- $d(\mathbf{x}, C)$: distance between a feature vector \mathbf{x} and cluster C.
- User-defined parameters:
 - the distance threshold ε .
 - the maximum allowable number of clusters M.

- $d(\mathbf{x}, C) = d(\mathbf{x}, \mathbf{m}_{C})$, when C is represented by cluster center vector \mathbf{m}_{C} .
- When x is assigned to its closest cluster C at iteration (t + 1), iterative cluster center vector update is given by:

 $\mathbf{m}_{\mathcal{C}}^{(t+1)} = \frac{n_{\mathcal{C}}^{(t)} \mathbf{m}_{\mathcal{C}_{k}}^{(t)} + \mathbf{x}}{n_{\mathcal{C}_{k}}^{(t+1)}}.$

Sequential clustering algorithm

m = 1

- $\mathcal{C}_m = \{\mathbf{x}_1\}$
- For i = 2 to N
 - Find C_k : $d(\mathbf{x}_i, C_k) = \min_{i \le j \le m} d(\mathbf{x}_i, C_j)$
 - If $(d(\mathbf{x}_i, \mathcal{C}_k) > \varepsilon)$ AND (m < M) then
 - m = m + 1
 - $\mathcal{C}_m = \{\mathbf{x}_i\}$
 - Else
 - $C_k = C_k \cup \{\mathbf{x}_i\}$
 - Update class C_k representation.
 - End{if}

• End{for} Artificial Intelligence & Information Analysis Lab

Artificial Intelligence & Information Analysis Lab

Block diagram of Sequential clustering algorithm.

Properties:

- Performance depends on data presentation to the algorithm.
- It may be used with similarity instead of distance measures by replacing min operator with max.
- Class representation by its center favors compact clusters.
- A single pass on the entire data set has O(Nm) complexity to compute $d(\mathbf{x}_i, C_k)$ for N samples and m < N clusters.

Sequential Clustering Maximin Algorithm

- *m* = 1
- $C_m = {\mathbf{x}_l}, \mathbf{x}_l, l = 1, ..., N$ is chosen randomly.
- For i = 2 to N
 - Find $d'(\mathbf{x}_l, \mathcal{C}_k) = \max_{i \le j \le m} d'(\mathbf{x}_i, \mathcal{C}_j)$
 - If $(d'(\mathbf{x}_l, \mathcal{C}_k) \gg d''(\mathcal{C}_i, \mathcal{C}_j), i = 1, ..., m, j = 1, ..., m)$
 - m = m + 1
 - $\mathcal{C}_m = \{\mathbf{x}_l\}$
 - Else
 - Find C_k : $d(\mathbf{x}_i, C_k) = \min_{i \le j \le m} d(\mathbf{x}_i, C_j)$
 - $C_k = C_k \cup \{\mathbf{x}_i\}$
 - Where necessary, update representatives
 - End{if}

ifEiOd{fOibence &

nformation Analysis Lab

Clustering Based on Function Optimization

- Cost $J(\mathcal{D}, \Theta)$ is a function of:
 - data set ${\mathcal D}$ vectors and
 - an unknown cluster parameter vector/matrix/set Θ .
- Number of clusters m is fixed.
- Goal: estimate Θ that optimizes cost function $J(\mathcal{D}, \Theta)$.
- Θ is strongly depends on cluster topology.
- Compact clusters are best represented by their centers:

 $\mathbf{\Theta} = [\mathbf{m}_1^T, \dots, \mathbf{m}_m^T]^T.$

- Distances between a feature vector and a cluster:
 - Mahalanobis distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = (\mathbf{x}_i - \mathbf{m}_j)^T \mathbf{A}(\mathbf{x}_i - \mathbf{m}_j).$$

- A: symmetric, positive definite matrix.
- Euclidean distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = (\mathbf{x}_i - \mathbf{m}_j)^T (\mathbf{x}_i - \mathbf{m}_j).$$

- Minkowski distance: $d(\mathbf{x}_i, \mathbf{m}_j) = (\sum_{k=1}^l |\mathbf{x}_{ik} \mathbf{m}_{jk}|^p)^{\overline{p}}$.
- \mathbf{x}_{ik} , \mathbf{m}_{jk} are the j-th coordinates of \mathbf{x}_i , \mathbf{m}_j respectively.

Artificial Intelligence & Information Analysis Lab

• Cost function minimization:

$$J(\mathbf{m}_1, \dots, \mathbf{m}_m) = \sum_{i=1}^N \sum_{j=1}^m d(\mathbf{x}_i, \mathbf{m}_j).$$

Using Euclidean distance:

$$J(\mathbf{m}_1, \dots, \mathbf{m}_m) = \sum_{i=1}^N \sum_{j=1}^m (\mathbf{x}_i - \mathbf{m}_j)^T (\mathbf{x}_i - \mathbf{m}_j)$$

• Differentiation of $J(\mathbf{m}_1, \dots, \mathbf{m}_m)$:

$$\frac{\partial J(\mathbf{m}_1, \dots, \mathbf{m}_m)}{\partial \mathbf{m}_j} = 2 \sum_{i=1}^N (\mathbf{m}_j - \mathbf{x}_i) = \mathbf{0}.$$
$$\mathbf{m}_j(t) = \frac{\sum_{i=1}^N \mathbf{x}_i}{N}.$$

- Step 0: Initialize cluster centers $\mathbf{m}_1(0), \dots, \mathbf{m}_m(0)$ randomly.
- Step 1: At each step (t) assign each data sample x_i, i = 1, ... N to the closest cluster center:

 $d(\mathbf{x}_i, \mathbf{m}_k(t)) < d(\mathbf{x}_i, \mathbf{m}_i(t)), \quad k \neq i$

 $\mathbf{m}_j(t+1) = \frac{\sum_{i=1}^{|\mathcal{C}_j|} \mathbf{x}_i}{|\mathcal{C}_i|}.$

• Step 2: Update cluster C_j , j = 1, ..., m centers:

Artificial Step 3: If $\mathbf{m}_j(t+1) = \mathbf{m}_j(t)$, for every j = 1, ..., m, stop.

Isodata algorithm

- Step 1: Choose the initial cluster number m and initial cluster centers $\mathbf{m}_1(0), \dots, \mathbf{m}_m(0)$.
- Step 2: Classification of vectors of \mathcal{D} in *m* clusters, based on their minimal distance from cluster centers.
- Step 3: Update the centers, as in the algorithm of K-means.
- Step 4: If cluster cardinality is smaller than a predetermined percentage of the cardinality of \mathcal{D} , this cluster is deleted.

Isodata algorithm

• Step 5 (*Cluster split*): Calculate the mean sample variance σ_{ij}^2 of each cluster C_j vectors along each data axis *i* :

$$\sigma_{ij}^2 = \frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{x} \in \mathcal{C}_j} (x_{ij} - m_{ij})^2, \qquad i = 1, \dots, n, j = 1, \dots, m.$$

- If some σ_{ij} is larger than a predetermined threshold, split C_i in two and create their centers $\mathbf{m}_i \mathbf{c}, \mathbf{m}_i + \mathbf{c}$.
- Update number of clusters m.

Isodata algorithm

- Step 6 (Cluster merge):
 - Calculate the distances $d''(\mathcal{C}_i, \mathcal{C}_j)$, i = 1, ..., m, j = 1, ..., m of any two clusters $\mathcal{C}_i, \mathcal{C}_j$.
 - If $d''(\mathcal{C}_i, \mathcal{C}_j)$ is smaller than a threshold, merge two clusters $\mathcal{C}_i, \mathcal{C}_j$.
 - Update number of clusters m.

Fuzzy Clustering

- In fuzzy set partitions, a vector belongs simultaneously to more than one cluster:
 - Fuzzy membership functions $u_j, j = 1, ..., m: \mathcal{D} \rightarrow [0,1]$.
- **m**_j: representative vector of *j* -th cluster (cluster center).
- $\mathbf{\Theta} = [\mathbf{m}_1^T, \dots, \mathbf{m}_m^T]^T$
- U: $N \times m$ matrix whose element (i, j) equals to $u_j(\mathbf{x}_i)$.
- $d(\mathbf{x}_i, \mathbf{m}_j)$: distance between \mathbf{x}_i and \mathbf{m}_j .

Fuzzy Clustering

- Distances between a feature vector and a cluster:
 - Mahalanobis distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = (\mathbf{x}_i - \mathbf{m}_j)^T \mathbf{A}(\mathbf{x}_i - \mathbf{m}_j).$$

- A: symmetric, positive definite matrix.
- Euclidean distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = (\mathbf{x}_i - \mathbf{m}_j)^T (\mathbf{x}_i - \mathbf{m}_j).$$

- Minkowski distance: $d(\mathbf{x}_i, \mathbf{m}_j) = (\sum_{k=1}^l |\mathbf{x}_{ik} \mathbf{m}_{jk}|^p)^{\frac{1}{p}}$.
- \mathbf{x}_{ik} , \mathbf{m}_{jk} are the jth coordinates of \mathbf{x}_i , \mathbf{m}_j respectively.

Artificial Intelligence & Information Analysis Lab

• Cost function minimization:

$$J_q(\mathbf{\Theta}, \mathbf{U}) = \sum_{i=1}^N \sum_{j=1}^m u_{ij}^q d(\mathbf{x}_i, \mathbf{m}_j),$$

with respect to Θ and U, subject to the constraints:

$$\sum_{j=1}^{m} u_{ij} = 1, \qquad i = 1, \dots, N.$$

•
$$u_{ij} \in [0,1], i = 1, ..., N, j = 1, ..., m,$$

•
$$0 < \sum_{i=1}^{N} u_{ij} < N$$
, $j = 1, ..., m$.

Artificial In Alligence 1: fuzzifier parameter.

Minimization of $J_q(\Theta, \mathbf{U})$ with respect to \mathbf{U} under constraints:

• Lagrangian function minimization:

$$\mathcal{J}(\mathbf{\Theta},\mathbf{U}) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(\mathbf{x}_{i},\mathbf{m}_{j}) - \sum_{i=1}^{N} \lambda_{i} \left(\sum_{j=1}^{m} u_{ij} - 1\right).$$

Partial differentiation of $\mathcal{J}(\Theta, \mathbf{U})$ with respect to u_{rs} :

$$\frac{\partial \mathcal{J}(\mathbf{\Theta}, \mathbf{U})}{\partial u_{rs}} = q u_{rs}^{q-1} d(\mathbf{x}_r, \mathbf{m}_s) - \lambda_r = 0.$$

Artificial Intelligence & Information Analysis Lab

Solution:

$$u_{rs} = \left(\frac{\lambda_r}{qd(\mathbf{x}_r, \mathbf{m}_s)}\right)^{\frac{1}{q-1}}, \ s = 1, \dots, m.$$

Substitution of u_{rs} in the constraint $\sum_{j=1}^{m} u_{rj} = 1$ leads to:

$$\lambda_r = \frac{q}{\left(\sum_{j=1}^m \left(\frac{1}{d(\mathbf{x}_r, \mathbf{m}_j)}\right)^{\frac{1}{q-1}}\right)^{q-1}}.$$

• Combining the two previous equations:

$$u_{rs} = \frac{1}{\sum_{j=1}^{m} \left(\frac{d(\mathbf{x}_r, \mathbf{m}_s)}{d(\mathbf{x}_r, \mathbf{m}_j)}\right)^{\frac{1}{q-1}}}, \quad r = 1, \dots, N, \quad s = 1, \dots, m.$$

• Gradient of $J(\Theta, \mathbf{U})$ with respect to \mathbf{m}_j :

$$\frac{\partial J(\mathbf{\Theta},\mathbf{U})}{\partial \mathbf{m}_j} = \sum_{i=1}^N u_{ij}^q \frac{\partial d(\mathbf{x}_i,\mathbf{m}_j)}{\partial \mathbf{m}_j} = \mathbf{0}, \qquad j = 1, \dots, m,$$

VML

• Using Mahalanobis distance:

$$\sum_{i=1}^N u_{ij}^q (t-1) \mathbf{A}(\mathbf{m}_j - \mathbf{x}_i) = \mathbf{0} .$$

VML

• Since A is positive definite, it can be discarded:

$$\mathbf{m}_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t-1)\mathbf{x}_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t-1)}.$$

Termination criterion:

 $||\mathbf{m}_{j}(t) - \mathbf{m}_{j}(t-1)|| < \epsilon, \ j = 1, ..., m.$

Vector Quantization:

Compact representation of the data set D = {x₁,...,x_N}, x_i ∈ Rⁿ by much fewer vectors m_i ∈ Rⁿ, i = 1,...,m, m ≪ N of the same dimensionality.

• Each $\mathbf{m}_i \in \mathbb{R}^n$ corresponds to one cluster \mathcal{C}_i , i = 1, ..., m.

- A data set $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$, $\mathbf{x}_i \in \mathbb{R}^n$ is to be clustered (partitioned).
- Desired cluster number $m \ll N$.
- Distance measure $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x}, \mathbf{y} .
- Calculation of cluster centers.
- Sorting algorithm to decide vector proximity.

- Data vectors are partitioned in *m* clusters $\{C_i, i = 1, ..., m\}$.
- Mapping: $\mathbf{m} = \mathbf{Q}(\mathbf{x})$.
- \mathbb{R}^n is partitioned in *m* Voronoi regions (one per cluster).
- Each Voronoi region (cell) \mathcal{R}_i is represented by $\mathbf{m}_i \in \mathbb{R}^n$, i = 1, ..., m:

 $|\mathbf{x} - \mathbf{m}_i| < |\mathbf{x} - \mathbf{m}_j|, \quad i \neq j.$

- Cluster C_i , i = 1, ..., m vectors reside in \mathcal{R}_i .
- Voronoi cells may have regular structure.

Artificial Intelligence & Information Analysis Lab

83

Artificial Intelligence & Information Analysis Lab Hexagonal Voronoi cells in \mathbb{R}^2 .

С

 x_1

 x_2

- **Codevectors** $\mathbf{m}_i \in \mathbb{R}^n$, i = 1, ..., m: cluster centers.
- Any vector in Voronoi region C_i are represented by \mathbf{m}_i .
- Quantization error (distortion) $|\mathbf{x} \mathbf{m}_i|$.
- If $x_i \in \mathbb{R}$, classical (scalar) quantization:

 $|x - m_i| < |x - m_j|, \quad i \neq j.$

- $\mathcal{R}_i = [(m_{i-1} + m_i)/2, (m_i + m_{i+1})/2].$
- It can be applied for 1D *histogram thresholding*.

 x_2

Artificial Intelligence & Information Analysis Lab Histogram thresholding.

 m_1

 m_2

 m_3

 m_4

 x_1

- Advantages:
 - Reduced storage requirements and faster processing.
 - Comparing two vectors has little computational complexity, thus VQ algorithms are not time-consuming.
 - Disadvantages:
 - Quantization error.

Linde-Buzo-Gray Algorithm

- Initialization: Choose *m* random vectors \mathbf{m}_i , i = 1, ..., m.
- Recursion:
 - Each vector **x** from set \mathcal{D} is assigned to vector \mathbf{m}_k :

 $k = \arg_i \min d(\mathbf{x}, \mathbf{m}_i).$

- Calculate total quantization error: $J = \sum_{i} \sum d(\mathbf{x}, \mathbf{m}_{i})$.
- If $J < \varepsilon$ is smaller than a threshold, stop.
- Else calculate new centers \mathbf{m}_i , i = 1, ..., m and repeat previous steps until convergence.

• Very similar to k-means algorithm.

Binary Split Algorithm

Initialization: Define a random cluster center. All vectors of data set ${\cal D}$ belong to the same cluster.

- Iteration t: (Total L iterations producing 2^L codevectors)
 - Each codevector \mathbf{m}_i is broken into two vectors $\mathbf{m}_i(1 + \epsilon)$, $\mathbf{m}_i(1 \epsilon)$, $\epsilon \in [0.01, 0.005]$
 - Each vector x from training set is assigned to the closest vector m_k:

 $k = \arg_i \min d(\mathbf{x}, \mathbf{m}_i).$

- Calculate total quantization error: $J = \sum_{i} \sum d(\mathbf{x}, \mathbf{m}_{i})$.
- If *J* is smaller than a threshold, stop.
- Calculate new center for each i. If t < L repeat previous steps, else

Learning Vector Quantization

- Learning Vector Quantization (LVQ) was proposed by Kohonen.
- Also called Self-Organizing Maps (SOM).
- Initial values are set based on classic cluster algorithms.
- Code vectors m_i are iteratively optimized.
- Goal: clustering based on the nearest-neighbor rule.
- Clusters are described by their codevectors.
- Cluster boundaries matter.

Mathematical model of vector quantization

- x: vector to be assigned to a cluster.
- Employ Euclidean distance.
- Find the winner cluster:
 - Closest cluster center \mathbf{m}_k :

$d(\mathbf{x}, \mathbf{m}_k) = \min_i \{d(\mathbf{x}, \mathbf{m}_i)\}, \quad \forall i \neq k.$

Learning Vector Quantization

• Cluster center updating: $\mathbf{m}_k(t+1) = \mathbf{m}_k(t) + a(t)[\mathbf{x} - \mathbf{m}_k(t)]$

$$\mathbf{m}_i(t+1) = \mathbf{m}_i(t), \quad \text{for } i \neq k,$$

- $0 \leq a(t) \leq 1$.
- Distance $d(\mathbf{x}, \mathbf{m}_k)$ is monotonically decreasing:
 - If $\delta \mathbf{x}_i = \mathbf{m}_i(t+1) \mathbf{m}_i(t)$, then $[\nabla_{\mathbf{m}_k} d(\mathbf{x}, \mathbf{m}_k)]^T \delta \mathbf{m}_i < 0$.

Learning Vector Quantization

- Incremental algorithm: data may come on the fly.
- For the first steps, a(t) value shall be close to 1.
- Depending on total number of steps, a(t) decreases:
 - Linear, exponential decrease.
- When a(t) falls below the threshold, the algorithm freezes.
- Updating of winning cluster neighborhood $\mathcal{N}(\mathcal{C})$ can be performed.

 $\mathbf{m}_1(t \neq$

1.

 x_2

LVQ cluster center updating.

 $\mathbf{x} - \mathbf{m}_1(t)$

 $\mathbf{m}_1(t)$

 \mathcal{C}_1

 \mathcal{C}_2

 x_1

Artificial Intelligence & Information Analysis Lab

95

Learning Vector Quantization Algorithms

• For the winner cluster:

$$\mathbf{m}_k(t+1) = \mathbf{m}_k(t) + a(t)[\mathbf{x}(t) - \mathbf{m}_k(t)].$$

• For the rest of the clusters: $\mathbf{m}_k(t+1) = \mathbf{m}_k(t) - a(t)[\mathbf{x}(t) - \mathbf{m}_k(t)].$

ML

Learning Vector Quantization Algorithms

Cooperative cluster center updating

• For clusters within neighborhood $\mathcal{N}(\mathcal{C}_k)$:

$$\mathbf{m}_k(t+1) = \mathbf{m}_k(t) - a(t)[\mathbf{x}(t) - \mathbf{m}_k(t)].$$

• For the rest of the clusters:

 $\mathbf{m}_k(t+1) = \mathbf{m}_k(t), \quad i \neq k.$

Data graph visualization.

Similarity graph, Adjacency/Similarity matrix

- Let $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ be the data set where $\mathbf{x}_i \in \mathbb{R}^n$.
- Construct a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$, where each graph vertex corresponds to a point \mathbf{x}_i , i = 1, ..., N.
- Similarity graphs can be weighted connected and undirected.
- Graph $N \times N$ adjacency matrix: $\mathbf{A} \in \{0,1\}^{N \times N}$.
- Similarity (weight) matrix: $\mathbf{W} = [W_{ij}] \in \mathbb{R}^{N \times N}$.

a) Similarity graph; b) Similarity matrix.

- Vertex degree: number of vertex connection in A.
- Gaussian kernel for edge weight calculation:

$$W(i,j) = \begin{cases} e^{\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}}, & \text{if } ||\mathbf{x}_i - \mathbf{x}_j|| < e, \\ 0, & \text{otherwise.} \end{cases}$$

- e: is a user-defined constant.
- || . || is Euclidean norm.

Nearest neighbor graphs

Graph Clustering

ormation Ana

- Cluster graph vertices (data vectors) into tightly linked clusters.
- Vertices of the same cluster are:
 - Strongly connected to each other and
 - sparsely connected to the rest of the graph.
 - Intra-cluster connectivity: measured by the cluster density.
- Inter-cluster connectivity: measured by graph cut cardinality.

Global clustering algorithms

- Iterative methods:
 - Go through all vertices and assign them to clusters.
 - Decisions based on optimization of a node connectivity metric.
 - Online method:

 Process one vertex at a time and update clusters based on what has been encountered thus far.

- Hierarchical structure:
 - Clusters not rigidly defined.
 - Subclusters can be contained in the same cluster.

Adjacency matrix eigenanalysis:

• Adjacency matrix eigenvalues and eigenvectors:

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \quad i = 0, \dots, N - 1.$$

- $\lambda_i, i = 0, ..., N 1$: roots of **characteristic polynomial**: det($\mathbf{A} - \lambda \mathbf{I}$) = 0.
- Adjacency matrix eigen-decomposition: $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$.

Laplacian matrix eigenanalysis:

 $\mathbf{L} = \mathbf{D} - \mathbf{A}.$

- **D**: *N* × *N* diagonal *vertex degree* matrix.
- Symmetric Laplacian matrix :

$$\mathbf{L}_{S} \triangleq \mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}.$$

• Random walk Laplacian matrix :

$$\mathbf{L}_R \triangleq \mathbf{D}^{-1} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}.$$

Laplacian matrix eigenanalysis:

• Non-decreasing eigenvalue order:

$$\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{N-1}.$$

- **Graph spectrum** is the eigenvalue set: $\{\lambda_i, i = 0, ..., N 1\}$
- It is invariant to graph isomorphism
 - Graph vertex permutations.

• Non-isomorphic graphs can be co-spectral.

• λ_0 is always zero, $0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{N-1} \le 2$.

$$\sum_{i=0}^{N-1} \lambda_i = N.$$

• $\lambda_{N-1} = 2$, if graph *G* is **bipartite**.

- Algebraic connectivity (eigenvalue λ_1):
- If $\lambda_1 > 0$:
 - graph *G* is connected.
- else:
 - multiplicity of eigen value 0 is equal number of connected graph components.

- Graph comprised of k disjoint *cliques*:
 - k smallest eigenvalues of normalized Laplacian matrix are
 0.
 - *i*-th corresponding eigenvector $(0 \le i \le k 1)$ has non-zero values for vertices of the *i*-th clique.
- Adding edges cause the eigenvalues to increase and change slightly corresponding eigenvectors.

Graph clustering based on *spectral bisection*:

- 2-way graph partitioning.
- It uses the so-called *Fiedler vector*.
 - eigenvector \mathbf{u}_1 corresponding to eigenvalue λ_1 of Laplacian matrix.

N-Cut Graph Clustering

- When there are 2 clusters with strong internal connectivity and sparsely connected:
 - Positive Fiedler vector entries correspond to one cluster and negative to the other.
 - This provide a bisection of the graph in two subgraphs.
- Iterative bisection of the resulting subgraphs.

N-Cut Graph Clustering (2-way partitioning).

Edge-based bisection:

- Compute Fiedler vector.
- Split vertices into 2 groups:
 - their relevant Fiedler vector entries are below/above the Fiedler vector entries median.
- Edges between these two groups are cut.

Vertex-based bisection:

- Compute Fiedler vector.
- Find the largest gap in Fiedler vector entries
- Split Fiedler vector entries accordingly.
- Split the graph at the cut provides the best cut quotient.

Spectral graph clustering:

- Perform eigenanalysis on one of the normalized Laplacians.
- extract r eigenvectors corresponding to the smallest eigenvalues excluding λ_0 .
- Store eigenvectors in a $N \times r$ matrix U.
- Its rows are the new data representation.
- Use any standard clustering algorithm to cluster them.

Graph-based clustering properties:

- Little user input is needed.
- Trivial clusters easily avoided.
- Unlikely to get bad clustering results.
- They cannot be employed in extremely large graphs:
 - memory limitations.
- Eigenanalysis has $O(N^3)$ computational complexity.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

