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Introduction

• Data clustering: special case of unsupervised learning.

• class labelling of the training patterns is not available.

• Goal: to reveal the geometrical data organization into

sensible clusters, in order to:

• discover data (dis)similarities.

• discover geometrical cluster structure.

• Applications:

• life sciences, earth sciences and engineering.
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Face clustering

Problem statement:

• To cluster facial images

• Input: many facial ROIs

• Output: facial image clusters.

• Unsupervised learning

• Applications:

Biometrics

Surveillance applications

Video analytics.
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Face Clustering
Problem statement:

• To cluster a set of facial ROIs

• Input: a set of face image ROIs

• Output: several face clusters, each containing 

faces of only one person.

• Applications

• Cluster actor images, even if they belong to 

different shots.

• Cluster various views of the same actor.

• Generate the cast of a movie.

• Semi automatic face recognition.



Introduction

• Clustering criterion in image data:

• Color similarity: e.g., all facial image regions are pink.

• Texture similarity: tree foliage regions have fine

unstructured visual texture.

• Edge similarity: building images have vertical/horizontal

edges.

• Intensity similarity: black people have dark facial

images.

6



Introduction
• Outliers: black albinos have brighter facial images.

• Clusters may consist of sub-clusters:

• Caucasian and black facial images belong to ‘facial 

image’ cluster.

7



Introduction

• Clustering criterions greatly influence clustering results.

• Clustering is a key human cognitive ability: 

• Clusters are characterized by the common data attributes.

• Cluster labeling leads to logical concepts. 
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Introduction

Data clustering input: data samples described by feature

vectors, without neither labels nor any information about the

specific desired output:

𝒟 = 𝐱𝑖 𝑖=1
𝑁 .

Typically: 𝐱 ∈ ℝ𝑛.

Data clustering output:

• Sample data set  𝒟 = 𝐱𝑖 𝑖=1
𝑁 partition to clusters 𝒞𝑖 , 𝑖 =

1, … , 𝑚.

• Cluster samples are similar and dissimilar to the samples 

of other clusters based on similarity/distance metric ∥ . ∥. 

• Number of clusters 𝑚 may be unknown.



Feature types

• Real-valued feature vectors:    𝐱 ∈ ℝ𝑛.

• Finite discrete set feature vectors: 𝐱 ∈ ℱ𝑛.

• Discrete set cardinality 𝑘: ℱ = {0,1, … , 𝑘 − 1}.

• Special case: 

• binary set 𝑘 = 2,    ℱ = {0,1}.
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Feature types

• Labeled (nominal) features: ℱ = {𝑓0, 𝑓1, … , 𝑓𝑘−1}.

• Feature values 𝑓𝑖, 𝑖 = 0, … , 𝑘 − 1 may have symbolic 

meaning (symbolic labels):

• Facial image labels ℱ = ′John′, ′Alice′, … , ′Vladimir′ .

• Nominal feature vectors: 𝐱 ∈ ℱ1 × ℱ2 × ⋯ × ℱ𝑛.

• Feature vector 𝐱 ∈ ℱ1 × ℱ2 for describing apples:

ℱ1 = ′small′, ′medium′, ′big′ ,

ℱ2 = ′red′, ′yellow′, ′green′ .
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Feature types

• Feature categorization:

• Nominal features: ℱ is a set. 

• No feature value ordering is possible.

• Ordinal features: e.g., ℱ = ℝ.

• Feature values can be meaningfully ordered.

• Angular features:   ℱ = [0, 2𝜋].

• Feature values are angles (or on a unit circle).

• Interval-scaled: feature value difference is meaningful.

• Ratio-scaled: feature value ratio is meaningful.
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Introduction

Clustering subtasks:

• Feature selection: Create a feature vector 𝐱 with minimum

information redundancy.

• Data similarity measurement: Quantify feature vector

‘(dis)similarity’.

• Clustering criterion: It quantifies clustering ‘sensibility’.

• Cost function optimization:

• Maximize intra-class similarity and maximize inter-class

dissimilarity.
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Introduction

Clustering subtasks:

• Choosing a clustering algorithm: to best unravel data

structure.

• Clustering validation: verify the correctness of clustering

results using appropriate tests.

• Clustering explainability: Interpretation clustering results.

• Concept creation: Cluster labeling to create logical

‘concepts’.
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Introduction
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Clustering granularity. Cluster manifolds.



Clustering Applications

• Better data description:

• Data set 𝒟 = 𝐱𝑖 𝑖=1
𝑁 , 𝐱 ∈ ℝ𝑛 cardinality 𝑁 or data

dimensionality 𝑛 may be too large;

• Clustering groups the data into 𝑚 ≪ 𝑁 clusters, providing

much better data description.

• Data cluster visualization: clusters are well visualized if

they are mapped on ℝ2.

• Hypothesis generation: Help forming and validating

hypotheses on data structure.
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Clustering Applications

Data cluster visualization.
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Crisp/fuzzy Clustering

• Let 𝒟 be a feature data set: 𝒟 = {𝐱1, 𝐱2, … , 𝐱𝑁}.

• Crisp clustering is the partition of 𝒟 into 𝑚 disjoint sets

𝒞1, … , 𝒞𝑚, satisfying the following conditions:

• 𝒞𝑖 ≠ ∅, 𝑖 = 1, … , 𝑚,

• ∪𝑖=1
𝑚 𝒞𝑖 = 𝒟,

• 𝒞𝑖 ∩ 𝒞𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, … , 𝑚.

• Feature vectors in a cluster 𝒞𝑖 are ‘similar’, while they are

‘dissimilar’ to the ones of other clusters 𝒞𝑗 , 𝑖 ≠ 𝑗.
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Crisp/fuzzy Clustering

• Fuzzy clustering of 𝒟 into 𝑚 clusters:

• For each sample 𝐱𝑖 , 𝑖 = 1, … , 𝑁 find 𝑚 membership

functions 𝑢𝑗:

𝑢𝑗: 𝒟 → 0,1 , 𝑗 = 1, … , 𝑚.

෍

𝑗=1

𝑚

𝑢𝑗 𝐱𝑖 = 1, 𝑖 = 1, … , 𝑁,

0 < ෍

𝑗=1

𝑚

𝑢𝑗 𝐱𝑖 < 𝑁, 𝑗 = 1, … , 𝑚.
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Crisp/fuzzy Clustering

• Each vector 𝐱 belongs to more than one clusters

simultaneously, which depends on the value of 𝑢𝑗 in [0,1].

• Fuzzy membership values 𝑢𝑗 → 1: high cluster membership

possibility.

• Fuzzy membership values 𝑢𝑗 → 0: low cluster membership

possibility.

• Feature vector similarity: the membership function vector

difference |𝐮𝑘 − 𝐮𝑛| for two feature vectors 𝐱𝑘 , 𝐱𝑛 is small.
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Distance/Similarity Measures

• Proximity  or distance measures

• Similarity or dissimilarity measures.

• Distance between two feature points (feature vectors).

• Distance between a feature point and a feature point set.

• Distance between two feature point sets.
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Distance Measures

Distance between two 

points.
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Distance between point 

and set (set center).

Distance between 

sets (set center).



Distance Measures

Dissimilarity measure (DM) 𝒅: 

• a function  𝑑: ℱ × ℱ → ℝ, satisfying:

∃ 𝑑0 ∈ ℝ: −∞ < 𝑑0 ≤ 𝑑 𝐱, 𝐲 < +∞, ∀𝐱, 𝐲 ∈ ℱ,

𝑑 𝐱, 𝐱 = 𝑑0, ∀𝐱 ∈ ℱ,

𝑑 𝐱, 𝐲 = 𝑑 𝐲, 𝐱 , ∀𝐱, 𝐲 ∈ ℱ.

Typically: 𝑑 𝐱, 𝐱 = 0.

• Also called distance measure for Euclidean spaces: 

ℱ = ℝ𝑛.
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Distance Measures

If:

• 𝑑 𝐱, 𝐲 = 𝑑0, if and only if 𝐱 = 𝐲

• and triangular inequality holds:

𝑑 𝐱, 𝐳 ≤ 𝑑 𝐱, 𝐲 + 𝑑 𝐲, 𝐳 , ∀𝐱, 𝐲, 𝐳 ∈ ℱ.

𝑑 is a metric or norm. 
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Distance Measures

Weighted 𝐿𝑝 metric between two real-valued feature points 

(vectors) 𝐱, 𝐲 ∈ ℝ𝑛:

𝑑 𝐱, 𝐲 = ෍
𝑖=1

𝑛

𝑤𝑖 𝑥𝑖 − 𝑦𝑖
𝑝

1/𝑝

.

• 𝑤𝑖 ≥ 0: is weight coefficient. 

• Unweighted 𝐿𝑝 metric: 𝑤𝑖 = 1, 𝑖 = 1, … , 𝑛.

• 𝐿2 metric:

𝑑 𝐱, 𝐲 = ෍
𝑖=1

𝑛

(𝑥𝑖 − 𝑦𝑖)2
1/2

.
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Distance Measures

• Mahalanobis distance: 

𝑑 𝐱, 𝐲 = 𝐱 − 𝐲 𝑇𝐀 𝐱 − 𝐲 .

• 𝐀 is a 𝑛 × 𝑛 symmetric,  positive-definite matrix.

• Euclidean distance:

𝑑 𝐱, 𝐲 = 𝐱 − 𝐲 𝑇 𝐱 − 𝐲 .

• 𝐀 = 𝐈.

• It is equal to the length of the straight line segment 

connecting points 𝐱, 𝐲 ∈ ℝ𝑛.
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Distance Measures

Euclidean distance between two points.
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Distance Measures

a) Euclidean equidistant points (circles); 

b) Mahalanobis equidistant points (ellipses).
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Distance Measures

• Weighted 𝑳𝟏 norm:

𝑑 𝐱, 𝐲 = σ𝑖=1
𝑛 𝑤𝑖|𝑥𝑖 − 𝑦𝑖|.

• Manhattan norm: 

𝑑 𝐱, 𝐲 = σ𝑖=1
𝑛 |𝑥𝑖 − 𝑦𝑖|.

• 𝑳∞ norm:

𝑑 𝐱, 𝐲 = max
1≤𝑖≤𝑛

𝑥𝑖 − 𝑦𝑖 .

• 𝐿∞ norm is a special case of 𝐿𝑝 norm for 𝑝 → ∞.
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Distance Measures

Discrete-Valued Vectors

• Vectors 𝐱 with coordinates belonging to the finite set ℱ =
{0,1, … , 𝑘 − 1}, (𝑘 is a positive integer).

• There are exactly 𝑘𝑛 vectors 𝐱, 𝐲 ∈ ℱ𝑛.

• 𝑘 × 𝑘 contingency table:

𝐀 𝐱, 𝐲 = 𝑎𝑖𝑗 𝑖, 𝑗 = 0,1, … , 𝑘 − 1.

• 𝑎𝑖𝑗 is the number of vectors 𝐱, 𝐲 entries having values 𝑖, 𝑗 ∈

ℱ symbols, respectively.
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Distance Measures

Discrete-Valued Vectors

• Edit distance.

• Hamming distance:

𝑑 𝐱, 𝐲 = ෍

𝑖=0

𝑘−1

෍
𝑗=0,𝑗≠𝑖

𝑘−1

𝑎𝑖𝑗 .

• Equal to the summation of all the off-diagonal elements of

𝐀, indicating the entries, where 𝐱 and 𝐲 differ.
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Distance Measures

• For 𝑘 = 2 the Hamming distance is:

𝑑 𝐱, 𝐲 = ෍

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2 .

• 𝑳𝟏 distance:

𝑑1 𝐱, 𝐲 = σ𝑖=1
𝑛 |𝑥𝑖 − 𝑦𝑖| .
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Similarity Measures

• Similarity measure (SM):

• a function  𝑠: ℱ × ℱ → ℝ such that:

∃𝑠0 ∈ ℝ: −∞ < 𝑠(𝐱, 𝐲) ≤ 𝑠0 < +∞, ∀𝐱, 𝐲 ∈ ℱ,

𝑠 𝐱, 𝐱 = 𝑠0, ∀𝑥 ∈ ℱ,
𝑠 𝐱, 𝐲 = 𝑠 𝐲, 𝐱 , ∀𝐱, 𝐲 ∈ ℱ.

• Typically, 𝑠 𝐱, 𝐱 = 1.
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Similarity Measures

If: 

• 𝑠 𝐱, 𝐲 = 𝑠0, if and only if 𝐱 = 𝐲

• and: 

𝑠 𝐱, 𝐲 𝑠 𝐲, 𝐳 ≤ 𝑠 𝐱, 𝐲 + 𝑠 𝐲, 𝐳 𝑠(𝐱, 𝐳) , ∀𝐱, 𝐲, 𝐳 ∈ ℱ

then 𝑠 is a metric SM. 
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Similarity Measures

Similarity measures between two feature vectors 𝐱, 𝐲 ∈ ℝ𝑛:

• Inner vector product: 

𝑠 𝐱, 𝐲 = 𝐱𝑇𝐲 = ෍
𝑖=1

𝑛

𝑥𝑖𝑦𝑖 .

• If the vectors 𝐱, 𝐲 are normalized to length 𝑎: 𝑠 ∈ [−𝑎2, 𝑎2].

• Cosine similarity measure:

𝑠 𝐱, 𝐲 =
𝐱𝑇𝐲

𝐱 | 𝐲 |
, |𝐱| = σ𝑖=1

𝑛 𝑥𝑖
2 , |𝐲| = σ𝑖=1

𝑛 𝑦𝑖
2.
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Similarity Measures

• Correlation coefficient: 

𝑟 𝐱, 𝐲 =
𝐱𝑐

𝑇𝐲𝑐

𝐱𝑐 | 𝐲𝑐 |
,  

• 𝑟 𝐱, 𝐲 ∈ −1,1 .

• Central difference vectors: 

𝐱𝑐 = 𝑥1 − ҧ𝑥, … , 𝑥𝑛 − ҧ𝑥 𝑇, 𝐲𝑐 = 𝑦1 − ത𝑦, … , 𝑦𝑙 − ത𝑦 𝑇, 

ҧ𝑥 =
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖,      ത𝑦 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖.  
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Similarity Measures

Fuzzy Similarity Measure between two vectors: 

𝑠 𝐱, 𝐲 = ෍
𝑖=1

𝑛

𝑠(𝑥𝑖 , 𝑦𝑖)

1
𝑞

.

• Similarity between two real-valued variables 𝑥𝑖 and 𝑦𝑖: 

𝑠(𝑥𝑖 , 𝑦𝑖) = max(min 1 − 𝑥𝑖 , 1 − 𝑦𝑖 , min(𝑥𝑖 , 𝑦𝑖)).
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Similarity Measures

• Motivation:

• Equivalence between two logic variables 𝑎 and 𝑏:

𝑎 ≡ 𝑏 = ത𝑎 ANDഥ𝑏 OR (𝑎 𝐴𝑁𝐷 𝑏).

• Fuzzy AND, OR, ത𝑎 (NOT) operators: max, min, 1 − 𝑎.
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Similarity Measures

Tanimoto similarity measure between two feature vectors

𝐱, 𝐲 ∈ ℝ𝑛:

𝑠 𝐱, 𝐲 =
𝐱𝑇𝐲

||𝐱 − 𝐲||𝟐
=

𝐱𝑇𝐲

||𝐱||𝟐 + ||𝐲||𝟐 − 𝐱𝑻𝐲
.

• It is inversely proportional to the squared Euclidean

distance divided by their inner product.

• Similarity measure:

𝑠 𝐱, 𝐲 = 1 −
𝑑2(𝐱,𝐲)

||𝐱||+||𝐲||
. 

• Maximum when 𝐱 = 𝐲 and minimum when 𝐱 = −𝐲.
39



Similarity Measures

Tanimoto measure for discrete-valued vectors:

𝑠 𝐱, 𝐲 =
σ𝑖=1

𝑘−1 𝑎𝑖𝑖

𝑛𝑥 + 𝑛𝑦 − σ𝑖=1
𝑘−1 σ𝑗=1

𝑘−1 𝑎𝑖𝑗

,

𝑛𝑥 = σ𝑖=1
𝑘−1 σ𝑗=0

𝑘−1 𝑎𝑖𝑗 , 𝑛𝑦 = σ𝑖=0
𝑘−1 σ𝑗=1

𝑘−1 𝑎𝑖𝑗.

• It takes into account all pairs of corresponding 𝐱 and

𝐲 coordinates, except when both 𝑥𝑖 = 0, 𝑦𝑖 = 0.

• Motivation: set Intersection over Union (IoU) for sets

𝒳, 𝒴:

𝑠 =
|𝒳 ∩ 𝒴|

|𝒳 ∪ 𝒴|
.
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Distance Measures

41

Distance between point 

and set (set center).



Distance Measures

Distance functions between a point and a set (cluster).

• Distance 𝑑′ 𝐱, 𝒞 between vector 𝐱 and cluster 𝒞 :

• Distance to cluster center 𝐦: 𝑑′ 𝐱, 𝒞 = 𝑑 𝐱, 𝐦 .

• Max Distance function: 𝑑′ 𝐱, 𝒞 = max
𝐲∈𝒞

𝑑 𝐱, 𝐲 .

• Min Distance function: 𝑑′ 𝐱, 𝒞 = min
𝐲∈𝒞

𝑑 𝐱, 𝐲 .

• Average Distance function: 𝑑′ 𝐱, 𝒞 =
1

|𝒞|
σ𝐲∈𝒞 𝑑 𝐱, 𝐲

• |𝒞| : set 𝒞 cardinality.
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Distance Measures

Cluster center is a representative vector of a data vector set:

• Mean vector:

𝐦 =
1

|𝒞|
෍

𝐱∈𝒞

𝐱 .

• Sensitive to outliers.
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Distance Measures

• Vector median:

σ𝐲∈𝒞 𝑑(𝐦𝑣, 𝐲) ≤ σ𝐲∈𝒞 𝑑(𝐳, 𝐲), 𝐦𝑣 ∈ 𝒞, ∀𝐳 ∈ 𝒞.

• Median center:

med 𝑑(𝐦𝑚, 𝐲 𝐲 ∈ 𝒞 ≤ med 𝑑(𝐳, 𝐲 |𝐲 ∈ 𝒞), 𝐦𝑚 ∈ 𝒞, ∀𝐳 ∈ 𝒞.

• med: median operator.
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Distance Measures

Data manifold representations:

• Hyperplane ℍ:

σ𝑗=1
𝑛 𝑎𝑗𝑥𝑗 + 𝑎0 = 𝐚𝑇𝐱 + 𝑎0 = 0,             𝐱 = 𝑥1, … , 𝑥𝑛

𝑇 .

• Hyperplane parameters 𝑎0 , 𝐚 = 𝑎1, … , 𝑎𝑛
𝑇 .

• Distance of a point 𝐱 from hyperplance ℍ:

𝑑′ 𝐱, ℍ =
𝐚𝑇𝐱 + 𝑎0

𝐚
.
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Distance Measures

• Quadratic surface 𝕊 representations:

• Hypersphere equation: 𝐱 − 𝐜 𝑇 𝐱 − 𝐜 = 𝑟𝟐.

• 𝐜, 𝑟: hypersphere center, radius.

• Hyperellipsoid equation having parameters 𝐀, 𝐜, 𝑟: 

𝐱 − 𝐜 𝑇𝐀 𝐱 − 𝐜 = 𝑟𝟐.

• Distance of a point 𝐱 from 𝕊: 

𝑑′ 𝐱, 𝕊 = m𝑖𝑛
𝐳∈𝕊

𝑑 𝐱, 𝐳 .
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Distance Measures
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a) Compact cluster; b) Linear cluster; c) Ellipsoid cluster 

representations.



Distance Measures
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Distance between set centers.



Distance Measures

Distance Functions between Two Sets

• If 𝒞𝑖 , 𝒞𝑗 are two sets of vectors the most common proximity 

functions are:

• Max distance function:     𝑑′′ 𝒞𝑖 , 𝒞𝑗 = max
𝐱∈𝒞𝑖, 𝐲∈𝒞𝑗

𝑑 𝐱, 𝐲 .

• Min distance function: 𝑑′′ 𝒞𝑖 , 𝒞𝑗 = min
𝐱∈𝒞𝑖, 𝐲∈𝒞𝑗

𝑑(𝐱, 𝐲).

• Min distance function is not a metric:

𝑑′′ 𝒞𝑖 , 𝒞𝑗 = 0, even if 𝒞𝑖 ≠ 𝒞𝑗, when 𝒞𝑖 ∩ 𝒞𝑗 ≠ ∅.
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Distance Measures

Distance Functions between Two Sets

• Average proximity function: 

• 𝑑′′ 𝒞𝑖 , 𝒞𝑗 =
1

|𝒞𝑖||𝒞𝑗|
σ𝐱∈𝒞 σ𝐲∈𝒞 𝑑 𝐱, 𝐲 .

• Cluster center distance: 

𝑑′′ 𝒞𝑖 , 𝒞𝑗 = 𝑑 𝐦𝒞𝑖
, 𝐦𝒞𝑗

.

• 𝐦𝒞𝑖
, 𝑖 = 1,2: set representative vectors.
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Clustering Algorithms

• Exhaustive clustering.

• Sequential Clustering:

• Produce single clustering with straightforward and fast

methods.

• Produce compact and hypersperical/hyperellipsoidal

clusters.

• Hierarchical Clustering:

• Cluster merge: produce a decreasing number of clusters

at each step, by merging two clusters into one.

• Cluster split: produce clusterings of increasing 𝑚.
51



Clustering Algorithms

• Clustering by cost function optimization:

• Optimization of cost function 𝐽 representing a clustering 

criterion.

• Optimization by differential calculus. 

• Vector quantization 

• Graph-based clustering
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Exhaustive Clustering

Exhaustive clustering of a vector data set 𝒟: 

• identify all possible partition,

• select the one optimizing a clustering criterion.

• 𝑆(𝑁, 𝑚): number of all possible cluster outcomes, by 

clustering of 𝑁 vectors into 𝑚 groups.

• 𝑆(𝑁, 𝑚) properties:

• 𝑆 𝑁, 1 = 1 (one cluster of 𝑁 vectors),

• 𝑆 𝑁, 𝑁 = 1 (𝑁 clusters of 1 vector each),

• 𝑆 𝑁, 𝑚 = 0 for 𝑚 > 𝑁.
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Exhaustive Clustering

• Iterative equation:

𝑆 𝑁, 𝑚 = 𝑚𝑆 𝑁 − 1, 𝑚 + 𝑆(𝑁 − 1, 𝑚 − 1).

• Solution: Stirling numbers of the second kind:                         

𝑆 𝑁, 𝑚 =
1

𝑚!
෍

𝑖=0

𝑚

−1 𝑚−1
𝑚

𝑖
𝑖𝑁 .

• Prohibitive computational complexity!
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Sequential Clustering 

Iterative sequential algorithm: 

• Assigning data vectors 𝐱 to its closest cluster 𝒞.

• 𝑑 𝐱, 𝒞 : distance between a feature vector 𝐱 and cluster 𝒞.

• User-defined parameters:

• the distance threshold 𝜀.

• the maximum allowable number of clusters 𝑀.
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Sequential Clustering 

• 𝑑 𝐱, 𝒞 = 𝑑 𝐱, 𝐦𝒞 , when 𝒞 is represented by cluster center 

vector 𝐦𝒞. 

• When 𝐱 is assigned to its closest cluster 𝒞 at iteration (𝑡 +
1), iterative cluster center vector update is given by:

𝐦𝒞
(𝑡+1)

=
𝑛𝒞

(𝑡)
𝐦𝒞𝑘

(𝑡)
+𝐱

𝑛𝒞
(𝑡+1) .
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Sequential Clustering 

Sequential clustering algorithm

𝑚 = 1

• 𝒞𝑚 = {𝐱1}

• For 𝑖 = 2 to 𝑁

• Find 𝒞𝑘: 𝑑 𝐱𝑖 , 𝒞𝑘 = min
𝑖≤𝑗≤𝑚

𝑑 𝐱𝑖 , 𝒞𝑗

• If (𝑑 𝐱𝑖 , 𝒞𝑘 > 𝜀) AND (𝑚 < 𝑀) then

• 𝑚 = 𝑚 + 1

• 𝒞𝑚 = {𝐱𝑖}

• Else

• 𝒞𝑘 = 𝒞𝑘 ∪ {𝐱𝑖}

• Update class 𝒞𝑘 representation.

• End{if}

• End{for}
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Sequential Clustering 

58Block diagram of Sequential clustering algorithm.



Sequential Clustering

Properties:

• Performance depends on data presentation to the

algorithm.

• It may be used with similarity instead of distance measures

by replacing min operator with max.

• Class representation by its center favors compact clusters.

• A single pass on the entire data set has 𝑂 𝑁𝑚 complexity

to compute 𝑑 𝐱𝑖 , 𝒞𝑘 for 𝑁 samples and 𝑚 < 𝑁 clusters.
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Sequential Clustering 
Maximin Algorithm
• 𝑚 = 1

• 𝒞𝑚 = {𝐱𝑙}, 𝐱𝑙 , 𝑙 = 1, … , 𝑁 is chosen randomly.

• For 𝑖 = 2 to 𝑁

• Find 𝑑′ 𝐱𝑙 , 𝒞𝑘 = max
𝑖≤𝑗≤𝑚

𝑑′ 𝐱𝑖 , 𝒞𝑗

• If (𝑑′ 𝐱𝑙, 𝒞𝑘 ≫ 𝑑′′ 𝒞𝑖 , 𝒞𝑗 , 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑚)

• 𝑚 = 𝑚 + 1

• 𝒞𝑚 = {𝐱𝑙}

• Else

• Find 𝒞𝑘: 𝑑 𝐱𝑖 , 𝒞𝑘 = min
𝑖≤𝑗≤𝑚

𝑑 𝐱𝑖 , 𝒞𝑗

• 𝒞𝑘 = 𝒞𝑘 ∪ {𝐱𝑖}

• Where necessary, update representatives

• End{if}

• End{for}
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Sequential Clustering

61Maximin Algorithm



Clustering Based on 

Function Optimization

• Cost 𝐽(𝒟, 𝚯) is a function of:

• data set 𝒟 vectors and

• an unknown cluster parameter vector/matrix/set 𝚯.

• Number of clusters 𝑚 is fixed.

• Goal: estimate 𝚯 that optimizes cost function 𝐽(𝒟, 𝚯).

• 𝚯 is strongly depends on cluster topology.

• Compact clusters are best represented by their centers:

𝚯 = 𝐦1
𝑇 , . . , 𝐦𝑚

𝑇 𝑇.
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K-means Algorithm

• Distances between a feature vector and a cluster:

• Mahalanobis distance:

𝑑 𝐱𝑖 , 𝐦𝑗 = 𝐱𝑖 − 𝐦𝑗
𝑇

𝐀 𝐱𝑖 − 𝐦𝑗 . 

• 𝐀: symmetric, positive definite matrix.

• Euclidean distance:

𝑑 𝐱𝑖 , 𝐦𝑗 = 𝐱𝑖 − 𝐦𝑗
𝑇

𝐱𝑖 − 𝐦𝑗 . 

• Minkowski distance:    𝑑 𝐱𝑖 , 𝐦𝑗 = σ𝑘=1
𝑙 |𝐱𝑖𝑘 − 𝐦𝑗𝑘|𝑝

1

𝑝.

• 𝐱𝑖𝑘 , 𝐦𝑗𝑘 are the j-th coordinates of 𝐱𝑖 , 𝐦𝑗 respectively.
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K-means Algorithm

• Cost function minimization: 

𝐽 𝐦1, … , 𝐦𝑚 = ෍

𝑖=1

𝑁

෍
𝑗=1

𝑚

𝑑(𝐱𝑖 , 𝐦𝑗) .

Using Euclidean distance:

𝐽 𝐦1, … , 𝐦𝑚 = ෍

𝑖=1

𝑁

෍
𝑗=1

𝑚

𝐱𝑖 − 𝐦𝑗
𝑇

𝐱𝑖 − 𝐦𝑗 .
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K-means Algorithm

• Differentiation of 𝐽 𝐦1, … , 𝐦𝑚 :

𝜕𝐽 𝐦1,…,𝐦𝑚

𝜕𝐦𝑗
= 2 σ𝑖=1

𝑁 𝐦𝑗 − 𝐱𝑖 = 𝟎.

𝐦𝑗 𝑡 =
σ𝑖=1

𝑁 𝐱𝑖

𝑁
.
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K-means Algorithm

• Step 0: Initialize cluster centers 

𝐦1 0 , … , 𝐦𝑚 0 randomly.

• Step 1: At each step 𝑡 assign each data sample 𝐱𝑖 , 𝑖 =
1, … 𝑁 to the closest cluster center: 

𝑑(𝐱𝑖 , 𝐦𝑘 𝑡 ) < 𝑑 𝐱𝑖 , 𝐦𝑖 𝑡 , 𝑘 ≠ 𝑖

• Step 2: Update cluster 𝒞𝑗 , 𝑗 = 1, … , 𝑚 centers:

𝐦𝑗 𝑡 + 1 =
σ

𝑖=1

|𝒞𝑗|
𝐱𝑖

|𝒞𝑗|
.

• Step 3: If 𝐦𝑗 𝑡 + 1 = 𝐦𝑗 𝑡 , for every 𝑗 = 1, … , 𝑚, stop. 66



K-means Algorithm
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Isodata algorithm

• Step 1: Choose the initial cluster number 𝑚 and initial 

cluster centers 𝐦1 0 , … , 𝐦𝑚 0 .

• Step 2: Classification of vectors of 𝒟 in 𝑚 clusters, based on 

their minimal distance from cluster centers.

• Step 3: Update the centers, as in the algorithm of K-means.

• Step 4: If cluster cardinality is smaller than a predetermined 

percentage of the cardinality of 𝒟, this cluster is deleted.
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Isodata algorithm

• Step 5 (Cluster split): Calculate the mean sample variance 

𝜎𝑖𝑗
2 of each cluster 𝒞𝑗 vectors along each data axis 𝑖 :

𝜎𝑖𝑗
2 =

1

|𝒞𝑗|
σ𝐱∈𝒞𝑗

(𝑥𝑖𝑗 − 𝑚𝑖𝑗) 2,       𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚. 

• If some 𝜎𝑖𝑗 is larger than a predetermined threshold, split 

𝒞𝑗 in two and create their  centers 𝐦𝑗 − 𝐜, 𝐦𝑗 + 𝐜. 

• Update number of clusters 𝑚.
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Isodata algorithm

• Step 6 (Cluster merge):

• Calculate the distances 𝑑′′ 𝒞𝑖 , 𝒞𝑗 , 𝑖 = 1, … , 𝑚, 𝑗 =

1, … , 𝑚 of any two clusters 𝒞𝑖, 𝒞𝑗.

• If 𝑑′′ 𝒞𝑖 , 𝒞𝑗 is smaller than a threshold, merge two

clusters 𝒞𝑖, 𝒞𝑗 .

• Update number of clusters 𝑚.
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Isodata algorithm
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Fuzzy Clustering

• In fuzzy set partitions, a vector belongs simultaneously to 

more than one cluster:

• Fuzzy membership functions 𝑢𝑗 , 𝑗 = 1, … , 𝑚: 𝒟 → 0,1 .

• 𝐦𝑗: representative vector of 𝑗 -th cluster (cluster center).

• 𝚯 = 𝐦1
𝑇 , … , 𝐦𝑚

𝑇 𝑇

• 𝐔: 𝑁 × 𝑚 matrix whose element (𝑖, 𝑗) equals to 𝑢𝑗(𝐱𝑖).

• 𝑑(𝐱𝑖 , 𝐦𝑗):  distance between 𝐱𝑖 and 𝐦𝑗.
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Fuzzy Clustering

• Distances between a feature vector and a cluster:

• Mahalanobis distance:

𝑑 𝐱𝑖 , 𝐦𝑗 = 𝐱𝑖 − 𝐦𝑗
𝑇

𝐀 𝐱𝑖 − 𝐦𝑗 . 

• 𝐀: symmetric, positive definite matrix.

• Euclidean distance:

𝑑 𝐱𝑖 , 𝐦𝑗 = 𝐱𝑖 − 𝐦𝑗
𝑇

𝐱𝑖 − 𝐦𝑗 . 

• Minkowski distance: 𝑑 𝐱𝑖 , 𝐦𝑗 = σ𝑘=1
𝑙 |𝐱𝑖𝑘 − 𝐦𝑗𝑘|𝑝

1

𝑝.

• 𝐱𝑖𝑘 , 𝐦𝑗𝑘 are the jth coordinates of 𝐱𝑖 , 𝐦𝑗 respectively.
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Fuzzy Clustering 

Algorithms
• Cost function minimization: 

𝐽𝑞 𝚯, 𝐔 = ෍

𝑖=1

𝑁

෍
𝑗=1

𝑚

𝑢𝑖𝑗
𝑞

𝑑(𝐱𝑖 , 𝐦𝑗) ,

with respect to 𝚯 and 𝐔, subject to the constraints:

෍
𝑗=1

𝑚

𝑢𝑖𝑗 = 1,  𝑖 = 1, … , 𝑁.

• 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1, … , 𝑁, 𝑗 = 1, … , 𝑚, 

• 0 < σ𝑖=1
𝑁 𝑢𝑖𝑗 < 𝑁 , 𝑗 = 1, … , 𝑚.

• 𝑞 > 1: fuzzifier parameter.
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Fuzzy Clustering 

Algorithms
Minimization of 𝐽𝑞 𝚯, 𝐔 with respect to 𝐔 under constraints:

• Lagrangian function minimization: 

𝒥 𝚯, 𝐔 = σ𝑖=1
𝑁 σ𝑗=1

𝑚 𝑢𝑖𝑗
𝑞

𝑑(𝐱𝑖 , 𝐦𝑗) − σ𝑖=1
𝑁 𝜆𝑖 (σ𝑗=1

𝑚 𝑢𝑖𝑗 − 1).

• Partial differentiation of 𝒥 𝚯, 𝐔 with respect to 𝑢𝑟𝑠:

𝜕𝒥 𝚯, 𝐔

𝜕𝑢𝑟𝑠
= 𝑞𝑢𝑟𝑠

𝑞−1
𝑑 𝐱𝒓, 𝐦𝑠 − 𝜆𝑟 = 0.

75



Fuzzy Clustering 

Algorithms

Solution:

𝑢𝑟𝑠 =
𝜆𝑟

𝑞𝑑 𝐱𝑟,𝐦𝑠

1

𝑞−1
, 𝑠 = 1, … , 𝑚.

Substitution of 𝑢𝑟𝑠 in the constraint σ𝑗=1
𝑚 𝑢𝑟𝑗 = 1 leads to:

𝜆𝑟 =
𝑞

σ𝑗=1
𝑚 1

𝑑 𝐱𝑟,𝐦𝑗

1
𝑞−1

𝑞−1.
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Fuzzy Clustering 

Algorithms

• Combining the two previous equations:

𝑢𝑟𝑠 =
1

σ𝑗=1
𝑚 𝑑 𝐱𝑟,𝐦𝑠

𝑑 𝐱𝑟,𝐦𝑗

1
𝑞−1

,  𝑟 = 1, … , 𝑁, 𝑠 = 1, … , 𝑚.

• Gradient of 𝐽 𝚯, 𝐔 with respect to 𝐦𝑗:

𝜕𝐽 𝚯,𝐔

𝜕𝐦𝑗
= σ𝑖=1

𝑁 𝑢𝑖𝑗
𝑞 𝜕𝑑 𝐱𝑖,𝐦𝑗

𝜕𝐦𝑗
= 𝟎,  𝑗 = 1, … , 𝑚.
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Fuzzy Clustering 

Algorithms

Fuzzy k-means algorithm:

• Using Mahalanobis distance:

𝜕𝑑 𝐱𝑖,𝐦𝑗

𝜕𝐦𝑗
= 2𝐀(𝐦𝑗 − 𝐱𝑖).

• Substituting the above equation in  
𝜕𝐽 𝚯,𝐔

𝜕𝐦𝑗
, we obtain:

σ𝑖=1
𝑁 𝑢𝑖𝑗

𝑞
(𝑡 − 1) 𝐀(𝐦𝑗 − 𝐱𝑖) = 𝟎 .
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Fuzzy Clustering 

Algorithms

• Since 𝐀 is positive definite, it can be discarded: 

𝐦𝑗 𝑡 =
σ𝑖=1

𝑁 𝑢𝑖𝑗
𝑞

𝑡−1 𝐱𝑖

σ𝑖=1
𝑁 𝑢

𝑖𝑗
𝑞

𝑡−1
.

• Termination criterion:

||𝐦𝑗 𝑡 − 𝐦𝑗 𝑡 − 1 || < 𝜖, 𝑗 = 1, … , 𝑚.
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Vector Quantization

Vector Quantization:

• Compact representation of the data set 𝒟 = {𝐱1, … , 𝐱𝑁}, 𝐱𝑖 ∈
ℝ𝑛 by much fewer vectors 𝐦𝑖 ∈ ℝ𝑛, 𝑖 = 1, … , 𝑚, 𝑚 ≪ 𝑁
of the same dimensionality.

• Each 𝐦𝑖 ∈ ℝ𝑛 corresponds to one cluster 𝒞𝑖, 𝑖 = 1, … , 𝑚.
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Vector Quantization

• A data set 𝒟 = {𝐱1, … , 𝐱𝑁} , 𝐱𝑖 ∈ ℝ𝒏 is to be clustered

(partitioned).

• Desired cluster number 𝑚 ≪ 𝑁.

• Distance measure 𝑑(𝐱, 𝐲) between two vectors 𝐱, 𝐲.

• Calculation of cluster centers.

• Sorting algorithm to decide vector proximity.
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Vector Quantization

• Data vectors are partitioned in 𝑚 clusters {𝒞𝑖 , 𝑖 = 1, … , 𝑚}.

• Mapping: 𝐦 = 𝑸(𝐱) .

• ℝ𝑛 is partitioned in 𝑚 Voronoi regions (one per cluster).

• Each Voronoi region (cell) ℛ𝑖 is represented by 𝐦𝑖 ∈ ℝ𝑛,
𝑖 = 1, … , 𝑚:

|𝐱 −𝐦𝑖|< |𝐱 −𝐦𝑗|, 𝑖 ≠ 𝑗.

• Cluster 𝒞𝑖 , 𝑖 = 1, … , 𝑚 vectors reside in ℛ𝑖.

• Voronoi cells may have regular structure.
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Vector Quantization

83

Voronoi regions and clusters in ℝ2.



Vector Quantization

84

Hexagonal Voronoi cells in ℝ2.



Vector Quantization

• Codevectors 𝐦𝑖 ∈ ℝ𝑛, 𝑖 = 1, … , 𝑚: cluster centers.

• Any vector in Voronoi region  𝒞𝑖 are represented by 𝐦𝑖 .

• Quantization error (distortion) |𝐱 −𝐦𝑖|.

• If 𝑥𝑖 ∈ ℝ, classical (scalar) quantization:

|𝑥 −𝑚𝑖|< |𝑥 −𝑚𝑗|, 𝑖 ≠ 𝑗.

ℛ𝑖 = [(𝑚𝑖−1 +𝑚𝑖)/2, (𝑚𝑖+𝑚𝑖+1)/2].

• It can be applied for 1D histogram thresholding.
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Vector Quantization

86
Histogram thresholding.



Vector Quantization

• Advantages:

• Reduced storage requirements and faster processing. 

• Comparing two vectors has little computational 

complexity, thus VQ algorithms are not time-consuming.

• Disadvantages:

• Quantization error. 
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Vector Quantization
Linde-Buzo-Gray Algorithm

• Initialization: Choose 𝑚 random vectors 𝐦𝑖 , 𝑖 = 1, … , 𝑚.

• Recursion:

• Each vector 𝐱 from set 𝒟 is assigned to vector 𝐦𝑘:

𝑘 = arg𝑖 min 𝑑(𝐱, 𝐦𝑖).

• Calculate total quantization error: 𝐽 = σ 𝑖 σ 𝑑(𝐱, 𝐦𝑖).

• If 𝐽 < 𝜀 is smaller than a threshold, stop.

• Else calculate new centers 𝐦𝑖 , 𝑖 = 1, … , 𝑚 and repeat

previous steps until convergence.

• Very similar to k-means algorithm.
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Vector Quantization
Binary Split Algorithm

Initialization: Define a random cluster center. All vectors of data set 

𝒟 belong to the same cluster.

• Iteration 𝑡: (Total 𝐿 iterations producing 2𝐿 codevectors) 

• Each codevector 𝐦𝑖 is broken into two vectors 𝐦𝑖(1 + 𝜖), 𝐦𝑖(1 − 𝜖)
, 𝜖 ∈ [0.01,0.005]

• Each vector 𝐱 from training set is assigned to the closest vector 𝐦𝑘: 

𝑘 = arg𝑖 min 𝑑(𝐱, 𝐦𝑖).

• Calculate total quantization error: 𝐽 = σ 𝑖 σ 𝑑(𝐱, 𝐦𝑖). 

• If 𝐽 is smaller than a threshold, stop.

• Calculate new center for each 𝑖. If t < 𝐿 repeat previous steps, else 

stop.
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Vector Quantization
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Learning Vector 

Quantization

• Learning Vector Quantization (LVQ) was proposed by

Kohonen.

• Also called Self-Organizing Maps (SOM).

• Initial values are set based on classic cluster algorithms.

• Code vectors 𝐦𝑖 are iteratively optimized.

• Goal: clustering based on the nearest-neighbor rule.

• Clusters are described by their codevectors.

• Cluster boundaries matter.
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Learning Vector Quantization

Μathematical model of vector quantization

• 𝐱: vector to be assigned to a cluster.

• Employ Euclidean distance.

• Find the winner cluster:

• Closest cluster center 𝐦𝑘: 

𝑑 𝐱, 𝐦𝑘 = min
𝑖

𝑑 𝐱, 𝐦𝑖 , ∀𝑖 ≠ 𝑘 .
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Learning Vector 

Quantization

• Cluster center updating:

𝐦𝑘 𝑡 + 1 = 𝐦𝑘 𝑡 + 𝑎 𝑡 [𝐱 − 𝐦𝑘(𝑡)]

𝐦𝑖 𝑡 + 1 = 𝐦𝑖 𝑡 , for 𝑖 ≠ 𝑘,

• 0 ≤ 𝑎 𝑡 ≤ 1.

• Distance 𝑑 𝐱, 𝐦𝑘 is monotonically decreasing:

• If 𝛅𝐱𝒊 = 𝐦𝑖 𝑡 + 1 − 𝐦𝑖 𝑡 , then [∇𝐦𝑘
𝑑 𝐱, 𝐦𝑘 ]𝑇𝛅𝐦𝑖 < 0.
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Learning Vector 

Quantization

• Incremental algorithm: data may come on the fly.

• For the first steps, 𝑎(𝑡) value shall be close to 1.

• Depending on total number of steps, 𝑎(𝑡) decreases:

• Linear, exponential decrease.

• When 𝑎 𝑡 falls below the threshold, the algorithm freezes.

• Updating of winning cluster neighborhood 𝒩 𝒞  can be

performed.
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Vector Quantization

95
LVQ cluster center updating.



Learning Vector 

Quantization Algorithms

Competitive cluster center updating

• For the winner cluster:

𝐦𝑘 𝑡 + 1 = 𝐦𝑘 𝑡 + 𝑎 𝑡 [𝐱(𝑡) − 𝐦𝑘(𝑡)].

• For the rest of the clusters:

𝐦𝑘 𝑡 + 1 = 𝐦𝑘 𝑡 − 𝑎 𝑡 𝐱 𝑡 − 𝐦𝑘 𝑡 .
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Vector Quantization

97

Hexagonal Voronoi cell neighborhood 𝒩 𝒞  in ℝ2.



Learning Vector 

Quantization Algorithms

Cooperative cluster center updating

• For clusters within neighborhood 𝒩 𝒞𝑘 :

𝐦𝑘 𝑡 + 1 = 𝐦𝑘 𝑡 − 𝑎 𝑡 𝐱 𝑡 − 𝐦𝑘 𝑡 .

• For the rest of the clusters:

𝐦𝑘 𝑡 + 1 = 𝐦𝑘 𝑡 ,     𝑖 ≠ 𝑘. 
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Graph-based Clustering

Data graph visualization.
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Graph-based Clustering

Similarity graph, Adjacency/Similarity matrix

• Let 𝒟 = {𝐱1, … , 𝐱𝑁} be the data set where 𝐱𝑖 ∈ ℝ𝑛.

• Construct a graph 𝒢 𝒱, ℰ , where each graph vertex

corresponds to a point 𝐱𝑖 , 𝑖 = 1, … , 𝑁 .

• Similarity graphs can be weighted connected and

undirected.

• Graph 𝑁 × 𝑁 adjacency matrix: 𝐀 ∈ 0,1 𝑁×𝑁.

• Similarity (weight) matrix: 𝐖 = 𝑊𝑖𝑗 ∈ ℝ𝑁×𝑁.
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Graph-based Clustering

a) Similarity graph; b) Similarity matrix.
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Graph-based Clustering

• Vertex degree: number of vertex connection in 𝐀 .

• Gaussian kernel for edge weight calculation:

𝑊 𝑖, 𝑗 = ቐ𝑒
−

||𝐱𝑖−𝐱𝑗||2

2𝜎2 , if ||𝐱𝑖 − 𝐱𝑗|| < 𝑒,

0, otherwise.

• 𝑒: is a user-defined constant.

• || . || is Euclidean norm.
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Graph-based Clustering

Nearest neighbor graphs
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a) 𝑘-nearest neighbors graph; b) 𝑒-neighborhood graph.



Graph-based Clustering

Graph Clustering

• Cluster graph vertices (data vectors) into tightly linked

clusters.

• Vertices of the same cluster are:

• Strongly connected to each other and

• sparsely connected to the rest of the graph.

• Intra-cluster connectivity: measured by the cluster

density.

• Inter-cluster connectivity: measured by graph cut

cardinality.
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Graph-based Clustering

Global clustering algorithms

• Iterative methods:

• Go through all vertices and assign them to clusters.

• Decisions based on optimization of a node connectivity

metric.

• Online method:

• Process one vertex at a time and update clusters based

on what has been encountered thus far.
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Graph-based Clustering

• Hierarchical structure:

• Clusters not rigidly defined.

• Subclusters can be contained in the same cluster.
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Graph-based Clustering

Adjacency matrix eigenanalysis:

• Adjacency matrix eigenvalues and eigenvectors: 

𝐀𝐮𝑖 = 𝜆𝑖𝐮𝑖 , 𝑖 = 0, … , 𝑁 − 1.

• 𝜆𝑖 , 𝑖 = 0, … , 𝑁 − 1: roots of characteristic polynomial: 

det(𝐀 − 𝜆𝚰) = 0.

• Adjacency matrix eigen-decomposition: 𝐀 = 𝐔𝚲𝐔𝑇.
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Graph-based Clustering

Laplacian matrix eigenanalysis:

𝐋 = 𝐃 − 𝐀.

• 𝐃: 𝑁 × 𝑁 diagonal vertex degree matrix. 

• Symmetric Laplacian matrix : 

𝐋𝑆 ≜ 𝐃−
1

2 𝐋𝐃−
1

2 = 𝐈 − 𝐃−
1

2𝐀𝐃−
1

2.

•  Random walk Laplacian matrix : 

𝐋𝑅 ≜ 𝐃−1 = 𝐈 − 𝐃−1𝐀.
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Graph-based Clustering

Laplacian matrix eigenanalysis:

• Non-decreasing eigenvalue order:

𝜆0  ≤  𝜆1  ≤  ⋯  ≤  𝜆𝑁−1.

• Graph spectrum is the eigenvalue set: {𝜆𝑖 , 𝑖 = 0, … , 𝑁 −
1}

• It is invariant to graph isomorphism

• Graph vertex permutations.

• Non-isomorphic graphs can be co-spectral.
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Graph-based Clustering

• 𝜆0 is always zero, 0 = 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑁−1 ≤  2.

෍
𝑖=0

𝑁−1

𝜆𝑖 = 𝑁.

• 𝜆𝑁−1 = 2, if graph 𝒢 is bipartite.
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Graph-based Clustering

• Algebraic connectivity (eigenvalue 𝜆1):

• If 𝜆1 > 0:

• graph 𝒢 is connected.

• else: 

• multiplicity of eigen value 0 is equal number of connected 

graph components.
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Graph-based Clustering

• Graph comprised of 𝑘 disjoint cliques:

• 𝑘 smallest eigenvalues of normalized Laplacian matrix are

0.

• 𝑖-th corresponding eigenvector (0 ≤ 𝑖 ≤ 𝑘 − 1) has non-

zero values for vertices of the 𝑖 –th clique.

• Adding edges cause the eigenvalues to increase and

change slightly corresponding eigenvectors.
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Graph-based Clustering

Graph clustering based on spectral bisection:

• 2-way graph partitioning.

• It uses the so-called Fiedler vector:

• eigenvector 𝐮1 corresponding to eigenvalue 𝜆1 of

Laplacian matrix.

113



Graph-based Clustering

N-Cut Graph Clustering

• When there are 2 clusters with strong internal connectivity

and sparsely connected:

• Positive Fiedler vector entries correspond to one cluster

and negative to the other.

• This provide a bisection of the graph in two subgraphs.

• Iterative bisection of the resulting subgraphs.
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Graph-based Clustering

N-Cut Graph Clustering (2-way partitioning).



Graph-based Clustering

Edge-based bisection:

• Compute Fiedler vector.

• Split vertices into 2 groups:

• their relevant Fiedler vector entries are below/above the

Fiedler vector entries median.

• Edges between these two groups are cut.
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Graph-based Clustering

Vertex-based bisection: 

• Compute Fiedler vector.

• Find the largest gap in Fiedler vector entries

• Split Fiedler vector entries accordingly. 

• Split the graph at the cut provides the best cut quotient.
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Graph-based Clustering

Spectral graph clustering:

• Perform eigenanalysis on one of the normalized

Laplacians.

• extract 𝑟 eigenvectors corresponding to the smallest

eigenvalues excluding 𝜆0.

• Store eigenvectors in a 𝑁 × 𝑟 matrix 𝐔.

• Its rows are the new data representation.

• Use any standard clustering algorithm to cluster them.
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Graph-based Clustering

Graph-based clustering properties:

• Little user input is needed. 

• Trivial clusters easily avoided.

• Unlikely to get bad clustering results. 

• They cannot be employed in extremely large graphs:

• memory limitations. 

• Eigenanalysis has 𝑂(𝑁3) computational complexity. 
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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