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Motivation C\ZML

Numerous real-world problems require to process sequences
of variable length L.

Sequence is an ordered collection of data points, dependent
to one another, indexed in time or space. Each data point is a

vector denoted as:
X1 ERd, l=1, ,L
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Motivation C\ZML

RNN limitations

 Slow convergence during training and high inference
time. Model architecture prevents parallelization.

 Exploding and vanishing gradients. \When unfolded
through time, the model depth is proportional to the input
length L.

* Long-range dependencies are bottlenecked by a fixed
Size memory.
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Motivation C\ZML

Dealing with RNNs limitations

 Gradient clipping [PAS2012] prevents exploding
gradients.

 Gating mechanisms applied in Gated Reccurent Units
(GRUs) [CHO2014] and Long Short-Term Memory networks
(LSTMs) [HOC1997] deal with vanishing gradients.
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Motivation C\ZML

CNNs limitations
« Local interactions are considered in each layer.

« High computational complexity. The number of
operations required to capture long-term dependencies,
grows linearly [GEH2017] or logarithmically [KAL2016] with

the distance between sequence samples.
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Motivation C\ZML

Transformers

Transformer networks [VAS2017] deal with the limitations of
RNNs and CNNSs, leveraging attention mechanisms not as a

supplement to standard convolutional or recurrent operations
but as a standalone module.
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Transformer architecture .. (VML

Output (Sequence)

A
Task Specific
Branch

Transformer was originally designed % ]M
for neural sequence transduction.

Decoder

/ |Layer Normalization | \
[
Fa

3
D =
X g2
It h Feed Forward e 2
L C
asS aln encoaer-aecoaer structure — 2§
Encoder ©
f I I / |Layer NorlrnalizatiorTI\ SEE T lER T
oliowe y one or more tas 5
A e
EE . ¢ K k[
LY 30 ulti-Heal S 3 N
= = X
specific branches [ Ot | T comattonsn ) £ ¢
. ¥ o = 3
O
Nx Layer Normalization Layer Normalization
7 ¥ A
> e
D \vray
- g 3 -~ - g
gg l Muh-FIea_E ] ausal) Mufti-Hea gg
2 “E-’ SP;If-AJt\entlj'm Ssilf-A‘t\entlfm z QE-’
=S| ql Kl Vv Ql Kl V e
Positional PE 5 P Positional
Encoding ,? E“ Encoding
ncoder ecoder
Input Embeddin Input Embeddin
X Y
Encoder Decoder
Input Sequence Input Sequence

Q | | D Artificial Intelligence & General Transformer architecture. 9
Information Analysis Lab



Transformer architecture C\ZML

Encoder
* The encoder consists of a cascade of Ny identical blocks.

« Each block has two sub-layers:
« A multi-head self-attention module.
* A position-wise fully connected feed-forward network.

* Residual connection [HE2016] is employed around each
sub-layer followed by layer normalization [BA2016].
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Transformer architecture C\ZML

Decoder

 The decoder also consists of a cascade of Ngidentical
blocks.

» Each block has three sub-layers:

A (causal) multi-head self-attention module. Optionally a mask is
employed to prevent current data point from attending subsequent ones.

A multi-head cross-attention module between encoder and decoder
sequences.

* A position-wise fully connected feed-forward network.

* Again, residual connection and layer normalization are
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Transformer architecture C\ZML

 The input sequences to the encoder and the decoder

having lengths L # L' form matrices X € RL*? and Y € R %4
respectively.

* In the original version, the encoder maps an input
sequence X to a latent sequence Z € R:*9m,

« Given Z, the decoder generates one data sample at a time
of an output sequence z; € R, 1 =1,..,L, forming matrix
Z' € RL*d"
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Transformer architecture C\ZML

« At each step, the original recursive decoder
(autoregressive) employs the previously generated output
sequence samples when generating the current one.

 Typical application: machine translation.

 After the decoder, one task-specific layer consists of a linear
layer followed by SoftMax activation function.

 This way, in each step, the original model approaches
Neural Machine Translation (NMT) as a classification task.

Attificial Intelligen
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Transformer architecture C\ZML

Originally, a transformer network was trained in supervised
fashion and tested on the English-to-German and English-to-
French newstest2014 tests outperforming (using BLUE score)
previous state-of-the-art models.

Currently, it i1s also trained on vast amounts of data in an
unsupervised manner [DEV2018, RAD2018].

« Then it is fine-tuned on downstream tasks.
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Input embeddings C\ZML

A linear projection is used to convert the encoder or
decoder input sequence samples to embeddings of
dimension d,,,:

X, = WX
 To facilitate the following residual connections, all sub-

layers in the model produce outputs of the same dimension
d,,.

 |In the original model, the embedding layers of the encoder
and the decoder, arbitrarily share the same weight matrix
W. multiolied bv ./d ..
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Input embeddings (VML
tnput embeddings are computed as follows:

Xe = y/dmX;We
Y, = /d,, Y;W,.

where W, € R%*d%m_
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Positional encoding C\ZML

Challenge

 Transformers contain attention matrices formed by
(transformed) vector dot products.

« Scaled dot-product attention Is permutation equivariant.
That Is, shifted versions of the input sequence samples lead
to the same (shifted) output sequence.

* Therefore, Transformers are seguence order agnostic.

« However, sequence semantics highly depend on the
Input sequence order.
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Positional encoding QML

tn the original model, positional information is pro
through additive vectors of the same dimension d,, as the
iInput embeddings.

Xe, = Xe, + P1-

Each dimension of a positional encoding is a sinusoidal
function:

Py 2q 2 sin(l/1000%4/dm),
Proasr = cos(1/1000%24/4m) d =1,..,d,,, L=1,..,L.
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Positional encoding C\ZML

thput embeddings with similar relative position in the
sequence have similar positional encodings.

128-dimensional positional encodings p; (horizontal axis) for each [ of a sequencme of Ier;(JgtF’ii”Soaileft) and dot-
products of p; and py (right)for [,k = 1, ..., 50 [KAZ2019].
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Scaled dot-product attention CML

Three new sequences Q € RL% (queries), K € RL %4k (keys),
V € RL'% (values) are generated:

Q=X,Wy(+1,,by), W, € R¥m*dk b, € R,
K=YWg(+1,/.,by), W € RIm*dk b, € R,
V=YW, (+1,,,by), W, € RIm*% b, € R,
by linearly transforming two sequences X, € R:*? and Y, €
RL' %4 where L # L',

* Learnable weight matrices W,, Wy, W, .
* |In the original model, it is arbitrarily chosen that d;= d,,.
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Scaled dot-product attention C\ZML

tJsing the terminology in [GRAV2014], attention is an averaging
of values, associated to keys matching to specific queries.

In cross-attention each data point of sequence X, attends to all
data points of sequence Y, in order to compute a new
representation of sequence X;:

X, =Softmax (Q—KT)V

e ' \/d_k .
The row-wise Softmax operator renders a probability
distribution, representing the normalized correlation scores of

ach query to all the keys.
QS
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Scaled dot-product attention C\ZML

Each row of the new representation X, is a weighted average of
the rows of V, using the normalized correlation scores generated
by the Softmax operator.

The normalization by ./d, is arbitrarily chosen in the original
model as it leads to more stable gradient values during training,
thus avoiding the exploding gradients problem.

When X, = Y,, the attention mechanism is called self-attention
or intra-attention.
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Scaled dot-product attention C\ZML

|

Multi-headed attention Linear

« The scaled dot-product attention is 1
independently computed H times in ——
parallel forming the so-called attention eaed Dot Frodc .]J&h
heads. Am——

Linear Linear Linear
* Multiple independent attention heads r P P
are intended to improve the expressivity g . .
of the model, including disambiguating

different semantic uses of the same input  Multiheaded attention [VAS2017].
embedding.
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Scaled dot-product attention C\ZML

Multi-headed attention

* Multi-headed attention facilitates adding more parameters into
the network, exploiting the parallel computing capabilities of
GPUs.

* |t Is an efficient way of increasing the width instead of the
depth of the network without adding significant
computational complexity.
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Scaled dot-product attention C\ZML

Multi-headed attention
A maximal number of independent attention heads is chosen:

The sequences X, € RiX4v j =1,...,H produced by each head

are horizontally concatenated and is linearly projected using a
learnable matrix W, € R %v>dm:

emb [X 'Xgi IngH‘]w
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O”DIfmi AIy Lb 28



Attention and Transformer C\ZML
Networks

« Motivation
* Transformer architecture
 |Input embeddings
 Positional encoding
« Scaled dot-product attention
« Layer normalization
« Residual connection
* Training

« Transformers efficiency

Artific IIfIIg
MO pymetnengencers .



Layer normalization C\ZML

bayer normalization is applied point-wise for each sequence
sample x;, € R%m, 1 =1,...,L:

. Xe, — Wy
xez:(ez )OY+B:

]

* v,B € RYm are learnable parameter vectors.

* (O denotes elementwise product.

* Vector y; entries y; and o; are computed using the elements of
Xe,"

1 |
Uy = ——Xa g = ? (xXq — U1)?.
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Residual connection C\ZML

&iven a specific input embedding x; , a residual connection is
applied as follows:
Xe, = F{Xg,)tXe,.
» F: operator representing a feed-forward network or multi-nead
attention.

« Residual connections are empirically shown to facilitate
training convergence.

 The addition F(x;,)*x., in forward pass results in duplicating
the corresponding gradient in backward pass to deal with the
vanishing gradients problem.
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Transformer Training C\ZML

€lassification
« A sufficient large training sample set D is required for Supervised
Learning (regression, classification):
D = {(Xi,yi),i = 1, ,N}
« Xx; € R%: d-dimensional input (feature) vector of the i-th training sample.
« y;. its target label (output), not to be confused with decoder input
having the same notation y;.
. In classification tasks, y; € [0,1]™.

 Training. Given N pairs of training samples D = {(x;,V;),i =1,..N},

where x; € R* and y; € [0,1]™, estimate ® by minimizing a loss
fiinctinn® min (v @)
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Transformer Training C\ZML

 Depending on the task to be solved, an appropriate loss
function J(0) is formed and then optimized through a gradient
descent-based criterion.

« Empirically, it has been shown that optimizing the loss function
with Adam [KIN2015] outperforms the Stochastic Gradient
Descent (SGD) counterpart.

« The main reason for the poor performance of SGD is that
stochastic gradients are accompanied by a heavy-tailed noise
distribution.

Attificial Intelligen
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Transformer Training C\ZML

YWhen using Adam optimizer, in every iteration t of the training,
the network parameters 0, are updated as follows through back

propagation:
m,
Bt = Bt—l — a .
JV + €
* a:learning rate

 &: a constant hyperparameter.
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Transformer Training C\ZML

{he vectors m; and v, are computed as follows:

m, =m,/(1— 51t) ) m; =fm;_; +(1—-p5,)V]
V. =v./(1—-PB3), Ve = Boveoq + (1 = B2) (V)2

* B4, B,: discount factors (hyperparameters).
« VJ: the gradient of ] with respect to 0;_;.

« The terms m; and V, facilitate bias correction, preventing the
too high gradient values in the early iterations.

Attificial Intelligen
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Transformer Training @ML

« The m; term is an exponentially weighted average o
gradients VJ] (fisrt moment).

» The discount factor f; (momentum) accounts for the noise
imposed by SGD.

 The v, term is an exponentially weighted average of the
second-order gradients (V/])* (second moment).

* It hinders too large or small steps towards the steepest
descent when the loss function J is too inclined or flat,
respectively.
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Transformer Training @ML

Usuall;;, the loss function J contains an L, regularizatio
ll 9'It't_ia”first‘ moment in Adam is computed as follows:
(V))'=V] + 2d0,_;.
« 2d0,_, is the first order gradient of theL,regularization term
dl|0._1 1%
* d is hyperparameter.

In._the variant AdamW [LOS2019], the L, regularization is
applied directly into the update step:

- (1, \
N — 0  _ n 1 AA
(IO anciamtigence s .




Transformer Training C\ZML

 AdamW is the most widely used optimization algorithm used in
Transformer training.

* |t tends to have better convergence behavior compared to
Adam, especially when the L, regularization improves
generalization performance.

« AdamW has gained popularity  in Natural Language
Processing (NLP) tasks, particularly in transformer-based

models like BERT (Bidirectional Encoder Representations
from Transformers).
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Transformers efficiency C\ZML

« Parallelizable operations fully exploiting modern hardware
(GPUs) and reducing FLOPs.

 Long-range semantic dependencies are efficiently captured.

 Model performance scales very well with the number of
parameters.

* Transformer can be pre-trained in unsupervised fashion and
then fine-tuned In supervised way on downstream tasks.

« State-of-the-art performance in various modalities (text,
Image, audio, etc.)
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Q& A

Thank you very much for your attention!

Contact: P-r”dfff |. Pitas
pitas@csd.auth.gr et
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