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Dealing with RNNs limitations

• Gradient clipping [PAS2012] prevents exploding 

gradients.

• Gating mechanisms applied in Gated Reccurent Units 

(GRUs) [CHO2014] and Long Short-Term Memory networks 

(LSTMs) [HOC1997] deal with vanishing gradients.
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CNNs limitations

• Local interactions are considered in each layer.

• High computational complexity. The number of 

operations required to capture long-term dependencies, 

grows linearly [GEH2017] or logarithmically [KAL2016] with 

the distance between sequence samples.
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Transformers

Transformer networks [VAS2017] deal with the limitations of 

RNNs and CNNs, leveraging attention mechanisms not as a 

supplement to standard convolutional or recurrent operations 

but as a standalone module.
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Transformer was originally designed 

for neural sequence transduction.

It has an encoder-decoder structure 

followed by one or more task 

specific branches.

General Transformer architecture.

Transformer architecture
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• At each step, the original recursive decoder 

(autoregressive) employs the previously generated output 

sequence samples when generating the current one.

• Typical application: machine translation.

• After the decoder, one task-specific layer consists of a linear 

layer followed by SoftMax activation function.

• This way, in each step, the original model approaches 

Neural Machine Translation (NMT) as a classification task.
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Originally, a transformer network was trained in supervised 

fashion and tested on the English-to-German and English-to-

French newstest2014 tests outperforming (using BLUE score) 

previous state-of-the-art models.

Currently, it is also trained on vast amounts of data in an 

unsupervised manner [DEV2018, RAD2018]. 

• Then it is fine-tuned on downstream tasks.
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Challenge

• Transformers contain attention matrices formed by 

(transformed) vector dot products.

• Scaled dot-product attention is permutation equivariant. 

That is, shifted versions of the input sequence samples lead 

to the same (shifted) output sequence.

• Therefore, Transformers are sequence order agnostic. 

• However, sequence semantics highly depend on the 

input sequence order.
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Multi-headed attention

• Multi-headed attention facilitates adding more parameters into 

the network, exploiting the parallel computing capabilities of 

GPUs.

• It is an efficient way of increasing the width instead of the 

depth of the network without adding significant 

computational complexity.
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• Parallelizable operations fully exploiting modern hardware 

(GPUs) and reducing FLOPs.

• Long-range semantic dependencies are efficiently captured.

• Model performance scales very well with the number of 

parameters.

• Transformer can be pre-trained in unsupervised fashion and 

then fine-tuned in supervised way on downstream tasks.

• State-of-the-art performance in various modalities (text, 

image, audio, etc.)
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Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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