

What is AI? All you need to understand Al Fundamentals

Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr <u>www.aiia.csd.auth.gr</u> Version 1.1

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Why this lecture?

Learn Artificial Intelligence (AI) basics in 1 hour.

• No special knowledge neither mathematics are needed.

Questions that YOU should answer:

- How can I use AI to improve my business?
- Will AI steal my job?
- Can machines become more intelligent than humans?
- Should we be afraid of machines?
- Is AI a blessing or a curse?

What is AI?

 AI Science and Engineering (AISE) is the interdisciplinary, scientific study and engineering of Artificial Systems that mimic and/or surpass human intelligence in information analysis and human interaction with the world.

- Core AISE disciplines are:
 - Classical (Symbolic) Artificial Intelligence (AI),
 - Machine Learning (ML).

Introduction to AI Science

- Symbolic Al
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Concepts and ideas (ιδέες).

- Concepts are specific mental constructs residing in our mind (brain?) that refine and abstract ideas.
- Examples: 'Triangle', 'Freedom', 'Love'.
- Concept definition: Triangle consists of three points connected by 3 straight line segments.

С

Triangle.

Ideas in Philosophy.

- Plato's cave.
- *Idealism*: reality is a reflection of ideas.
- Materialism: ideas are shadows of matter on itself (brain).

- Symbolic AI operates on concepts and their relations though logic and search.
- It mimics and simulates high-level human intelligence and *reasoning*.
- **Reasoning** is one of the most complex brain activities.
- Symbolic Al employs Mathematical Logic.

• Examples:

'If somebody has high fever and coughs, she/he has flu.' 'If I turn left, I may enter the opposite lane.'

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

- Data: measured quantities related to nature and/or human activities.
- Data are primarily numbers representing object characteristics (*features*).
 Measured in bits.

• Data can be organized in vectors.

Data Calculating **object features**: person weight and height.

S. Terzis , Prof. Ioannis Pitas Aristotle University of Thessaloniki <u>pitas@csd.auth.gr</u> <u>www.aiia.csd.auth.gr</u> Version 1.0

Signals y = f(t): voice, financial **time series** etc.

• Also called *functions*.

Time series of Euro/USD conversion rate.

Digital Images: Matrix of image dots (pixels). Each image can have up to 48 Mpixels or more!

Once we extract the object/image/signal features (data):

- Data analysis can be performed.
- Mathematics and Computer Science are needed.
- Machine Learning is applied Statistics, Calculus and Programming.
- We can concentrate on data and forget the real world.
- All sciences are increasingly mathematized.
- High impact on Liberal sciences and Medicine.

Exponential data increase:

- Proliferation of sensors
- Detailed recording of nature and humans
 Data Volume (ZB)

35

30

25

20

15

10

5

• Sensing automation.

Big data analytics is only possible through Machine Learning.

Year

2002 2013 2014 2015

x_2 x_2 x_2 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_2 x_1 x_2 x_2 x_2 x_1 x_2 x_2 x_2 x_2 x_2 x_1 x_2 x_2 x_2 x_1 x_2 x_2 x_2 x_2 x_3 x_4 x_1 x_2 x_2 x_3 x_4 x_1 x_2

Distance between two person images.

Similarity between two person characters.

Artificial Intelligence & Information Analysis Lab

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Data clustering

Face clustering:

- Input: many facial ROIs
- Output: facial image clusters.
- Unsupervised learning.
- Applications:
 - Biometrics
 - Surveillance applications
 - Video analytics.

Data clustering $x_{2_{A}}$

Set partitioning. Data clusters should: a) be homogeneous; b) distant from each other.

Data clustering

Clustering using *K-means algorithm*.

S. Terzis, Prof. Ioannis Pitas Aristotle University of Thessaloniki www.aiia.csd.auth.gr Version 1.0

Data clustering

Data clustering offers:

- Description of data geometry.
- Data visualization.
- Abstraction.
- Data compression.

Abstraction

Concept instances

Instances of a triangle.

Concept 'triangle'.

- Abstraction and generalization:
 - Simplification and data compression.

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Supervised Machine Learning

Decision-making theory:

- Does object x belong to class C_1 or class C_2 ?
- E.g., 'car' or 'pedestrian'?

Examples:

- Autonomous systems.
- Medical diagnosis. Artificial Intelligence & Information Analysis Lab

Distance-based classification.

2D perceptron: Recognize women vs man using:

• x_1, x_2 : weight, height.

```
Decision line: w_1x_1 + w_2x_2 + b > 0.
```

Four errors!

Optimization problem.

Try to minimize errors!

2D perceptron: Recognize women vs man using:

• x_1, x_2 : weight, height.

```
Decision line: w_1x_1 + w_2x_2 + b > 0.
```

Two errors!

Optimization problem.

Try to minimize errors!

2D perceptron: Recognize women vs man using:

 x_2

X

 \mathcal{C}_2 X

 \bigcirc

Х

 \mathcal{C}_1

 x_1

 \bigcirc

• x_1, x_2 : weight, height.

Decision line: $x_1 + 29x_2 - 50 > 0.$

Zero Errors!

Mission accomplished!

30

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

• Basic computational unit of the brain.

2D perceptron for woman/man reognition

• x_1, x_2 : weight, height. Separating line: $x_1 + 29x_2 - 50 > 0$.

S. Terzis , Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 1.0

Perceptron training. Minimization of classification error.

Artificial Intelligence & Information Analysis Lab

34

Information Analysis Lab

Artificial and Biological Neural Networks

- Neurons can form *Artificial Neural Networks* (ANNs).
- Deep NNs (DNNs) have many neuron layers.
- Is *network complexity* the basis of both the biological and artificial intelligence?

Input 1st hidden 2nd hidden 3rd hidden Output layer (l = 0) layer (l = 1) layer (l = 2) layer (l = 3) layer (l = L = 4)

Deep neural Network.

Neural regression provides an approximation of a function

y = f(t).

- *t: input* (time).
- \hat{y} : **output** (approximated function values).
- Very useful in *time series* prediction.
- **Applications**: financial prediction, weather forecasting.

Advantages

- Very good decision accuracy
 - (frequently above human performance).
- Wide range of applications.
- New generative (creative) arts.

Pitfalls

- Too many data/energy needed for their training.
- Poor explainability.
- Possible decision bias.

VML

Current AI revolution:

- AI means ML, which means Deep Neural Networks
- Stagnation of symbolic AI
- Resurrection of a dead term: Al

Major breakthrough needed:

- Advancement of symbolic AI
- Fusion of Machine Learning and symbolic AI.

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Digital images consist of pixels.

Input image.

Vertical image edges.

田

Neural Image Features.

Convolutional Neural Networks: using neural image features for ML tasks.

Face detection examples.

Cyclist detection and tracking.

Artificial Intelligence & Information Analysis Lab Region segmentation.

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Word embeddings

- Transforming words in series of numbers (vectors).
- Predicting word order.

Vectors representing words 'to' and 'center' can best interpolate the 'predict' vector.

Natural Language Processing **CML**

ChatGPT text production

- Question: What do you know about Mt. Olympus and Greece?
- Answer using word order prediction:
 - Mt Olympus is the highest mountain in Greece.
 - Mt Olympus is the loveliest mountain in Greece. (sentimental).
 - Mt Olympus is a tropical mountain in Greece. (LLM hallucination).

Representing texts by vectors:

Principal component analysis of Homer's Iliad and Odyssey.

Information Analysis Lab

Natural Language Processing

Large Language Models

- ChatGPT, GPT-4
- Mathematical Language Modeling (word embedding).
- Smooth text production.
- Not intended to offer inference capabilities.
- Code programming.
- Certain mathematical skills.
- Big question: what is its best use in education?

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative Al
- Knowledge
- AI and Society
- AI, Life and the Environment

Generative Al

Generative AI creates synthetic data, e.g., images.

• They can be fake data.

Generative Adversarial Networks (GANs).

- The *generator* NN generates an image.
- The discriminator NN decides:
 - Real or fake?

Generative Al

(VML

Sculpture Examples

Example image

Synthesized

Input poses Synthesized

GANs in video synthesis.

Generative Al

• **Diffusion Models** (**DMs**) gradually degrade the training data (images) by adding noise, while attempting to learn to reverse this process to generate new data (images).

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Artificial Intelligence &

Information Analysis Lab

Information

- Notoriously vague definitions.
- My definition: Information is the result of the manual or automatic Data Analysis.

Taxonomy: Data \rightarrow Information \rightarrow Knowledge.

Machine Learning/inference produces *information* (including metadata).

Information theory/entropy: bits (once more)!

Knowledge Information Data

Knowledge is primarily a product of reasoning.

- Is knowledge finite?
- Can we measure knowledge?
- Knowledge increase is linear.
- Encyclopedias

Artificial Intelligence &

nformation Analysis Lab

Research publications.

Global research output (publication) growth.

Data/Information society:

- Exponential data growth.
- Data acquisition automation.
- Information extraction automation through ML.

Sustainability?

- More sensors, more processors, Moore's law.
- Energy-intensive data and information extraction.

Knowledge society:

- Exponential knowledge growth.
- Not there yet: *knowledge production and communication is still manual*.
- Real danger: inability of humanity to grow and uptake knowledge.
- Past devastating setbacks in knowledge uptaking:
 - Dark ages (beginning of the Medieval times).

Sustainability of knowledge growth:

- Limitations in brain capacity.
- Solution: social swarm intelligence
- Example: collective memory.
- Knowledge communication through education is way suboptimal:
 - New education mode needed, stressing critical thinking and abstraction.
 - Morphosis: formation of knowledgeable citizens.
 - Global education: diminishing social and regional barriers to education.

Unified machine and human learning theories?

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society
- AI, Life and the Environment

Artificial Intelligence & Information Analysis Lab

Al and Society

Al and Politics: observing the society.

• Are opinion polls redundant?

Poll and tweet sentiment trends for the 2016 US presidential election.

Al and Society

- Intelligent systems can be very useful.
- Should we be technophobic?

Introduction to AI Science

- Symbolic AI
- Data
- Machine Learning
 - Clustering
 - Classification
 - Neural Networks
- Computer Vision
- Natural Language Processing
- Generative AI
- Knowledge
- AI and Society

• AI, Life and the Environment

Artificial Intelligence & Information Analysis Lab

AI, Life and the Environment

VML

Law of Complexity

• Is *matter complexity* the basis of life and intelligence?

Atoms > nucleotides > DNA - RNA - proteins > subcellular structures > cells (neurons) > organisms > multicelular organism > colonies, swarms, networks.

Can we envisage other complex matter forms?

AI, Life and the Environment

- Does living *matter complexity* ever increases?
- Do we see the same in man-made constructions?
 - Smart buildings, complex societal processes, intelligent machines?

shutterstock.com · 280451036

- Do we move from *life-through-evolution* to *life-by- design*?
- Is sky the limit in AI advances?

Artificial Intelligence & Information Analysis Lab

Al, Life and the Environment

- There is no life/intelligence without matter complexity.
- Life means interaction.

There is no lone flower. No two flowers are alike.

Bibliography

[1] I. Pitas, "Artificial Intelligence Science and Society Part A: Introduction to AI Science and Information Technology", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156460?ref_=pe_3052080_397514860

[2] I. Pitas, "Artificial Intelligence Science and Society Part B: AI Science, Mind and Humans", Amazon/Kindle Direct Publishing, 2022, <u>https://www.amazon.com/dp/9609156479?ref_=pe_3052080_397514860</u>

[3] I. Pitas, "Artificial Intelligence Science and Society Part C: AI Science and Society", Amazon/Kindle Direct Publishing, 2022, https://www.amazon.com/dp/9609156487?ref_=pe_3052080_397514860

[4] I. Pitas, "Artificial Intelligence Science and Society Part D: AI Science and the Environment", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156495?ref_=pe_3052080_397514860

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

