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• Autonomous vehicles (self-driving cars, UAVs) have been

increasingly employed to assist humans in real-world

applications.

• Autonomous transportation.

• Infrastructure inspection.

• Natural disaster management.

• Human-Vehicle Interaction: Autonomous vehicles should

understand and interact with humans.

• Special case of human-robot interaction.
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• To that end, autonomous vehicles must be equipped with

advanced visual and aural perception systems and

human-centered AI algorithms.

• These systems/algorithms should demonstrate:

• increased perception accuracy,

• robustness to input data variations and attacks,

• produce timely HRI state and action estimations to ensure

safety.
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Deep Neural Networks (DNNs) in particular:

• Convolutional Neural Networks (CNNs) and

• Attention/transformer networks

have been widely used to build such advanced systems.

• Main tasks:

• Human pose/posture estimation.

• Human action/activity recognition.

• Human gesture recognition.

• Contextual (in-cabin and exterior scene) human understanding.



Human body representations.

• Appearance-based: features are obtained directly from

images or videos.

• Video-based: Analyze a video frame sequence to recognize the

depicted human gestures.

• 3D model-based: human body represented by a human

model, e.g., 3D mesh model: a list of vertices and lines.

• Skeletal-based: human body represented by 2D/3D human

skeletons → more compact representation than 3D mesh.

6
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Human body representations.
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The human body anatomic/kinematic

modeling allows its representation of 2D and

3D human poses as graphs:

• The body joints and bones are the graph

nodes and the edges.

• Human body graph: 𝒢 𝒱, ℰ , where 𝒱 is a

set of 𝐾 body joints/nodes and ℰ is a set of

𝐵 bones/edges.

• Human body graph can have various detail

levels.



• Are easy to obtain, massive datasets 
available. 

• Can be used as basis for neural feature
extraction.

• Depth can be regressed from
monocular video.

RGB 
data

• Do not protect user privacy.

• Skeletons extracted from color images 
are of lower accuracy. 

RGB 
data

Human-centered AI



• Depth images/videos

• Protect user privacy.

• Highly accurate 3D skeletons can be 
extracted.

Depth 
data

• Difficult to obtain, depth cameras are 
more expensive / difficult for outdoor 
environments.

• SoA CNNs mostly use RGB data.

Depth 
data

Human-centered AI



• Passive body joint/part tagging

• Magnetic field trackers, 

• body suits, 

• Instrumented gloves (active or passive).

• Good for skeleton-based analysis.

Weararable
sensor data

• Difficult to obtain.

• Wearable sensors are intrusive and 
may obstruct body motion. 

Weararable
sensor data

Human-centered AI
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Human body pose describes the configuration of human

body parts.

• Human body can be described by a graph of its parts.

• Graph nodes contain body joint descriptions:

• 2D or 3D rotation angles

• 2D or 3D joint coordinates.

• Confused with camera pose:

• Camera 3D rotation 𝐑 and

& translation 𝐭 parameters.

2D body pose. Camera pose.
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Human Pose Estimation (HPE) estimates the configuration

of human body parts from input data captured by sensors:

• usually images and videos.

• Provides geometric/motion information of the human body.

• Regression of human body parameters 𝐩:

𝐩 = 𝒇 𝐈 .

• Wide range of applications:

• human-robot interaction (HRI),

• motion analysis, AR/VR, healthcare.

2D HPE 3D HPE
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Human body posture is a specific body state, i.e., a labeled

configuration of the body joints: standing, sitting, lying, etc.

• Human postures are static,

• Human actions are dynamic.

• Classification problem of posture

class 𝐜:
𝐜 = 𝒇 𝐈 .

• Applications:
• human-robot interaction (HRI),

• sign language communication,

• physical and rehabilitation training. Standing Sitting [ION2013].



Human pose estimation

Camera pose estimation in facial images.
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• Deep Neural Networks (DNNs) have achieved remarkable

results in HPE.

• DNN-based approaches have outperformed classical

computer vision methods.

• HPE challenges:

• human body part occlusion,

• training data availability,

• depth information availability, form and ambiguity.
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• Prediction of the 2D spatial location of human body key-

points/joints from images or videos.

• Joint description in the image plane.

• Single-person 2D HPE:

• direct regression methods,

• heatmap-based methods.

• Multi-person 2D HPE:

• top-down approach,

• bottom-up approach.
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Single-person 2D HPE

Direct regression methods

• End-to-end framework.

• Regress (learn) a mapping from the input image to body joints or

parameters of human body models.

NN model
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Single-person 2D HPE

Direct regression methods

• If 𝐈 is an input RGB image of resolution 𝑀 ×𝑁 and 𝒇 is the 2D HPE

DNN, direct regression methods aim to directly predict (estimate):

𝐩 = 𝒇 𝐈 ,

• 𝐩 = [𝐣1
𝑇, 𝐣2

𝑇, … , 𝐣𝐾
𝑇 ]𝑇: pre-defined set of body joints that constitute

the 2D human pose,

• 𝐾 is the number of the body joints,

• 𝐣𝑘 = [𝑥𝑘 , 𝑦𝑘]
𝑇∈ ℕ2, 𝑘 = 1,… , 𝐾 human skeleton joint

representation in pixel coordinates on the image plane.



2D human pose estimation

21

Single-person 2D HPE

Heatmap-based methods

• Train a body part detector to predict the position of body joints.

• Estimate joint heatmap images that represent the joint locations.

NN model Decoding

[DAN2019]
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Single-person 2D HPE

Heatmap-based methods

• Instead of directly predicting 𝐣1, 𝐣2, … , 𝐣𝐾 , 𝒇 predicts 2D body joint

heatmaps 𝐇1, 𝐇2, … , 𝐇𝐾 of resolution 𝑀 ×𝑁 (one for each joint):

𝐇1, 𝐇2, … , 𝐇𝐾 = 𝒇 𝐈 .

• Each heatmap 𝐇𝑘 ∈ ℝ𝑀×𝑁 encodes the 2D location of the

corresponding body joint by using a 2D Gaussian function centered

at the 2D position of the body joint in the input image.

• 2D pixel coordinates of each body joint can be obtained by

choosing the 𝐣𝑘 = [𝑥𝑘 , 𝑦𝑘]
𝑇 pairs with the highest heat value.



2D human pose estimation

23

Single-person 2D HPE

Heatmap-based methods

• Heatmaps provide richer supervision information, by preserving the

spatial location information.

• Allow using the powerful Convolutional Neural Networks (CNNs).

• Facilitate DNN/CNN training.

• Used in state-of-the-art 2D HPE approaches.
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Single-person 2D HPE

2D HPE in video sequences

• Video sequences are spatio-temporal (3D) signals.

• Temporal information → model that can handle sequential data:

• Recurrent Neural Networks (RNN), or

• Long Shot-Term Memory (LSTM) networks.

[LUO2018].
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Multi-person 2D HPE

• Estimate the 2D skeletons of multiple persons that appear

in the input image.

• All persons must be localized.

• Detected body keypoints must be grouped for different persons.

[CAO2017]
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Multi-person 2D HPE

Top-down pipeline

• Each person is detected on the input image (2D bounding boxes)

using off-the-shelf person detectors [REN2015].

• Single-person HPE is performed to each person bounding box.

• Inference speed increases linearly with the number of persons.

Detector 2D HPE

[DAN2019]
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Multi-person 2D HPE

Bottom-up pipeline

• Localize all the body joints in the input image.

• Group the detected body joints to the corresponding persons.

• Increased inference speed compared to top-down approaches,

since body joints for all persons are estimated simultaneously.

• Grouping of estimated body joints is required.

2D HPE Grouping

[DAN2019]
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• Predicts the body joint locations in 3D space.

• Provides 3D structure information related to human body.

• It remains a challenging task.

• 3D pose annotation for ground-truth creation is costly and

time-consuming.

• Limited availability of datasets:

• Generalization issues.

• Problems in real-world applications.
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3D HPE from monocular images/videos

• 3D HPE from monocular images/videos is the most popular

approach.

• One monocular RGB camera is required.

• 3D HPE in this setting is very challenging due to:

• occlusions,

• depth ambiguities,

• insufficient data,

• different 3D human poses can be projected to similar 2D poses.
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3D HPE from monocular images

Single-person

• Direct 3D skeleton regression (estimation) from an RGB image:

The 3D human pose is obtained directly from the input image

without any intermediate steps.
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3D HPE from monocular images

Single-person

• Methods based on CNNs.

• If 𝐈 is an input RGB image of resolution 𝑀 ×𝑁 and 𝑓 is the 3D HPE

CNN, direct 3D skeleton estimation methods aim to predict:

𝐏 = 𝒇 𝐈 ,

• 𝐏 = [𝐉1
𝑇, 𝐉2

𝑇, … , 𝐉𝐾
𝑇 ]𝑇 is the set of 3D skeleton body joints,

• 𝐾 is the number of the body joints

• 𝐉𝑘 = 𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘
𝑇 ∈ ℝ3, 𝑘 = 1,… , 𝐾 represents the 3D coordinates of

each 3D human body.
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3D HPE from monocular images

Single-person

• 2D-to-3D lifting: A 2D skeleton is first extracted from the input RGB

image, which is then lifted to the corresponding 3D skeleton.

• 2D-to-3D lifting to be performed using Graph Convolutional

Networks (GCNs).
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3D HPE from monocular videos

Single-person

• Videos provide temporal information, which can improve the

accuracy and the robustness of 3D HPE.

• Use of local temporal video frame neighborhood information (3D

tensors).
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3D HPE from monocular videos

Single-person

• The temporal information of a video can be exploited by a model

capable of handling sequential data, such as RNNs or LSTM

network.

• Occlusions or ambiguities on a single frame can be alleviated by

additional information provided by neighbouring frames.

• Video-based approaches:

• LSTM-based [HOS2018],

• GCN-based [CAI2019],

• Transformer-based [LI2022].
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3D HPE from monocular images

Multi-person

• Estimate the 3D skeletons of multiple persons in an input image.

• Top-down pipeline: Similar to the 2D HPE case,

• each person is first detected on the input image and

• individual 3D skeletons are then estimated.

• Bottom-up pipeline:

• First predict all body joints and depth maps and then

• group and associate all detected body parts to each person.
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3D HPE from monocular images

Multi-person

• Top-down pipeline.
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3D HPE from monocular images

Multi-person

• Top-down pipeline:

• It achieves promising results.

• Human mesh reconstruction is straightforward.

• Computations increase linearly with the person number.

• Global scene information is lost, since a detection step is first

applied.

• Popular approaches:

• LCR-Net [ROG2017], LCR-Net++ [ROG2019], PandaNet [BEN2020].
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3D HPE from monocular images

Multi-person

• Bottom-up pipeline.
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3D HPE from monocular images

Multi-person

• Bottom-up pipeline:

• Faster execution speed.

• Human mesh reconstruction is not straightforward.

• Body joint grouping is challenging.

• Occlusions can cause inaccurate predictions.

• Popular approaches:

• Single-stage multi-person Pose Machine [NIE2019],

• Occlusion-Robust Pose-Maps (ORPM) [MEH2018].
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• Human Activity/Action Recognition (HAR) aims to automatically

recognize the actions of persons given a sequence of input data.

Input
• RGB frames

• Depth frames
• Skeletons

• Hand crafted 
Features

Feature 
Extraction and 
Classification 
Algorithms

Output
Activity Label
(e.g. running, 

dancing)

Human action/activity 
recognition



Human Activity/Action Recognition (HAR):

• To identify the action of a person.

• Action is an elementary human activity.

Classification problem:

• Input: a single-view or multi-view video or a sequence of 3D

human body models (or point clouds).

• Output: An action label belonging to a set of 𝑁𝐴 action

classes (e.g., walk, run) for each frame or for the entire

sequence.

Human action/activity 
recognition



run walk jump p.jump f.

bend sit wave fall

Human action/activity 
recognition



• Single-view: methods utilizing one camera:

• special cases of multi-view ones, i.e., for 𝑁𝐶 = 1.

• Multi-view: methods utilizing multiple cameras forming a

multi-camera setup.

An eight-view camera 

setup 𝑁𝐶 = 8 .

Human action/activity 
recognition



• Still images → spatial

information.

• Multiple video frames →

temporal information.

• 3D CNNs

• Multi-stream DNN

networks.

• They capture both

temporal & spatial

information.

Neural HAR



• 3D CNNs employ 3D convolution

between kernels and data to produce

feature tensors.

• Can be applied where spatio-temporal

(video) or volumetric data (e.g.,

Medical Imaging) analysis is

important.

• Can learn spatio-temporal neural

features from raw frame sequences,

without complex hand-crafted features

or multi-stream DNN architectures.
image from https://towardsdatascience.com/understanding-
1d-and-3d-convolution-neural-network-keras-9d8f76e29610

HAR with 3D CNNs

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610


T-C3D: temporal convolutional 3D network for real-time

action recognition [LIU2018].

Objective:
• Real-time recognition of the action performed in video sequences using 3D

convolutions.

Methodology:
• Temporal info is extracted using the nature of 3D networks.

• A temporal encoding technique is used to model characteristics of the entire

video.

• The overall process is end-to-end trainable.

• Good accuracy.

HAR with 3D CNNs



T-C3D: temporal convolutional 3D network for real-time action 
recognition [LIU2018].
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HAR with 3D CNNs

3D convolutions are notoriously

computationally expensive.

• Fast 3D convolution algorithms:

𝐲 = 𝐂 𝐀𝐱⨂𝐁𝐡 .

• GEneral Matrix Multiplication

(GEMM) BLAS or cuBLAS routines

can be used.



Human visual cortex

contains two pathways: 

1. the ventral stream

(which performs object 

recognition),

2. the dorsal stream

(which recognizes 

motion).

First stream: spatial stream

performs object recognition on still 

images.

• Multi-stream networks are implemented using model architectures (e.g., CNNs for image 
classification tasks) which are trained separately.

• Their softmax scores are combined by late fusion considering different fusion methods, 
such as averaging or training multi-class classifiers (e.g. SVM) on stacked 𝐿2-normalized 

softmax scores as features.

Second stream: temporal stream

conveys motion information using 

features like optical flow.

HAR with multi-stream DNNs



• A two-stream network architecture is capable to manage
both spatial and temporal information [HAN2018].

• Pretraining on ImageNet dataset to overcome over-fitting.

• Deeper CNN architectures can model challenging datasets more

efficiently.

• Experiments & Accuracy

• Increased accuracy on publicly available datasets (93-95%

accuracy).

HAR with multi-stream DNNs
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[HAN2018].



Methodology

• Use a human pose estimator to extract 2D/3D skeletons

of humans in each frame.

• Collect extracted 2D/3D skeletons to form features

volumes.

• This fixed-size representation for an entire video clip is

suitable to classify actions using shallow networks (DNNs,

CNNs, LSTMs, GCNs, Transformers).

Skeleton-based HAR



• Human skeleton:

• Keypoints: Nodes in the Graph,

• Connections: Edges in the Graph.

• Representation with 3D skeltongraphs:

• Invariant to viewpoint and appearance.

54

Skeleton-based HAR with 
GCNs



• Spatial Convolution block:

• Sums the values of all channels and gives us a single value for each

node.

• Multiplication with adjacency matrix creates graphical connections for

each frame.

• Temporal Convolution block:

• Uses a temporal kernel [𝑡1 × 1] over the frames and extracts the

temporal features for each node.

• These two blocks compose the ST-GCN layer.

• Several ST-GCN layers compose the ST-GCN model.
55

Skeleton-based HAR with 
GCNs
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[KIL2022]
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Gesture recognition

• Gesture is an expressive meaningful

body motion involving physical

movement of head, body, hands etc.

• Intention:

• Convey meaningful information

• Interact with environment.

• Gestures can be:

• Static: certain body posture or configuration.

• Dynamic: prestrike, stroke and poststroke

phases.
58



Gesture recognition 

• Gestures can be culture-specific.

• Gestures can be categorized based on the body part as:

• Hand gestures: 
• hand poses, sign language etc.

• Head and face gestures: 
• Shaking head.

• Speaking by opening and closing the mouth. 

• Raising the eyebrows.

• Emotions: surprise, anger, happiness, sadness.

• Body gestures: full body motion.

59



Gesture recognition

• Gesture recognition is similar to human action

recognition.

• Data sources:

• Visual: RGB, depth, thermal images.

• Wearable: Magnetic field trackers, body suits, instrumented gloves 

(active or passive).

• Human gestures from visual data are analyzed by DNN 

algorithms.

• Applications

• Gesture-based vehicle control.

60



• Gesture recognition DNN architectures:

• 2D CNN+RNN: RNNs are used to encode temporal information and

2D CNNs for spatial information from the input sequence.

• 3D CNN: encodes spatial and temporal relationships between the

input frames.

• Skeleton-based models: analyze input sequences of 2D/3D

skeletons with RNNs/LSTMs to recognize gestures.

• Spatio-temporal GCNs: model the spatio-temporal dependencies of the

skeleton sequences.

61

DNN architectures for 

gesture recognition



2D CNN+RNN 3D CNN

62

DNN architectures for 

gesture recognition

Image j Image k

2D CNN 2D CNN

RNN RNN

Pooling

⁞

Image i
Image i

Image i

3D CNN

Pooling

time



Pose RNN
Pose TGCN

63

DNN architectures for 

gesture recognition

Keypoints j Keypoints k

RNN RNN

Pooling

⁞

Image i
Image i

Keypoints i

Temporal
GCN

Pooling

time

Keypoints are the joints of human bodies.
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• Image segmentation partitions the image domain ℐ into the

subsets ℛ𝑖, 𝑖 = 1,… , 𝑁, having the following properties:

ℐ = ራ

𝑖=1

𝑁

ℛ𝑖 ,

ℛ𝑖 ∩ ℛ𝑗 = ∅, for 𝑖 ≠ 𝑗,

𝑃(ℛ𝑖) = TRUE,   for 𝑖 = 1, , … , 𝑁,

𝑃 ℛ𝑖 ∪ ℛ𝑗 = FA S , for 𝑖 ≠ 𝑗.

• 𝑃(ℛ): logical predicate. 65

Semantic image segmentation



• Transforming the fully connected layers of image

classification networks into convolution layers enables the

transformed network to output heatmaps.

• End-to-end dense prediction learning is possible by adding
extra layers.

DNN-based semantic image 
segmentation



• Fully convolutional networks (FCNs) with encoder-decoder 
architecture for semantic image segmentation.

DNN-based semantic image 
segmentation



• Encoder radically reduces resolution inputs → decoder 

fails to produce fine-grained segmentations. 

• Improvements:

• Skip connections.

• U-shaped network architecture (e.g., U-Net [RON2015]).

• Multiple skip connections to maintain information from high-

resolution feature maps.

• High-resolution networks (e.g., HR-Net [WAN2020]).

• Maintain high-resolution feature maps throughout the forward pass 

process.

DNN-based semantic image 
segmentation



U-Net network architecture [RON2015].

DNN-based semantic image 
segmentation



High-resolution image segmentation networks 

[WAN2020].

DNN-based semantic image 
segmentation



DNN-based semantic image 
segmentation

Scene segmentation [COR2016].Person instance segmentation.



DNN-based semantic image 
segmentation

Crowd detection via image segmentation.

• Avoid detected crowds to ensure safety.
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• Similar DNN approaches can also be used for monocular

depth estimation.

• Goal is to regress depth maps that correspond to input images.

Depth Estimation

[ZHE2019]
[GEI2013]



Contents

74

• Human-centered AI

• Human pose/posture estimation

• Human action/activity recognition

• Human gesture recognition

• Semantic image segmentation

• Applications



Applications

75

The presented algorithms have numerous applications on

real-world scenarios that involve self-driving cars, UAVs, etc. .

• Pedestrian detection and intention recognition.

• In-cabin human-vehicle interaction.

• Assessment and modeling of driver’s behavior and

condition.

• Road scene understanding.

• Gesture-based vehicle control.
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Autonomous driving

• Pedestrian intention (cross/no-cross) recognition.

Pedestrian intention recognition [PAP2022].
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Autonomous driving

• Scene understanding.

Road scene segmentation and depth estimation.

[COR2016]
[GEI2013]



Human–vehicle interaction via gestures.

• Algorithms usually run onboard the vehicle.

• Estimation accuracy and execution speed of algorithms are crucial.

• Specifically designed DNNs.

• Software that translates DNN estimations to control commands.

• Real-time gesture recognition.

• Gesture-based vehicle command language.

• Can interaction be done based on spontaneous gestures?

78

Autonomous vehicle control



Performing hand gesture detection in the range of the sensor of time-of-

flight-ToF (area of detection in red) [ZEN2018].
79

Autonomous vehicle control



Lane change with gesture control [ZEN2018].

80

Autonomous vehicle control



Gesture-controlled Drones

• Video stream is recorded through the camera and segmented into

sequences of images.

• Each image is then recognized by a classification process.

• Typical commands:

• Take off.

• Land.

• Move right or left.

• Finally, the action planner on the drone.

81

Autonomous vehicle control



Human-Drone Interaction model [HUA2019].

82

Autonomous vehicle control



Gesture recognition for Human-Drone Interaction [PAP2021].

83

Autonomous vehicle control
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Autonomous vehicle control



Crowd detection for 
autonomous UAV navigation

[PAP2021b].
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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