Artificial Neural Networks. Perceptron

Prof. Ioannis Pitas
Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 4.3.4

Artificial Neural Networks. Perceptron

- Classification/Recognition/Identification
- Biological Neurons
- Artificial Neurons
- Perceptron
- Iterative Perceptron training
- Batch Perceptron training

Classification/Recognition/ Identification

- Given a set of classes $\mathcal{C}=\left\{\mathcal{C}_{i}, i=1, \ldots, m\right\}$ and a sample $\mathbf{x} \in \mathbb{R}^{n}$, the ML model $\hat{\mathbf{y}}=\boldsymbol{f}(\mathbf{x} ; \boldsymbol{\theta})$ predicts a class label vector $\hat{\mathbf{y}} \in[0,1]^{m}$ for input sample \mathbf{x}, where $\boldsymbol{\theta}$ are the learnable model parameters.
- Essentially, a probabilistic distribution $P(\hat{\mathbf{y}} ; \mathbf{x})$ is computed.
- Interpretation: likelihood of the given sample \mathbf{x} belonging to each class \mathcal{C}_{i}.

Single-target classification:

- Classes $C_{i}, i=1, \ldots, m$ are mutually exclusive: $\|\hat{y}\|_{1}=1$.
- Multi-target classification:
- Classes $\mathcal{C}_{i}, i=1, \ldots, m$ are not mutually exclusive: $\|\hat{\mathbf{y}}\|_{1} \geq 1$.

Supervised Learning

- A sufficient large training sample set \mathcal{D} is required for Supervised Learning (regression, classification):

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right), i=1, \ldots, N\right\}
$$

- $\mathbf{x}_{i} \in \mathbb{R}^{n}: n$-dimensional input (feature) vector of the i-th training sample.
- y_{i} : its target label (output).
- Target form y can vary:
- it can be categorical, a real number or a combination of both.

Classification/Recognition/ Identification

- Training: Given N pairs of training samples $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right), i=1, \ldots N\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $\mathbf{y}_{i} \in[0,1]^{m}$, estimate $\boldsymbol{\theta}$ by minimizing a loss function: $\min _{\boldsymbol{\theta}} J(\mathbf{y}, \hat{\mathbf{y}})$.
- Inference/testing: Given N_{t} pairs of testing examples $\mathcal{D}_{t}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right), i=\right.$ $\left.1, \ldots, N_{t}\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $\mathbf{y}_{i} \in[0,1]^{m}$, compute (predict) $\hat{\mathbf{y}}_{i}$ and calculate a performance metric, e.g., classification accuracy.

Classification/Recognition/ Identification

Optional steps between training and testing:

- Validation: Given N_{v} pairs of testing examples (different from either training or testing examples) $\mathcal{D}_{v}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right), i=1, \ldots, N_{v}\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $\mathbf{y}_{i} \in[0,1]^{m}$, compute (predict) $\hat{\mathbf{y}}_{i}$ and validate using a performance metric.
or
- \boldsymbol{k}-fold cross-validation: Use only a percentage ($\frac{100}{k} \%$, e.g., 80%) of the data for training and the rest for validation ($\frac{100}{k} \%$, e.g., 20%). Repeat it k times, until all data used for training and testing).

Classification

- Classification:
- Two class $(m=2)$ and multiple class $(m>2)$ classification.
- Example: Face detection (two classes), face recognition (many classes).

Classification

Multiclass Classification ($m>2$):

- Multiple $(m>2)$ hypothesis testing: choose a winner class out of m classes.
- Binary hypothesis testing:
- One class against all: m binary hypothesis.
- one must be proven true.
- Pair-wise class comparisons: $m(m-1) / 2$ binary hypothesis.

Face

Recognition/identification

Problem statement:

- To identify a face identity
- Input for training: several facial ROIs per person
- Input for inference: a facial ROI
- Inference output: the face id
- Supervised learning
- Applications:

Biometrics
Surveillance applications
Video analytics

Face

Recognition/identification

Problem statement:

- To identify a face identity
- Input for training: several facial ROIs per person
- Input for inference: a facial ROI
- Inference output: the face id
- Supervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Regression

Given a sample $\mathbf{x} \in \mathbb{R}^{n}$ and a function $\mathbf{y}=\boldsymbol{f}(\mathbf{x})$, the model predicts realvalued quantities for that sample: $\hat{\mathbf{y}}=\boldsymbol{f}(\mathbf{x} ; \boldsymbol{\theta})$, where $\hat{\mathbf{y}} \in \mathbb{R}^{m}$ and $\boldsymbol{\theta}$ are the learnable parameters of the model.

- Training: Given N pairs of training examples $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right), i=1, \ldots N\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $\mathbf{y}_{i} \in \mathbb{R}^{m}$, estimate $\boldsymbol{\theta}$ by minimizing a loss function: $\min _{\boldsymbol{\theta}} J(\mathbf{y}, \hat{\mathbf{y}})$.
- Testing: Given N_{t} pairs of testing examples $\mathcal{D}_{t}=\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right), i=1, \ldots, N_{t}\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$ and $\mathbf{y}_{i} \in \mathbf{y}_{i} \in \mathbb{R}^{m}$, compute (predict) $\hat{\mathbf{y}}_{i}$ and calculate a performance metric, e.g., MSE.

Biological Neuron

- Basic computational unit of the brain.
- Main parts:
- Dendrites
- They act as inputs.
- Soma
- Main body of neuron.
- Axon

- It acts as neuron output.

Biological Neuron Connectivity

- Neurons connect with other neurons through synapses.

Axodendritic

Axosomatic

Axoaxonal

Biological Neuron Connectivity VML

- An electric action potential is propagated through the axon.
- Signal is transmitted through the synapse gap by neurotransmitter molecules.
- Each synapse has its own synaptic weight.

Biological Neuron Connectivity VML

- Synaptic weights can be:
- Positive (excitatory synapses).
- Negative (inhibitory synapses).
- Transmitted signal is a series of electrical impulses.
- The stronger the transmitted signal, the bigger the impulse frequency.

Biological Neuron Connectivity VML

- Transmitted signal is a series of electrical impulses.
- The stronger the transmitted signal, the bigger the impulse frequency.

Neuron Spiking Signal

Synaptic Integration

- Electric potential received by all dendrites of a neuron is accumulated inside its soma.
- When the electric potential at the membrane reaches a certain threshold, the neuron fires an electrical impulse.
- The signal is propagated through the axon and information is "fed" forward to all connected neurons.

Artificial Neurons

Artificial neurons are mathematical models loosely inspired by their biological counterparts.

- Previous dendrites fetch the input vector:

$$
\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}, \quad x_{i} \in \mathbb{R}
$$

- The synaptic weights are grouped in a weight vector:

$$
\mathbf{w}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{T}, \quad w_{i} \in \mathbb{R} .
$$

- Synaptic integration is modeled as the inner product:

$$
z=\sum_{i=1}^{n} w_{i} x_{i}=\mathbf{w}^{T} \mathbf{x}
$$

Artificial Neurons

ANN synaptic summation models:

- linear function (or mapping from \mathbf{x} to y):

$$
\hat{y}=\mathbf{w}^{T} \mathbf{x}+b .
$$

- nonlinear model:

$$
\hat{y}=\mathbf{w}^{T} \phi(\mathbf{x})+b .
$$

- $\phi: \mathbb{R}^{n} \rightarrow H:$ Nonlinear mapping of \mathbf{x} to a (possibly) high-dimensional space, $L=\operatorname{dim}(H)>n, \mathbf{w} \in \mathbb{R}^{L}$.
- Learning consists of finding the optimal parameters \mathbf{w}, so that $\hat{y}=$ $f(\mathbf{x} ; \mathbf{w})$ is as close as possible to the target y, by minimizing a cost function $J(\mathbf{w})$ (a measure of discrepancy between y and \hat{y}).

Perceptron

Perceptron

- McCulloch \& Pitts model is the simplest mathematical model of a neuron.
- It has real inputs in the range $x_{i} \in[0,1]$.
- It produces a single output $\hat{y} \in[0,1]$, through activation function $f(\cdot)$.
- Output y signifies whether the neuron will fire or not.
- Firing threshold:

$$
\mathbf{w}^{T} \mathbf{x} \geq-b \Rightarrow \mathbf{w}^{T} \mathbf{x}+b \geq 0
$$

Perceptron

- Threshold can be incorporated into the augmented vectors:

$$
\hat{y}=f(\mathbf{x} ; \mathbf{w})=f\left(\mathbf{w}^{\prime T} \mathbf{x}^{\prime}\right) .
$$

- Augmented input vector: $\mathbf{x}^{\prime}=\left[1, x_{1}, \ldots, x_{n}\right]^{T}$
- Augmented weight vector $\mathbf{w}^{\prime}=\left[b, w_{1}, \ldots, w_{n}\right]^{T}$.
- From now on, for notation simplicity, we discard augmentation and work with $\mathbf{x} \in \mathbb{R}^{n+1}$ and $\mathbf{w} \in \mathbb{R}^{n+1}$.
- In this case, the parameter vector to be optimized is $\boldsymbol{\theta}=\mathbf{w}$.

Perceptron - Activation

Neural activation function that is suitable for 2-class problems:

- If $f(z) \geq 0$, assign \mathbf{x} to class \mathcal{C}_{1};
- If $f(z)<0$, assign \mathbf{x} to class \mathcal{C}_{2}.
- Step activation function:

$$
\hat{y}=f(z)=f\left(\mathbf{w}^{T} \mathbf{x}\right)= \begin{cases}0, & \mathbf{w}^{T} \mathbf{x}<0 \\ 1, & \mathbf{w}^{T} \mathbf{x} \geq 0 .\end{cases}
$$

- Sigmoid activation function:

$$
\hat{y}=f(z)=1 /\left(1+e^{-c z}\right) .
$$

Perceptron-Decision Hyperplanes

Perceptron decision surface with step activation function:
a) Line in \mathbb{R}^{2}; b) plane in $\mathbb{R}^{3} ;$ c) hyperplane in \mathbb{R}^{n}.

Linear decision line.

AND function model

- Perceptron weight vector: $\mathbf{w}=\left[-\frac{3}{2}, 1,1\right]^{T}$
- Input vector: $\mathbf{x}=\left[1, x_{1}, x_{2}\right]^{T}$

x_{1}	x_{2}	$y=\mathbf{w}^{T} \mathbf{x}$
0	0	$\mathbf{w}^{T} \mathbf{x}<0 \Rightarrow y=0$
0	1	$\mathbf{w}^{T} \mathbf{x}<0 \Rightarrow y=0$
1	0	$\mathbf{w}^{T} \mathbf{x}<0 \Rightarrow y=0$
1	1	$\mathbf{w}^{T} \mathbf{x} \geq 0 \Rightarrow y=1$

OR function model

- Perceptron weight vector: $\mathbf{w}=\left[-\frac{1}{2}, 1,1\right]^{T}$
- Input vector: $\mathbf{x}=\left[1, x_{1}, x_{2}\right]^{T}$

x_{1}	x_{2}	$y=\mathbf{w}^{T} \mathbf{x}$
0	0	$\mathbf{w}^{T} \mathbf{x}<0 \Rightarrow y=0$
0	1	$\mathbf{w}^{T} \mathbf{x} \geq 0 \Rightarrow y=1$
1	0	$\mathbf{w}^{T} \mathbf{x} \geq 0 \Rightarrow y=1$
1	1	$\mathbf{w}^{T} \mathbf{x} \geq 0 \Rightarrow y=1$

XOR function mod

- There is no linear separating line in \mathbb{R}^{2} for the XOR function.
- Solution: Add an extra layer of neurons before the perceptron output y.
- Extra layer consists of two perceptrons, computing the AND and the OR function respectively.
- The new functional form will be:

$$
f(x)=w^{T} \phi
$$

where ϕ is the output of the extra layer, given as input to the output layer.

Two-layer Perceptron - XOR function model

- Notation:

Layer 1	Layer 2	Layer 3
(input)	(hidden)	(output)

$$
\begin{array}{ll}
\mathbf{x}=\left[1, x_{1}, x_{2}\right]^{T} & f(\cdot): \text { step function } \\
\mathbf{w}_{1}=\left[-\frac{1}{2}, 1,1\right]^{T} & \phi_{1}(\mathbf{x})=f\left(\mathbf{w}_{1}^{T} \mathbf{x}\right) \\
\mathbf{w}_{2}=\left[\frac{3}{2},-1,-1\right]^{T} & \phi_{2}(\mathbf{x})=f\left(\mathbf{w}_{2}^{T} \mathbf{x}\right) \\
\mathbf{w}=\left[-\frac{3}{2}, 1,1\right]^{T} & y=\mathbf{w}^{T} \boldsymbol{\phi}
\end{array}
$$

$$
\boldsymbol{\phi}=\left[1, \phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x})\right]^{T}
$$

Two-layer Perceptron - XOR function model

- (A OR B) AND (NOT (A AND B))

Layer 1	Layer 2	Layer 3
(input)	(hidden)	(output)

x_{1}	x_{2}	$\phi_{1}(\mathbf{x})$	$\phi_{2}(\mathbf{x})$
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	0

$\phi_{1}(\mathbf{x})$	$\phi_{2}(\mathbf{x})$	$y=\mathbf{w}^{T} \phi$
0	1	$\mathbf{w}^{T} \phi<0 \Rightarrow y=0$
1	1	$\mathbf{w}^{T} \phi \geq 0 \Rightarrow y=1$
1	1	$\mathbf{w}^{T} \phi \geq 0 \Rightarrow y=1$
1	0	$\mathbf{w}^{T} \phi<0 \Rightarrow y=0$

Iterative Perceptron training

Perceptron training as an optimization problem:

- Perceptron has to be optimized to minimize error function $J(\mathbf{w})$.
- Differentiation:

$$
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=\mathbf{0}
$$

can provide the critical points of multivariate function $J(\mathbf{w})$:

- Minima, maxima and saddle points.
- Analytical differentiation is usually impossible.
- We must resort to numerical optimization methods.

Steepest Gradient Descent

Steepest Gradient Descent is one of the most popular optimization algorithms.

- The parameter space $\mathbf{w} \in \mathbb{R}^{n}$ is iteratively searched, along the direction of the error function gradient $-\nabla J(\mathbf{w})$.
- The gradient vector points to the direction of the steepest ascent.

$$
\nabla J(\mathbf{w})=\frac{\partial J}{\partial \mathbf{w}}=\left[\frac{\partial J}{\partial w_{1}}, \cdots, \frac{\partial J}{\partial w_{n}}\right]^{T} .
$$

- Correspondingly, $-\nabla J(\mathbf{w})$ points to the direction of the steepest descent to a mimimum, along which $J(\mathbf{w})$ decreases more rapidly.

Steepest Gradient Descent

- Steepest Gradient Descent is an iterative method, fining solutions

$$
\mathbf{w}(t+1)=\mathbf{w}(t)+\Delta \mathbf{w}(t)
$$

- t is the iteration number.
- The correction term can be proportional to the direction of steepest descent $\nabla_{\mathbf{w}} J(\mathbf{w})(t)$:

$$
\mathbf{w}(t+1)=\mathbf{w}(t)-\eta \nabla_{\mathbf{w}} J(\mathbf{w})(t)
$$

- η : learning rate is a parameter controlling model parameters updates.

Steepest Gradient Descent

Steepest descent for a 2D error function $J\left(w_{1}, w_{2}\right)$.

Steepest Gradient Descent

- There is no guarantee of convergence to a global minimum.
- The solution depends on the initial staring point $\mathbf{w}(0)$.
- Numerical estimates of the gradient $\nabla J(\mathbf{w})=\left[\frac{\partial J}{\partial w_{1}}, \ldots, \frac{\partial J}{\partial w_{n}}\right]^{T}$ can be noisy.
- Convergence can be slow.
- Convergence speed depends on learning rate η.

Iterative Perceptron training

2-class Classification:

$$
\begin{aligned}
& \text { If } \hat{y}=f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{T} \mathbf{x} \geq 0 \text {, assign } \mathbf{x} \text { to class } \mathcal{C}_{1}, \\
& \text { If } \hat{y}=f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{T} \mathbf{x}<0 \text {, assign } \mathbf{x} \text { to class } \mathcal{C}_{2} .
\end{aligned}
$$

- Goal: find the optimal model parameters w, so that the model produces the minimal number of false class assignments (decisions/predictions),

Iterative Perceptron training

Classification is transformed to an optimization problem:

- construct a cost function, choose an optimization algorithm.

Perceptron cost function:

$$
\min _{\mathbf{w}} J(\mathbf{w})=\sum_{\mathbf{x} \in \mathcal{D},} d_{x} \mathbf{w}^{T} \mathbf{x}
$$

- \mathcal{D}^{\prime} is the subset of training samples that have been misclassified.
- $d_{x} \triangleq-1$, if $x \in \mathcal{C}_{1}$ and has been misclassified to \mathcal{C}_{2},
- $d_{x} \triangleq 1$, if $\mathbf{x} \in \mathcal{C}_{2}$ and has been misclassified to \mathcal{C}_{1}.

Iterative Perceptron training

- When all samples have been correctly classified: $\mathcal{D}^{\prime}=\varnothing \Rightarrow$ $J(\mathbf{w})=0$.
- If $\mathbf{x} \in \mathcal{C}_{1}$ and has been misclassified, then $\mathbf{w}^{T} \mathbf{x}<0$ and $d_{x}<0$. Thus, they produce positive error $J(\mathbf{w})$.
- The same applies for misclassified samples of class \mathcal{C}_{2}.
- $)(\mathbf{w})$ is continuous and piece-wise linear and differentiable.

Iterative Perceptron training

- Applying the previous parameter update rule to the Perceptron model:

$$
\begin{gathered}
\mathbf{w}(t+1)=\mathbf{w}(t)-\eta \nabla J(\mathbf{w}), \\
\nabla J(\mathbf{w})=\frac{\partial}{\partial \mathbf{w}} \sum_{\mathbf{x} \in \mathcal{D},} d_{x} \mathbf{w}^{T} \mathbf{x}=\sum_{\mathbf{x} \in \mathcal{D},} d_{x} \mathbf{x} .
\end{gathered}
$$

Iterative Perceptron training

- The complete form of the update rule, widely known as the Perceptron algorithm, becomes:

$$
\mathbf{w}(t+1)=\mathbf{w}(t)-\eta \sum_{\mathbf{x} \in \mathcal{D},} d_{x} \mathbf{x} .
$$

- It is proven that this algorithm converges.
- It is an on-line algorithm (training data can be used as they come).

Iterative Perceptron training

Batch Perceptron training

Given a dataset $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, N\right\}$,an analytical solution to the Mean Squared Error function (MSE) minimization problem is possible:

$$
J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)^{2}
$$

- $J(\mathbf{w})$ gradient is given by:

$$
\nabla J(\mathbf{w})=\mathbf{X}^{T} \mathbf{X} \mathbf{w}^{T}-\mathbf{X}^{T} \mathbf{y}
$$

- $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]^{T}: N \times n$ data matrix.
- $\mathbf{y}=\left[y_{1}, \ldots, y_{N}\right]^{T}:$ target vector.

Batch Perceptron training

- Setting $\nabla J(\mathbf{w})=\mathbf{0}$ gives us:

$$
\mathbf{X}^{T} \mathbf{X} \mathbf{w}^{T}=\mathbf{X}^{T} \mathbf{y}
$$

- Therefore, MSE minimization solution is given by:

$$
\mathbf{w}^{T}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Matrix $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ is known as the pseudoinverse of matrix \mathbf{X}.
- It has the property:

$$
X^{+} \mathbf{X}=\mathbf{I}
$$

Batch Perceptron training

- If $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ is singular, then we can use:

$$
\mathbf{X}^{\dagger} \triangleq \lim _{\epsilon \rightarrow 0}\left(\mathbf{X}^{T} \mathbf{X}-\epsilon \mathbf{I}\right)^{-1} \mathbf{X}^{T}
$$

- The solution is given by:

$$
\mathbf{w}=\left(\mathbf{X}^{\dagger} \mathbf{y}\right)^{T} .
$$

Bibliography

[GOO2016] Goodfellow I, Bengio Y, Courville A, Bengio Y., Deep learning MIT press, 2016. [HAY2009] S. Haykin, Neural networks and learning machines, Prentice Hall, 2009.
[BIS2006] C.M. Bishop, Pattern recognition and machine learning, Springer, 2006. [GOO2016] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016 [THEO2011] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2011.
[ZUR1992] J.M. Zurada, Introduction to artificial neural systems. Vol. 8. St. Paul: West publishing company, 1992.
[ROS1958] Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological review 65.6 (1958): 386.
[YEG2009] Yegnanarayana, Bayya. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
[DAN2013] Daniel, Graupe. Principles of artificial neural networks. Vol. 7. World Scientific, 2013.
[HOP1988] Hopfield, John J. "Artificial neural networks." IEEE Circuits and Devices Magazine 4.5 (1988): 3-10.
[SZE2013] C. Szegedy, A. Toshev, D. Erhan. "Deep neural networks for object detection." Advances in neural information processing systems. 2013.

Bibliography

[SAL2016] T. Salimans, D. P. Kingma "Weight normalization: A simple reparameterization to accelerate training of deep neural networks." Advances in Neural Information Processing Systems. 2016.
[MII2019] Miikkulainen, Risto, et al. "Evolving deep neural networks." Artificial Intelligence in the Age of Neural Networks and Brain Computing. Academic Press, 2019. 293-312.
[EXT] https://www.extremetech.com/extreme/144248-neuristors-the-future-of-brain-like-computerchips

Bibliography

[1] I. Pitas, "Artificial Intelligence Science and Society Part A: Introduction to AI Science and Information Technology", Amazon/Kindle Direct Publishing, 2022, https://www.amazon.com/dp/9609156460?ref =pe 3052080397514860
[2] I. Pitas, "Artificial Intelligence Science and Society Part B: AI Science, Mind and Humans", Amazon/Kindle Direct Publishing, 2022, https://www.amazon.com/dp/9609156479?ref =pe 3052080397514860
[3] I. Pitas, "Artificial Intelligence Science and Society Part C: AI Science and Society", Amazon/Kindle Direct Publishing, 2022, https://www.amazon.com/dp/9609156487?ref =pe 3052080397514860
[4] I. Pitas, "Artificial Intelligence Science and Society Part D: AI Science and the Environment", Amazon/Kindle Direct Publishing, 2022, https://www.amazon.com/dp/9609156495?ref =pe 3052080397514860

Q \& A

Thank you very much for your attention!
More material in
http://licarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

