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Classification/Recognition/

Identification
• Given a set of classes 𝒞 = 𝒞𝑖 , 𝑖 = 1,… ,𝑚 and a sample 𝐱 ∈ ℝ𝑛, the ML

model ො𝐲 = 𝒇(𝐱; 𝛉) predicts a class label vector ො𝐲 ∈ 0, 1 𝑚 for input

sample 𝐱, where 𝛉 are the learnable model parameters.

• Essentially, a probabilistic distribution 𝑃(ො𝐲; 𝐱) is computed.

• Interpretation: likelihood of the given sample 𝐱 belonging to each class 𝒞𝑖 .

• Single-target classification:

• Classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚 are mutually exclusive: ||ො𝐲||1 = 1.

• Multi-target classification:

• Classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚 are not mutually exclusive: ||ො𝐲||1 ≥ 1.



Supervised Learning

• A sufficient large training sample set 𝒟 is required for Supervised

Learning (regression, classification):

𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁}.

• 𝐱𝑖 ∈ ℝ𝑛 : 𝑛 –dimensional input (feature) vector of the 𝑖-th training

sample.

• 𝐲𝑖: its target label (output).

• Target form 𝐲 can vary:

• it can be categorical, a real number or a combination of both.



Classification/Recognition/

Identification
• Training: Given 𝑁 pairs of training samples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁},

where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, estimate 𝛉 by minimizing a loss

function: min
𝛉

𝐽(𝐲, ො𝐲).

• Inference/testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 =
1,… ,𝑁𝑡} , where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, compute (predict) ො𝐲𝑖 and

calculate a performance metric, e.g., classification accuracy.



Classification/Recognition/

Identification
Optiοnal steps between training and testing:

• Validation: Given 𝑁𝑣 pairs of testing examples (different from either

training or testing examples) 𝒟𝑣 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁𝑣}, where 𝐱𝑖 ∈ ℝ𝑛

and 𝐲𝑖 ∈ 0,1 𝑚, compute (predict) ො𝐲𝑖 and validate using a performance

metric.

or

• k-fold cross-validation: Use only a percentage (
100

𝑘
%, e.g., 80%) of the

data for training and the rest for validation (
100

𝑘
%, e.g., 20%). Repeat it 𝑘

times, until all data used for training and testing).



Classification

• Classification:

• Two class (𝑚 = 2) and multiple class (𝑚 > 2) classification.

• Example: Face detection (two classes), face recognition (many

classes).
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Classification

Multiclass Classification (𝑚 > 2):

• Multiple (𝑚 > 2) hypothesis testing: choose a winner class

out of 𝑚 classes.

• Binary hypothesis testing:

• One class against all: 𝑚 binary hypothesis.

• one must be proven true.

• Pair-wise class comparisons: 𝑚(𝑚 − 1)/2 binary hypothesis.
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Face 

Recognition/identification
Problem statement:

• To identify a face identity

• Input for training: several facial ROIs per person

• Input for inference: a facial ROI

• Inference output: the face id

• Supervised learning

• Applications:

Biometrics

Surveillance applications

Video analytics
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Regression

Given a sample 𝐱 ∈ ℝ𝑛 and a function 𝐲 = 𝒇(𝐱), the model predicts real-

valued quantities for that sample: ො𝐲 = 𝒇(𝐱; 𝛉), where ො𝐲 ∈ ℝ𝑚 and 𝛉 are the

learnable parameters of the model.

• Training: Given 𝑁 pairs of training examples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ ℝ𝑚, estimate 𝛉 by minimizing a loss function:

min
𝛉

𝐽(𝐲, ො𝐲) .

• Testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁𝑡},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 𝐲𝑖 ∈ ℝ𝑚, compute (predict) ො𝐲𝑖 and calculate a

performance metric, e.g., MSE.



Biological Neuron
• Basic computational unit of the brain.

• Main parts:

• Dendrites

• They act as inputs.

• Soma

• Main body of neuron.

• Axon

• It acts as neuron output.
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Biological Neuron 
Connectivity
• Neurons connect with other neurons through synapses.

AxosomaticAxodendritic Axoaxonal

3



Biological Neuron Connectivity

⚫ An electric action potential is propagated 
through the axon.

⚫ Signal is transmitted through the synapse gap 
by neurotransmitter molecules.

⚫ Each synapse has its own synaptic weight.
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Biological Neuron Connectivity

⚫ Synaptic weights can be:

• Positive (excitatory synapses).

• Negative (inhibitory synapses).

⚫ Transmitted signal is a series of electrical 

impulses.

• The stronger the transmitted signal, the 

bigger the impulse frequency. 
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Biological Neuron Connectivity

⚫ Transmitted signal is a series of electrical impulses.

⚫ The stronger the transmitted signal, the  bigger the impulse frequency. 

4Neural spiky signal [EXT].

Analog Signal

Digital Signal

Neuron Spiking Signal



Synaptic Integration
• Electric potential received by all dendrites of a

neuron is accumulated inside its soma.

• When the electric potential at the membrane
reaches a certain threshold, the neuron fires an
electrical impulse.

• The signal is propagated through the axon and
information is “fed” forward to all connected
neurons.
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Artificial Neurons

Artificial neurons are mathematical models loosely inspired 

by their biological counterparts.

⚫ Previous dendrites fetch the input vector:

𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛
𝑇, 𝑥𝑖 ∈ ℝ.

⚫ The synaptic weights are grouped in a weight vector:

𝐰 = [𝑤1, 𝑤2, … , 𝑤𝑛]
𝑇 , 𝑤𝑖 ∈ ℝ.

⚫ Synaptic integration is modeled as the inner product:

𝑧 =෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 = 𝐰𝑇𝐱.
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Artificial Neurons
ANN synaptic summation models:

• linear function (or mapping from 𝐱 to 𝑦):

ො𝑦 = 𝐰𝑇𝐱 + 𝑏. 

• nonlinear model:

ො𝑦 = 𝐰𝑇𝜙 𝐱 + 𝑏.

• 𝜙:ℝ𝑛 → 𝐻: Nonlinear mapping of 𝐱 to a (possibly) high-dimensional
space, 𝐿 = dim 𝐻 > 𝑛,𝐰 ∈ ℝ𝐿.

• Learning consists of finding the optimal parameters 𝐰, so that ො𝑦 =
𝑓 𝐱;𝐰 is as close as possible to the target 𝑦, by minimizing a cost
function 𝐽 𝐰 (a measure of discrepancy between 𝑦 and ො𝑦).
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Perceptron

11

ො𝑦 = 𝑓 𝑧 = 𝑓 𝐰𝑇𝐱 + 𝑏 = 𝑓 ෍

𝑖=1

𝑁

𝑤𝑖𝑥𝑖 + 𝑏



Perceptron

⚫ McCulloch & Pitts model is the simplest mathematical model of a neuron.

⚫ It has real inputs in the range 𝑥𝑖 ∈ [0,1]. 

⚫ It produces a single output ො𝑦 ∈ [0,1], through  activation function 𝑓(∙).

⚫ Output 𝑦 signifies whether the neuron will fire or not.

⚫ Firing threshold:

𝐰𝑇𝐱 ≥ −𝑏 ⇒ 𝐰𝑇𝐱 + 𝑏 ≥ 0.
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Perceptron  
⚫ Threshold can be incorporated into the augmented vectors:

ො𝑦 = 𝑓 𝐱;𝐰 = 𝑓 𝐰′𝑇𝐱′ .

⚫ Augmented input vector: 𝐱′ = 1, 𝑥1, … , 𝑥𝑛
𝑇

⚫ Augmented weight vector 𝐰′ = 𝑏,𝑤1, … , 𝑤𝑛
𝑇.

⚫ From now on, for notation simplicity, we discard augmentation and work 
with 𝐱 ∈ ℝ𝑛+1 and 𝐰 ∈ ℝ𝑛+1.

⚫ In this case, the parameter vector to be optimized is 𝛉 = 𝐰.
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Perceptron – Activation
Neural activation function that is suitable for 2-class problems:

• If 𝑓 𝑧 ≥ 0, assign 𝐱 to class 𝒞1;
• If 𝑓 𝑧 < 0, assign 𝐱 to class 𝒞2.

⚫ Step activation function:

ො𝑦 = 𝑓 𝑧 = 𝑓(𝐰𝑇𝐱) = ቊ
0, 𝐰𝑇𝐱 < 0

1, 𝐰𝑇𝐱 ≥ 0.

⚫ Sigmoid activation function: 

ො𝑦 = 𝑓 𝑧 = 1/(1 + 𝑒−𝑐𝑧).

13



Perceptron-Decision 

Hyperplanes

24
Linear decision line. 

Perceptron decision surface with step activation function:

a) Line in ℝ2 ; b) plane in ℝ3; c) hyperplane in ℝ𝑛.



AND function model

⚫ Perceptron weight vector:  𝐰 = −
3

2
, 1, 1

𝑇

⚫ Input vector: 𝐱 = 1, 𝑥1, 𝑥2
𝑇

𝑥1 𝑥2 𝑦 = 𝐰𝑇𝐱

0 0 𝐰𝑇𝐱 < 0 ⇒ 𝑦 = 0

0 1 𝐰𝑇𝐱 < 0 ⇒ 𝑦 = 0

1 0 𝐰𝑇𝐱 < 0 ⇒ 𝑦 = 0

1 1 𝐰𝑇𝐱 ≥ 0 ⇒ 𝑦 = 1
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OR function model

⚫ Perceptron weight vector: 𝐰 = −
1

2
, 1, 1

𝑇

⚫ Input vector: 𝐱 = 1, 𝑥1, 𝑥2
𝑇

𝑥1 𝑥2 𝑦 = 𝐰𝑇𝐱

0 0 𝐰𝑇𝐱 < 0 ⇒ 𝑦 = 0

0 1 𝐰𝑇𝐱 ≥ 0 ⇒ 𝑦 = 1

1 0 𝐰𝑇𝐱 ≥ 0 ⇒ 𝑦 = 1

1 1 𝐰𝑇𝐱 ≥ 0 ⇒ 𝑦 = 1
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XOR function mod
⚫ There is no linear separating line in ℝ2 for 

the XOR function.

⚫ Solution: Add an extra layer of neurons 
before the perceptron output 𝑦.

⚫ Extra layer consists of two perceptrons, 
computing the AND and the OR function 
respectively.

⚫ The new functional form will be: 

𝑓 𝐱 = 𝐰𝑇𝝓, 

where 𝝓 is the output of the extra layer, 
given as input to the output layer.
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Two-layer Perceptron – XOR
function model

Layer 1
(input)

Layer 2
(hidden)

Layer 3
(output)

⚫ Notation:

𝐱 = 1, 𝑥1, 𝑥2
𝑇 𝑓(⋅): step function

𝐰1 = −
1
2, 1, 1

𝑇
𝜙1 𝐱 = 𝑓(𝐰1

𝑇𝐱)

𝐰2 =
3
2, −1, −1

𝑇
𝜙2 𝐱 = 𝑓(𝐰2

𝑇𝐱)

𝐰 = −
3

2
, 1, 1

𝑇
𝑦 = 𝐰𝑇𝝓,

𝝓 = 1,𝜙1 𝐱 , 𝜙2 𝐱 𝑻.

17
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Two-layer Perceptron – XOR
function model

Layer 1
(input)

Layer 2
(hidden)

Layer 3
(output)

𝜙1 𝐱 𝜙2 𝐱 𝑦 = 𝐰𝑇𝝓

0 1 𝐰𝑇𝝓 < 0 ⇒ 𝑦 = 0

1 1 𝐰𝑇𝝓 ≥ 0 ⇒ 𝑦 = 1

1 1 𝐰𝑇𝝓 ≥ 0 ⇒ 𝑦 = 1

1 0 𝐰𝑇𝝓 < 0 ⇒ 𝑦 = 0

𝑥1 𝑥2 𝜙1 𝐱 𝜙2 𝐱

0 0 0 1

0 1 1 1

1 0 1 1

1 1 1 0

18
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Iterative Perceptron training

Perceptron training as an optimization problem:

• Perceptron has to be optimized to minimize error function 𝐽 𝐰 .

• Differentiation:

𝜕𝐽 𝐰

𝜕𝐰
= 𝟎

can provide the critical points of multivariate function 𝐽 𝐰 :

• Minima, maxima and saddle points. 

• Analytical differentiation is usually impossible.

• We must resort to numerical optimization methods. 
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Steepest Gradient Descent

Steepest Gradient Descent is one of the most popular optimization
algorithms.

• The parameter space 𝐰 ∈ ℝ𝑛 is iteratively searched, along the direction
of the error function gradient −𝛻𝐽 𝐰 .

• The gradient vector points to the direction of the steepest ascent.

𝛻𝐽 𝐰 =
𝜕𝐽

𝜕𝐰
=

𝜕𝐽

𝜕𝑤1
, … ,

𝜕𝐽

𝜕𝑤𝑛

𝑇

.

• Correspondingly, −𝛻𝐽 𝐰 points to the direction of the steepest
descent to a mimimum, along which 𝐽 𝐰 decreases more rapidly.
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Steepest Gradient Descent

⚫ Steepest Gradient Descent is an iterative method, fining solutions

𝐰 𝑡 + 1 = 𝐰 𝑡 + ∆𝐰 𝑡 , 

⚫ 𝑡 is the iteration number.

⚫ The correction term can be proportional to the direction of steepest
descent 𝛻𝐰𝐽 𝐰 𝑡 :

𝐰 𝑡 + 1 = 𝐰 𝑡 − 𝜂𝛻𝐰𝐽 𝐰 𝑡 .

⚫ 𝜂: learning rate is a parameter controlling model parameters updates.
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Steepest Gradient Descent

Steepest descent for a 2D error function 𝐽(𝑤1, 𝑤2).

23



Steepest Gradient Descent

⚫ There is no guarantee of convergence to a global minimum.

⚫ The solution depends on the initial staring point 𝐰 0 .

⚫ Numerical estimates of the gradient 𝛻𝐽 𝐰 =
𝜕𝐽

𝜕𝑤1
, … ,

𝜕𝐽

𝜕𝑤𝑛

𝑇
can be

noisy.

⚫ Convergence can be slow.

⚫ Convergence speed depends on learning rate 𝜂.
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Iterative Perceptron training

2-class Classification:

If ො𝑦 = 𝑓 𝐱;𝐰 = 𝐰𝑇 𝐱 ≥ 0, assign 𝐱 to class 𝒞1,

If ො𝑦 = 𝑓 𝐱;𝐰 = 𝐰𝑇 𝐱 < 0, assign 𝐱 to class 𝒞2.

⚫ Goal: find the optimal model parameters 𝐰, so that the model
produces the minimal number of false class assignments
(decisions/predictions),

19



Iterative Perceptron training

Classification is transformed to an optimization problem:

• construct a cost function, choose an optimization algorithm.

Perceptron cost function:

min
𝐰

𝐽 𝐰 = ෍

𝐱∈𝒟′

𝑑𝑥𝐰
𝑇𝐱 .

• 𝒟′ is the subset of training samples that have been misclassified.

• 𝑑𝑥 ≜ −1, if 𝐱 ∈ 𝒞1 and has been misclassified to 𝒞2,

• 𝑑𝑥 ≜ 1, if 𝐱 ∈ 𝒞2 and has been misclassified to 𝒞1.
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Iterative Perceptron training

⚫ When all samples have been correctly classified: 𝒟′ = ∅ ⇒
𝐽 𝐰 = 0.

⚫ If 𝐱 ∈ 𝒞1 and has been misclassified, then 𝐰𝑇𝐱 < 0 and
𝑑𝑥 < 0. Thus, they produce positive error 𝐽 𝐰 .

⚫ The same applies for misclassified samples of class 𝒞2.

⚫ 𝐽 𝐰 is continuous and piece-wise linear and differentiable.
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Iterative Perceptron training

• Applying the previous parameter update rule to the Perceptron 
model:

𝐰 𝑡 + 1 = 𝐰 𝑡 − 𝜂𝛻𝐽 𝐰 ,

𝛻𝐽 𝐰 =
𝜕

𝜕𝐰
෍

𝐱∈𝒟′

𝑑𝑥𝐰
𝑇𝐱 = ෍

𝐱∈𝒟′

𝑑𝑥𝐱 .

22



Iterative Perceptron training

• The complete form of the update rule, widely known as the
Perceptron algorithm, becomes:

𝐰 𝑡 + 1 = 𝐰 𝑡 − 𝜂 ෍

𝐱∈𝒟′

𝑑𝑥𝐱 .

• It is proven that this algorithm converges.

• It is an on-line algorithm (training data can be used as they come).
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Iterative Perceptron training

Perceptron training.

20



Batch Perceptron training

20

Given a dataset 𝒟 = 𝐱𝑖 , 𝑦𝑖 , 𝑖 = 1,… ,𝑁 ,an analytical solution to the
Mean Squared Error function (MSE) minimization problem is possible:

𝐽 𝐰 =
1

2
෍

𝑖=1

𝑁

(𝐰𝑇𝐱𝑖 − 𝑦𝑖)
2 .

⚫ 𝐽 𝐰 gradient is given by:

𝛻𝐽 𝐰 = 𝐗𝑇𝐗𝐰𝑇 − 𝐗𝑇𝐲.

⚫ 𝐗 = [𝐱1, … , 𝐱𝑁]
𝑇: 𝑁 × 𝑛 data matrix.

⚫ 𝐲 = [𝑦1, … , 𝑦𝑁]
𝑇∶ target vector.



Batch Perceptron training

20

⚫ Setting 𝛻𝐽 𝐰 = 𝟎 gives us :

𝐗𝑇𝐗𝐰𝑇 = 𝐗𝑇𝐲.

⚫ Therefore, MSE minimization solution is given by:

𝐰𝑇 = (𝐗𝑇𝐗)−1𝐗𝑇𝐲.

⚫ Matrix 𝐗† = (𝐗𝑇𝐗)−1𝐗𝑇 is known as the pseudoinverse of matrix 𝐗.

⚫ It has the property: 

𝐗†𝐗 = 𝐈. 



Batch Perceptron training

20

⚫ If (𝐗𝑇𝐗)−1 is singular, then we can use:

𝐗† ≜ lim
𝜖→0

(𝐗𝑇𝐗 − 𝜖𝐈)−1𝐗𝑇.

⚫ The solution is given by:

𝐰 = (𝐗†𝐲)𝑇 .
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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