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Introduction
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2D shapes can be described in two different ways:

a) External representation: Description using the object boundary

and its features.

• Linked to edge detection, contour following.

b) Internal representation: Description by the object region (set of

pixels on the image plane).

• Linked to image region segmentation.



Desirable shape representation properties:

• Uniqueness:

• It is of crucial importance in object recognition.

• Invariance under geometrical transformations:

• translation, rotation, scaling and reflection.

• Very important for object recognition applications.

• Completeness:

• This refers to its ability to represent any shape.

Introduction
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• Sensitivity:

• Ability of a representation scheme to reflect easily the

differences between similar objects.

• Abstraction from detail:

• Ability of the representation to represent only the basic shape

features.

• Directly related to the noise robustness of the representation.

• Sensitivity and abstraction from detail may contradict each other.
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Chain codes

• Simplest object contour description: ordered list of contour

pixels 𝑥𝑖 , 𝑦𝑖
𝑇 , 𝑖 = 1,… , 𝑁.

• It is a verbose description that can be greatly compressed.

• This can be done, e.g., by chain codes.
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Chain codes

Chain code of a digital image boundary.

(a) (b)

Chain codes for: a) a 4-connected chain; b) an 8-connected chain.



• The chain code depends on the start point of boundary following.

• Chain codes provide a good compression of boundary

description.

• Chain codes can also be used to calculate certain boundary

features.

• It is translation invariant.

• Scale invariance may be obtained by changing the sampling

grid.
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Chain codes
• Rotation invariance is obtained by using the difference chain 

code:

𝑑𝑖 = ቊ
diff 𝑥𝑖 , 𝑥𝑖−1 = |𝑥𝑖 − 𝑥𝑖−1|, if 𝑖 ≠ 1,

diff 𝑥𝑖, 𝑥𝑁 = |𝑥𝑖 − 𝑥𝑖−1|, if 𝑖 = 1.

• Differences are calculated mod 2 for 4-connected chain, or mod 2 

for 8-connected chains.

• Invariance is for multiples of 90 or 45 degrees, for 4-connected or 

8-connected chains.
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Chain codes
• Object boundary perimeter 𝑇 is given by:

𝑇 = σ𝑖=1
𝑁 𝑛𝑖 ,

• In case of an 8-connected chain code:

𝑛𝑖 = ൝
1, if 𝑥𝑖 mod 2 = 0,

2 , if 𝑥𝑖 mod 2 = 1.



• Object width 𝑤 and height ℎ: are given by:

𝑤 =

𝑖=1

𝑁

𝑤𝑖 , ℎ =

𝑖=1

𝑁

ℎ𝑖 ,

where:

𝑤𝑖 = ൜
0, if 𝑥𝑖 = 1,2,3,
1, if 𝑥𝑖 = 0,

ℎ𝑖 = ቊ
0, if 𝑥𝑖 = 0,2,3,
1 if 𝑥𝑖 = 1,

in case of an 8-connected chain code.

• Chain codes can also be used in the calculation of object area.
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Papert’s turtle follows binary object boundary:

• For pixel value 0
1

turn 𝑟𝑖𝑔ℎ𝑡
𝑙𝑒𝑓𝑡

and advance one pixel:

Chain codes

Papert’s turtle in binary object boundary following.
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Polygonal contour approximation:

• Optimal linear piecewise contour approximation:

• Choice of polygon vertices, so that the overall contour

approximation error is minimized.

• Error measures:

• Mean Square Error:

𝐸2 = 

𝑖=2

𝑁−1

𝐱𝑖 − 𝐝𝑖
2 .
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• Maximal approximation error:

𝐸𝑚𝑎𝑥 = max
2≤𝑖≤𝑁−1

𝐱𝑖 − 𝐝𝑖 .
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Polygonal approximations

   

 

 
  

   

 

Curve approximation error.



Polygonal splitting techniques:

• Divide a curve segment recursively into smaller segments, until

each curve segment can be approximated by a linear segment

within an acceptable error range.

• Curve inflection points can be easily detected and used in curve

representation.
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Polygonal approximations

Splitting method for polygonal

approximations of a curve segment.

Splitting method for the linear 

piecewise approximation of a 

closed curve.
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Polygonal merging techniques:

• Polygon vertices do not coincide with curve inflection points.

• Combination of split and merge techniques.

19

Polygonal approximations
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Fourier descriptors
Fourier descriptors for contour representation:

𝑍 𝑘 = 

𝑛=0

𝑁−1

𝑧 𝑛 exp −𝑖
2𝜋𝑛𝑘

𝑁
,

𝑧 𝑛 =
1

𝑁


𝑘=0

𝑁−1

𝑍(𝑘)exp 𝑖
2𝜋𝑛𝑘

𝑁
.

Parametric curve representation.
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Fourier descriptors
Fourier descriptor properties can be used in object recognition

applications:

• Fourier coefficient 𝑍(0) represents the curve center of gravity.

• Fourier coefficients 𝑍(𝑘) represent slowly and rapidly varying

shape trends for small and large indices 𝑘, respectively.

• Curve translation by 𝑧0 = 𝑥0 + 𝑖𝑦0 :

𝑧𝑡 𝑛 = 𝑧 𝑛 + 𝑧0,

affects only the Fourier DC term 𝑍(0):

𝑍𝑡 0 = 𝑍 0 + 𝑧0.
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Fourier descriptors
• Curve rotation by angle 𝜃:

𝑧𝑟 𝑛 = 𝑧 𝑛 𝑒𝑖𝜃,

results in a phase shift of the Fourier coefficients:

𝑍𝑟 𝑘 = 𝑍 𝑘 𝑒𝑖𝜃 .

• Curve coordinate scaling by a factor 𝑎 , results in Fourier

coefficients scaling:
𝑧𝑠 𝑛 = 𝛼𝑧 𝑛 ,
𝑍𝑠 𝑘 = 𝛼𝑍 𝑘 .
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Fourier descriptors
Fourier descriptor properties:

• A change in the starting point of curve traversal:
𝑧𝑡 𝑛 = 𝑧 𝑛 − 𝑛0 ,

produces modulation of the Fourier descriptors:

𝑍𝑡 𝑘 = 𝑍 𝑘 𝑒−𝑖2𝜋𝑛0𝑘/𝑁 .

• Error measure for matching two curves 𝑍1 𝑛 , 𝑍2 𝑛 :

𝐸 = 

𝑘=0

𝑁−1

𝑍1 𝑘 − 𝑍2 𝑘 2.

()
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Quadtree recursive computation:

• if a binary image region of size 2𝑛 × 2𝑛 is inhomogeneous, it is

split into four square subregions ℛ0, ℛ1, ℛ2, ℛ3 having size 2𝑛−1 ×
2𝑛−1 each.

• This continues until all subregions are homogeneous.

• The resulting shape representation is a quadtree.

• Maximal number of quadtree nodes:

𝑁 = 

𝑘=0

𝑛

4𝑘 ≈
4

3
4𝑛.
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Quadtrees



Quadtrees

a) Binary image; b) Quadtree representation.
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Image pyramids:

• Multiresolution image representations

• They employ several image copies at different resolutions.

• Both greyscale and binary images representations.

• An image pyramid is an image array series 𝑓𝑘 𝑖, 𝑗 , 𝑘 = 0,… , 𝑛,

each having size 2𝑘 × 2𝑘.

29

Pyramids



30

Pyramids
• Mapping function from one pyramid level to the one above:

𝑓𝑘 𝑖, 𝑗 = 𝑔(𝑓𝑘+1 2𝑖, 2𝑗 , 𝑓𝑘+1 2𝑖, 2𝑗 + 1 , 𝑓𝑘+1 2𝑖 + 1,2𝑗 , 𝑓𝑘+1 2𝑖 + 1,2𝑗 + 1 ).

• Linear mapping by local averaging:

𝑓𝑘 𝑖, 𝑗 =
1

4


𝑙=0

1



𝑚=0

1

𝑓𝑘+1 2𝑖 + 𝑙, 2𝑗 + 𝑚 .



Pyramids

Mapping from one pyramid level 

to the next one.

Image pyramid.
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• Pyramids offer abstraction from image details.

• They can be used in:

• Image compression;

• Multiresolution scaling-invariant image analysis.

• Pyramid storage on 𝑛 + 1 arrays of size 2𝑘 × 2𝑘 , 𝑘 = 0, . . , 𝑛.

• Total space for pyramid storage for a 2𝑛 × 2𝑛 image:

𝑀 = Τ4 3 × (2𝑛 × 2𝑛). 
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Pyramids

a) Original

binary image.

c) Output of the

pyramid edge 

detector.

b) Binary image

Pyramid.

d) Edge

Pyramid.
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Geometrical shapes possess certain features (e.g., perimeter) that

carry sufficient information for some object recognition applications.

Such features can be used as object descriptors resulting in a

significant data compression, because they can represent the

geometrical shape by a relatively small feature vector.

Shape features can be grouped in two large classes:

• Boundary features.

• Region features.
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• Object perimeter:

𝑇 = න 𝑥2 𝑡 + 𝑦2 𝑡 𝑑𝑡,

𝑇 = 

𝑖=1

𝑁−1

𝑑𝑖 =

𝑖=1

𝑁−1

𝐱𝑖 − 𝐱𝑖+1 2.

• 𝐱1, … , 𝐱𝑛: boundary coordinate list.

• Curvature magnitude:

𝑘(𝑡) 2 =
𝑑2𝑥

𝑑𝑡2

2

+
𝑑2𝑦

𝑑𝑡2

2

.
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Shape features
• Curvature magnitude:

𝑘(𝑛) =
1

∆2
𝑥 𝑛 − 1 − 2𝑥 𝑛 + 𝑥(𝑛 + 1) 2 + 𝑦 𝑛 − 1 − 2𝑦 𝑛 + 𝑦(𝑛 + 1) 2.

• Curvature definition as local curve orientation change:

𝑘 𝑠 =
𝑑𝜙(𝑠)

𝑑𝑠

𝑑𝑠 = 𝑑𝑥2 + 𝑑𝑦2.

• 𝜙(𝑠): orientation of the local curve tangent at position 𝑠.
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Shape features
• Curvature approximation using chain codes:

𝑘 𝑛 ≅
𝑥𝑛 − 𝑥𝑛−1

𝐿(𝑥𝑛) − 𝐿(𝑥𝑛−1)
,

𝐿 𝑥𝑖 = ൞
ൗ1 2 , for 𝑥𝑖 even,

ൗ2
2 , for 𝑥𝑖 odd.



Shape features
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• Bending energy:

𝐸 =
1

𝑇
0
𝑇
𝑘(𝑡) 2𝑑𝑡 ,

𝐸 =
1

𝑇
σ𝑖=0
𝑛−1 𝑘(𝑖) 2, 1 < 𝑛 < 𝑁.

• Fourier descriptors can be used for bending energy calculation:

𝐸 = 𝑍(𝑘) 2
2𝜋𝑘

𝑇

4

,



Shape features
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• Circle has the minimal bending energy: 

𝐸 =
2𝜋

𝑇

2
. 

• Bending energy normalization:

𝐸𝑁 = 1 −
𝐸𝑐𝑖𝑟𝑐𝑙𝑒

𝐸𝑜𝑏𝑗𝑒𝑐𝑡
= 1 −

4𝜋2

𝑇 σ𝑖=1
𝑛 𝑘 𝑖 2 .
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Shape features
• Area of object ℛ:

𝐴 =ඵ
ℛ

𝑑𝑥 𝑑𝑦 .

• Area can be approximated by counting pixel numbers:

• 𝑑𝑥, 𝑑𝑦 describe pixel size.

• Differential Geometry defines area through object contour 𝜕ℛ:

𝐴 = න
𝜕ℛ

𝑦 𝑡
𝑑𝑥

𝑑𝑡
− 𝑥(𝑡)

𝑑𝑦

𝑑𝑡
𝑑𝑡 .



• Object compactness or circularity 𝛾 and its normalized version 

𝛾𝑁 :

𝛾 =
𝑇2

4𝜋𝐴
, 𝛾𝑁 = 1 −

4𝜋𝐴

𝑇2
.

• Object width and height:

𝑤 = max
𝑡

𝑥(𝑡) − min
𝑡

𝑥 𝑡 ,

ℎ = max
𝑡

𝑦(𝑡) − min
𝑡

𝑦 𝑡 .

• Object diameter:

𝐷 = max
𝐱𝑘,𝐱𝑙∈ℛ

𝑑(𝐱𝑘 , 𝐱𝑙) ,

• 𝐱𝑘 , 𝐱𝑙 are two pixels of ℛ lying further apart. 
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Topological descriptors can give useful global information about an 

object. Two important topological features are the holes 𝐻 and the 

connected components 𝐶 of an object.

Euler number:

𝐸 = 𝐶 − 𝐻.

Letters A, B, C, have Euler numbers 0, -1, 1, respectively.
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• Image moments are given by:

𝑚𝑝𝑞 = න
−∞

∞

න
−∞

∞

𝑥𝑝𝑦𝑞𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦. 𝑝, 𝑞 = 0,1,2, …

• Center of gravity of an object:

ҧ𝑥 =
𝑚10

𝑚00
, ത𝑦 =

𝑚01

𝑚00
.

• Central moments:

𝜇𝑝𝑞 = න
−∞

∞

න
−∞

∞

(𝑥 − ҧ𝑥)𝑝(𝑦 − ത𝑦)𝑞𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦. 𝑝, 𝑞 = 0,1,2, …
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• Moments of discrete images:

𝑚𝑝𝑞 =

𝑖



𝑗

𝑖𝑝𝑗𝑞𝑓(𝑖, 𝑗) ,

𝜇𝑝𝑞 =

𝑖



𝑗

(𝑖 − ҧ𝑥)𝑝(𝑗 − ത𝑦)𝑞𝑓(𝑖, 𝑗) .

• Moments of binary images:

𝑚𝑝𝑞 =

𝑖



𝑗

𝑖𝑝𝑗𝑞 ,

𝜇𝑝𝑞 =

𝑖



𝑗

𝑖 − ҧ𝑥 𝑝(𝑗 − ത𝑦)𝑞 .
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Moment descriptors

• Object barycenter (center of gravity):

ҧ𝑥 =
1

𝑁


(𝑖,𝑗)∈ℛ

𝑖 , ത𝑦 =
1

𝑁


(𝑖,𝑗)∈ℛ

𝑗,

• 𝑁 is the number of object pixels.

• Object orientation 𝜽 can be derived by minimizing the function:

min
𝜃

𝑆 𝜃 = 

(𝑖,𝑗)∈𝑅

 (𝑖 − ҧ𝑥) cos 𝜃 − (𝑖 − ത𝑦) sin 𝜃 2 ,

𝜃 =
1

2
𝑎𝑟𝑐 tan

2𝜇11
𝜇20 − 𝜇02

.



Definition of object orientation.
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• Object eccentricity:

𝜀 =
𝜇02 cos

2 𝜃 + 𝜇20 𝑠𝑖𝑛
2 𝜃 − 𝜇11 sin 2𝜃

𝜇02 𝑠𝑖𝑛
2 𝜃 + 𝜇20 𝑐𝑜𝑠

2 𝜃 − 𝜇11 cos 2𝜃
,

𝜀 =
(𝜇02 − 𝜇20)

2+4𝜇11
𝐴

.

• Object spread (or size):

𝑆 = 𝜇02 + 𝜇20 .
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Thinning can be defined heuristically as a set of successive

erosions of the outermost layers of a shape, until a connected unit-

width set of lines (skeleton) is obtained.

Thinning algorithms satisfy the following two constraints:

1. They maintain connectivity at each iteration. They do not

remove border pixels that may cause discontinuities.

2. They do not shorten the end of thinned shape limbs.
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Thinning algorithms

(a) (b) (c)

a) Border pixel, whose removal may cause discontinuities;

b) Border pixel, whose removal will shorten an object limb;

c) Local pixel notation used in connectivity check.
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Thinning algorithms

(a) (b) (c)

Central window pixels belonging to: a) an East boundary; b) a South 

boundary; c) a North-West corner point.
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Thinning algorithms

(a)                     (b) (c)

Central window pixels belonging to: a) a North boundary; b) a West 

boundary; c) a South-East corner.



One-pass thinning algorithm:

• Check in a local 3 × 3 image neighborhood:

• if the object pixel number 𝑁 𝑝0 satisfies: 𝑁 𝑝0 < 2 or 𝑁 𝑝0 >
7, do nothing.

• If 2 < 𝑁 𝑝0 < 8 , we check if the removal of the central pixel

would break object connectivity:

• The pixel sequence is formed 𝑝1𝑝2𝑝3…𝑝8𝑝1.

• If the number of 0 → 1 transitions therein is 1, then the

central pixel that has value 1 is removed.
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Thinning algorithms

Two-pass thinning algorithm:

• Step 1: a logical rule 𝑃1 is applied in a 3 × 3 neighborhood and

flags the border pixels that can be deleted.

• Step 2: a logical rule 𝑃2 is applied in a 3 × 3 neighborhood and

flags the border pixels that will be deleted.

𝑃1: 2 ≤ 𝑁′ 𝑝0 ≤ 6 && 𝑇 𝑝0 = 1 && 𝑝1 ∙ 𝑝3 ∙ 𝑝5 = 0 && 𝑝3 ∙ 𝑝5 ∙ 𝑝7 = 0 ,
𝑃2: 2 ≤ 𝑁′ 𝑝0 ≤ 6 && 𝑇 𝑝0 = 1 && 𝑝1 ∙ 𝑝3 ∙ 𝑝7 = 0 && 𝑝1 ∙ 𝑝5 ∙ 𝑝7 = 0 ,

• 𝑁′ 𝑝0 : object pixel number in a local 3 × 3 image neighborhood,

but the central pixel.

• 𝑇(𝑝0) denotes the number of the 0 → 1 transitions.



Thinning algorithms

Sobel edge 

detector output.

Output of the 

one-pass 

thinning 

Algorithm.

Binary

Image.

Output of the

two-pass 

thinning

Algorithm.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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