Shape Description

Prof. Ioannis Pitas

Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 2.7.1

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Introduction

2D shapes can be described in two different ways:
a) External representation: Description using the object boundary and its features.

- Linked to edge detection, contour following.
b) Internal representation: Description by the object region (set of pixels on the image plane).
- Linked to image region segmentation.

Introduction

Desirable shape representation properties:

- Uniqueness:
- It is of crucial importance in object recognition.
- Invariance under geometrical transformations:
- translation, rotation, scaling and reflection.
- Very important for object recognition applications.
- Completeness:
- This refers to its ability to represent any shape.

Introduction

- Sensitivity:
- Ability of a representation scheme to reflect easily the differences between similar objects.
- Abstraction from detail:
- Ability of the representation to represent only the basic shape features.
- Directly related to the noise robustness of the representation.
- Sensitivity and abstraction from detail may contradict each other.

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Chain codes

- Simplest object contour description: ordered list of contour pixels $\left[x_{i}, y_{i}\right]^{T}, i=1, \ldots, N$.
- It is a verbose description that can be greatly compressed.
- This can be done, e.g., by chain codes.

Chain codes

Chain code of a digital image boundary.

(a)

(b)

Chain codes for: a) a 4-connected chain; b) an 8-connected chain.

Chain codes

- The chain code depends on the start point of boundary following.
- Chain codes provide a good compression of boundary description.
- Chain codes can also be used to calculate certain boundary features.
- It is translation invariant.
- Scale invariance may be obtained by changing the sampling grid.

Chain codes

- Rotation invariance is obtained by using the difference chain code:

$$
d_{i}= \begin{cases}\operatorname{diff}\left(x_{i}, x_{i-1}\right)=\left|x_{i}-x_{i-1}\right|, & \text { if } i \neq 1 \\ \operatorname{diff}\left(x_{i}, x_{N}\right)=\left|x_{i}-x_{i-1}\right|, & \text { if } i=1\end{cases}
$$

Differences are calculated mod 2 for 4 -connected chain, or mod 2 for 8-connected chains.

- Invariance is for multiples of 90 or 45 degrees, for 4-connected or 8 -connected chains.

Chain codes

- Object boundary perimeter T is given by:

$$
T=\sum_{i=1}^{N} n_{i},
$$

- In case of an 8-connected chain code:

$$
n_{i}= \begin{cases}1, & \text { if } x_{i} \bmod 2=0 \\ \sqrt{2}, & \text { if } x_{i} \bmod 2=1\end{cases}
$$

Chain codes

- Object width w and height h : are given by:

$$
w=\sum_{i=1}^{N} w_{i}, \quad h=\sum_{i=1}^{N} h_{i}
$$

where:

$$
w_{i}=\left\{\begin{array}{ll}
0, & \text { if } x_{i}=1,2,3, \\
1, & \text { if } x_{i}=0,
\end{array} \quad h_{i}= \begin{cases}0, & \text { if } x_{i}=0,2,3 \\
1 & \text { if } x_{i}=1,\end{cases}\right.
$$

in case of an 8-connected chain code.

- Chain codes can also be used in the calculation of object area.

Chain codes

Papert's turtle follows binary object boundary:

- For pixel value $\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$ turn $\left\{\begin{array}{c}\text { right } \\ \text { left }\end{array}\right\}$ and advance one pixel:

Papert's turtle in binary object boundary following.

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Polygonal approximations

Polygonal contour approximation:

- Optimal linear piecewise contour approximation:
- Choice of polygon vertices, so that the overall contour approximation error is minimized.

Error measures:

- Mean Square Error:

$$
E_{2}=\sum_{i=2}^{N-1}\left|\mathbf{x}_{i}-\mathbf{d}_{i}\right|^{2}
$$

Polygonal approximations VML

- Maximal approximation error:

$$
E_{\max }=\max _{2 \leq i \leq N-1}\left|\mathbf{x}_{i}-\mathbf{d}_{i}\right|
$$

Curve approximation error.

Polygonal approximations

Polygonal splitting techniques:

- Divide a curve segment recursively into smaller segments, until each curve segment can be approximated by a linear segment within an acceptable error range.
- Curve inflection points can be easily detected and used in curve representation.

Polygonal approximations VML

Splitting method for the linear piecewise approximation of a closed curve.

Splitting method for polygonal
approximations of a curve segment.

Polygonal approximations

Polygonal merging techniques:

- Polygon vertices do not coincide with curve inflection points.
- Combination of split and merge techniques.

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Fourier descriptors

Fourier descriptors for contour representation:

$$
\begin{aligned}
& Z(k)=\sum_{n=0}^{N-1} Z(n) \exp \left(-i \frac{2 \pi n k}{N}\right), \\
& Z(n)=\frac{1}{N} \sum_{k=0}^{N-1} Z(k) \exp \left(i \frac{2 \pi n k}{N}\right) .
\end{aligned}
$$

Fourier descriptors

Fourier descriptor properties can be used in object recognition applications:

- Fourier coefficient $Z(0)$ represents the curve center of gravity.
- Fourier coefficients $Z(k)$ represent slowly and rapidly varying shape trends for small and large indices k, respectively.
- Curve translation by $z_{0}=x_{0}+i y_{0}$:

$$
z_{t}(n)=z(n)+z_{0},
$$

affects only the Fourier DC term Z(0):

$$
Z_{t}(0)=Z(0)+z_{0} .
$$

Fourier descriptors

- Curve rotation by angle θ :

$$
z_{r}(n)=z(n) e^{i \theta}
$$

results in a phase shift of the Fourier coefficients:

$$
Z_{r}(k)=Z(k) e^{i \theta}
$$

- Curve coordinate scaling by a factor a, results in Fourier coefficients scaling:

$$
\begin{aligned}
& Z_{S}(n)=\alpha Z(n), \\
& Z_{S}(k)=\alpha Z(k) .
\end{aligned}
$$

Fourier descriptors

Fourier descriptor properties:

- A change in the starting point of curve traversal:

$$
z_{t}(n)=z\left(n-n_{0}\right)
$$

produces modulation of the Fourier descriptors:

$$
Z_{t}(k)=Z(k) e^{-i 2 \pi n_{0} k / N}
$$

- Error measure for matching two curves $Z_{1}(n), Z_{2}(n)$:

$$
E=\sum_{k=0}^{N-1}\left(\left|Z_{1}(k)-Z_{2}(k)\right|\right)^{2}
$$

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Quadtrees

Quadtree recursive computation:

- if a binary image region of size $2^{n} \times 2^{n}$ is inhomogeneous, it is split into four square subregions $\mathcal{R}_{0}, \mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$ having size $2^{n-1} \times$ 2^{n-1} each.
- This continues until all subregions are homogeneous.
- The resulting shape representation is a quadtree.
- Maximal number of quadtree nodes:

$$
N=\sum_{k=0}^{n} 4^{k} \approx \frac{4}{3} 4^{n}
$$

Quadtrees

(α)

(β)
a) Binary image; b) Quadtree representation.

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Pyramids

Image pyramids:

- Multiresolution image representations
- They employ several image copies at different resolutions.
- Both greyscale and binary images representations.
- An image pyramid is an image array series $f_{k}(i, j), k=0, \ldots, n$, each having size $2^{k} \times 2^{k}$.

Pyramids

- Mapping function from one pyramid level to the one above:

$$
f_{k}(i, j)=g\left(f_{k+1}(2 i, 2 j), f_{k+1}(2 i, 2 j+1), f_{k+1}(2 i+1,2 j), f_{k+1}(2 i+1,2 j+1)\right) .
$$

- Linear mapping by local averaging:

$$
f_{k}(i, j)=\frac{1}{4} \sum_{l=0}^{1} \sum_{m=0}^{1} f_{k+1}(2 i+l, 2 j+m)
$$

Pyramids

Mapping from one pyramid level to the next one.

Pyramids

- Pyramids offer abstraction from image details.
- They can be used in:
- Image compression;
- Multiresolution scaling-invariant image analysis.

Pyramid storage on $n+1$ arrays of size $2^{k} \times 2^{k}, k=0, . ., n$.

- Total space for pyramid storage for a $2^{n} \times 2^{n}$ image:

$$
M=4 / 3 \times\left(2^{n} \times 2^{n}\right)
$$

Pyramids

a) Original binary image.
c) Output of the pyramid edge detector.

b) Binary image Pyramid.
d) Edge

Pyramid.

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Shape features

Geometrical shapes possess certain features (e.g., perimeter) that carry sufficient information for some object recognition applications. Such features can be used as object descriptors resulting in a significant data compression, because they can represent the geometrical shape by a relatively small feature vector.

Shape features can be grouped in two large classes:

- Boundary features.
- Region features.

Shape features

- Object perimeter:

$$
\begin{gathered}
T=\int \sqrt{x^{2}(t)+y^{2}(t)} d t \\
T=\sum_{i=1}^{N-1} d_{i}=\sum_{i=1}^{N-1}\left|\mathbf{x}_{i}-\mathbf{x}_{i+1}\right|_{2}
\end{gathered}
$$

- $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$: boundary coordinate list.
- Curvature magnitude:

$$
|k(t)|^{2}=\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}
$$

Shape features

- Curvature magnitude:

$$
|k(n)|=\frac{1}{\Delta^{2}} \sqrt{[x(n-1)-2 x(n)+x(n+1)]^{2}+[y(n-1)-2 y(n)+y(n+1)]^{2}}
$$

- Curvature definition as local curve orientation change:

$$
\begin{gathered}
k(s)=\frac{d \phi(s)}{d s} \\
d s=\sqrt{d x^{2}+d y^{2}} .
\end{gathered}
$$

- $\phi(s)$: orientation of the local curve tangent at position s.

Shape features

- Curvature approximation using chain codes:

$$
\begin{aligned}
k(n) & \cong \frac{x_{n}-x_{n-1}}{L\left(x_{n}\right)-L\left(x_{n-1}\right)}, \\
L\left(x_{i}\right) & =\left\{\begin{array}{lr}
1 / 2, & \text { for } x_{i} \text { even } \\
\sqrt{2} / 2, & \text { for } x_{i} \text { odd. }
\end{array}\right.
\end{aligned}
$$

Shape features

- Bending energy:

$$
\begin{gathered}
E=\frac{1}{T} \int_{0}^{T}|k(t)|^{2} d t, \\
E=\frac{1}{T} \sum_{i=0}^{n-1}|k(i)|^{2}, \quad 1<n<N .
\end{gathered}
$$

- Fourier descriptors can be used for bending energy calculation:

$$
E=\sum|Z(k)|^{2}\left(\frac{2 \pi k}{T}\right)^{4}
$$

Shape features

- Circle has the minimal bending energy:

$$
E=\left(\frac{2 \pi}{T}\right)^{2} .
$$

- Bending energy normalization:

$$
E_{N}=1-\frac{E_{\text {circle }}}{E_{\text {object }}}=1-\frac{4 \pi^{2}}{T \sum_{i=1}^{n}|k(i)|^{2}} .
$$

Shape features

- Area of object \mathcal{R} :

$$
A=\iint_{\mathcal{R}} d x d y
$$

- Area can be approximated by counting pixel numbers:
- $d x, d y$ describe pixel size.
- Differential Geometry defines area through object contour $\partial \mathcal{R}$:

$$
A=\int_{\partial \mathcal{R}}\left(y(t) \frac{d x}{d t}-x(t) \frac{d y}{d t}\right) d t
$$

Shape features

- Object compactness or circularity γ and its normalized version γ_{N} :

$$
\gamma=\frac{T^{2}}{4 \pi A}, \quad \gamma_{N}=1-\frac{4 \pi A}{T^{2}}
$$

- Object width and height:

$$
\begin{aligned}
w & =\max _{t} x(t)-\min _{t} x(t) \\
h & =\max _{t} y(t)-\min _{t} y(t)
\end{aligned}
$$

- Object diameter:

$$
D=\max _{\mathbf{x}_{k}, \mathbf{x}_{l} \in \mathcal{R}} d\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right),
$$

- $\mathbf{x}_{k}, \mathbf{x}_{l}$ are two pixels of \mathcal{R} lying further apart.

Shape features

Topological descriptors can give useful global information about an object. Two important topological features are the holes H and the connected components C of an object.

Euler number:

$$
E=C-H
$$

Letters A, B, C, have Euler numbers $0,-1,1$, respectively.

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Moment descriptors

- Image moments are given by:

$$
m_{p q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{p} y^{q} f(x, y) d x d y . \quad p, q=0,1,2, \ldots
$$

- Center of gravity of an object:

$$
\bar{x}=\frac{m_{10}}{m_{00}}, \quad \bar{y}=\frac{m_{01}}{m_{00}}
$$

- Central moments:

$$
\mu_{p q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\bar{x})^{p}(y-\bar{y})^{q} f(x, y) d x d y . \quad p, q=0,1,2, \ldots
$$

Moment descriptors

- Moments of discrete images:

$$
\begin{aligned}
m_{p q} & =\sum_{i} \sum_{j} i^{p} j^{q} f(i, j) \\
\mu_{p q} & =\sum_{i} \sum_{j}(i-\bar{x})^{p}(j-\bar{y})^{q} f(i, j)
\end{aligned}
$$

- Moments of binary images:

$$
\begin{aligned}
& m_{p q}=\sum_{i} \sum_{j} i^{p} j^{q} \\
& \mu_{p q}=\sum_{i} \sum_{j}(i-\bar{x})^{p}(j-\bar{y})^{q} .
\end{aligned}
$$

Moment descriptors

- Object barycenter (center of gravity):

$$
\bar{x}=\frac{1}{N} \sum_{(i, j) \in \mathcal{R}} i, \quad \bar{y}=\frac{1}{N} \sum_{(i, j) \in \mathcal{R}} j,
$$

- N is the number of object pixels.
- Object orientation $\boldsymbol{\theta}$ can be derived by minimizing the function:

$$
\begin{gathered}
\min _{\theta} S(\theta)=\sum_{(i, j) \in R} \sum[(i-\bar{x}) \cos \theta-(i-\bar{y}) \sin \theta]^{2}, \\
\theta=\frac{1}{2} \arctan \left(\frac{2 \mu_{11}}{\mu_{20}-\mu_{02}}\right) .
\end{gathered}
$$

Moment descriptors

Definition of object orientation.

Moment descriptors

- Object eccentricity:

$$
\begin{gathered}
\varepsilon=\left[\frac{\mu_{02} \cos ^{2} \theta+\mu_{20} \sin ^{2} \theta-\mu_{11} \sin 2 \theta}{\mu_{02} \sin ^{2} \theta+\mu_{20} \cos ^{2} \theta-\mu_{11} \cos 2 \theta}\right] \\
\varepsilon=\left[\frac{\left(\mu_{02}-\mu_{20}\right)^{2}+4 \mu_{11}}{A}\right]
\end{gathered}
$$

- Object spread (or size):

$$
S=\left(\mu_{02}+\mu_{20}\right)
$$

Shape Description

- Introduction
- Chain Codes
- Polygonal Approximations
- Fourier Descriptors
- Quadtrees
- Pyramids
- Shape Features
- Moment Descriptors
- Thinning Algorithms

Thinning algorithms

Thinning can be defined heuristically as a set of successive erosions of the outermost layers of a shape, until a connected unitwidth set of lines (skeleton) is obtained.

Thinning algorithms satisfy the following two constraints:

1. They maintain connectivity at each iteration. They do not remove border pixels that may cause discontinuities.
2. They do not shorten the end of thinned shape limbs.

Thinning algorithms

(a)

(b)

p_{8}	p_{1}	p_{2}
p_{7}	p_{0}	p_{3}
p_{6}	p_{5}	p_{4}

(C)
a) Border pixel, whose removal may cause discontinuities;
b) Border pixel, whose removal will shorten an object limb;
c) Local pixel notation used in connectivity check.

Thinning algorithms

(a)

(b)

(c)

Central window pixels belonging to: a) an East boundary; b) a South boundary; c) a North-West corner point.

Thinning algorithms

(b)

(c)

Central window pixels belonging to: a) a North boundary; b) a West boundary; c) a South-East corner.

Thinning algorithms

One-pass thinning algorithm:

- Check in a local 3×3 image neighborhood:
- if the object pixel number $N\left(p_{0}\right)$ satisfies: $N\left(p_{0}\right)<2$ or $N\left(p_{0}\right)>$ 7, do nothing.
- If $2<N\left(p_{0}\right)<8$, we check if the removal of the central pixel would break object connectivity:
- The pixel sequence is formed $p_{1} p_{2} p_{3} \ldots p_{8} p_{1}$.
- If the number of $0 \rightarrow 1$ transitions therein is 1 , then the central pixel that has value 1 is removed.

Thinning algorithms

Two-pass thinning algorithm:

- Step 1: a logical rule P_{1} is applied in a 3×3 neighborhood and flags the border pixels that can be deleted.
- Step 2: a logical rule P_{2} is applied in a 3×3 neighborhood and flags the border pixels that will be deleted.

$$
\begin{aligned}
& P_{1}:\left(2 \leq N^{\prime}\left(p_{0}\right) \leq 6\right) \& \&\left(T\left(p_{0}\right)=1\right) \& \&\left(p_{1} \cdot p_{3} \cdot p_{5}=0\right) \& \&\left(p_{3} \cdot p_{5} \cdot p_{7}=0\right), \\
& P_{2}:\left(2 \leq N^{\prime}\left(p_{0}\right) \leq 6\right) \& \&\left(T\left(p_{0}\right)=1\right) \& \&\left(p_{1} \cdot p_{3} \cdot p_{7}=0\right) \& \&\left(p_{1} \cdot p_{5} \cdot p_{7}=0\right),
\end{aligned}
$$

- $N^{\prime}\left(p_{0}\right)$: object pixel number in a local 3×3 image neighborhood, but the central pixel.

Thinning algorithms

Binary Image.

Output of the one-pass thinning
Algorithm.

Output of the
two-pass
thinning
Algorithm.

Bibliography

[PIT2019] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[SZE2011] R.Szelinski, " Computer Vision ", Springer 2011
[PIT2017] I. Pitas, "Digital video processing and analysis ", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television ", Createspace/Amazon, 2013.
[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.
[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

