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Camera calibration is the process that estimates where the light 

recorded in every pixel 𝐩 = 𝑥′, 𝑦′ 𝑇 of a camera comes from in 

the 3D world (𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤). 
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Neural Camera Calibration



The required transformation from the world to the camera 

coordinate system involves a translation followed by a rotation, 

based on the extrinsic camera parameters.
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Neural Camera Calibration



Extrinsic camera parameters:

• Translation vector 𝐓 ∈ ℝ3

• Orthonormal rotation matrix 𝐑 ∈ ℝ3×3 (Consists of 𝐑𝑍, 𝐑𝑋 , 𝐑𝑌 sub-

rotations)

• The relationship between a point 𝐏𝑤 ∈ ℝ3 in world

coordinates and its camera coordinate counterpart 𝐏𝑐 ∈ ℝ3

is:

𝐏𝑐 = 𝐑 𝐏𝑤 − 𝐓 .
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Neural Camera Calibration



Intrinsic camera parameters :

• Intrinsics: optical center 𝐎𝑐, focal length 𝑓, etc.
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Neural Camera Calibration



The angles roll ,pitch and yaw represent the angle of rotations 

R𝑥 , R𝑦 and R𝑧 accordingly. Rotation matrix can be synthesized 

from rotations on basic axis:

𝐑 = 𝐑𝑍(𝜃)𝐑𝑋 𝑝 𝐑𝑌(𝑒)

Roll: 𝜃 (around 𝑍 axis)

Pitch: 𝑝 (around 𝑋 axis)

Yaw: 𝑒 (around 𝑌 axis)
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Neural Camera Calibration

[ITU2017] Rotation Parameters



Specifically 𝐑𝑍 𝜃 , 𝐑𝑋 (𝑝), 𝐑𝑌 (𝑒) can be written as:

• 𝐑𝑍 𝜃 =

1 0 0
0 cos(𝜃) sin(𝜃)

0 sin(𝜃) cos 𝜃
, 𝜃: roll angle

• 𝐑𝑋 𝑝 =
cos(𝑝) 0 sin(𝑝)
0 1 0

−sin(𝜑) 0 cos 𝑝
, 𝑝: pitch angle
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Neural Camera Calibration

[ITU2017] Rotation Parameters



And:

• 𝐑𝑌 𝑒 =
cos(𝑒) −sin(𝑒) 0
sin(𝑒) cos(𝑒) 0
0 0 1

, 𝑒: yaw angle
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Neural Camera Calibration

[ITU2017] Rotation Parameters



Many researchers [LEE2020] [ITU2017] [LOP2019] have 

proposed the use of neural networks for the task of camera 

calibration or camera parameter estimation.
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Neural Camera Calibration



In most studies like [LEE2020] and [ITU2017] a CNN

architecture is getting trained on big datasets of images with 

labeled Intrinsic calibrated camera parameters. 

In most cases the inference for the camera calibration is done 

with a single image (monocular).
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Neural Camera Calibration



A recent study [LOP2019] proposes an alternative estimation for the 

camera parameters that is based on image cues. Cues usually are 

extracted based on the horizontal line and the roll angle 𝜃, between 

the vector 𝐚 and the horizon.
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Neural Camera Calibration

[LOP2019] Line of Horizon, and angle



The network is trained to predict the distorted offset 𝜌 and vertical 

field of view 𝐹𝑣 instead of the roll angle 𝜃 and focal length 𝑓. The 

undistorted offset 𝜏 is where the horizon would be if there was no 

radial distortion.
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Neural Camera Calibration

[LOP2019] Camera Parameters based on Image cues



Specifically field of view which is predicted by the net can be 

expressed as:

• 𝐹𝑣 = 2 arctan
ℎ

2𝑓
, 𝑓 : focal length, and ℎ : image height.
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Neural Camera Calibration

[LOP2019] Camera Parameters based on Image cues



Undistorted offset 𝜏, when there is no radial distortion can be 

expressed as the distance from the center of the image to the 

horizon. 

𝜏 = 𝑓 tan 𝜃

Which can adapt in case of radial distortion, to a distorted offset 

𝜌 by scaling with distortion coefficients 𝑘1 𝑎𝑛𝑑 𝑘2
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Neural Camera Calibration



Some extrinsic camera parameters can also be extracted 

implicitly. For example the vanishing point in an image holds 

information about the pitch 𝑝 and yaw 𝑒, angles of the camera 

as stated in [ITU2017].
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Neural Camera Calibration

[ITU2017] Rotation Parameters



This particular approach require a labeled dataset in the format 

of: I, 𝑉𝑃 where I: Image and 𝑉𝑃: Vanishing Point. 

There are various geometric algorithms performing vanishing 

point detection in order to label the dataset automatically such 

as [BUI2013] [KON2009] but they are not real time, thus it is 

convenient to utilize Neural Networks for inference.
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Neural Camera Calibration



The CNN requires 160x48 resolution images, and it is 

composed by 8 layers plus a fully connected with just 2 neurons 

where the vanishing point coordinate 𝑉𝑃(𝑥, 𝑦) prediction 

happens.
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Neural Camera Calibration

[ITU2017] Network Architecture



From the last layer of the CNN we pull the predicted Vanishing 

point coordinates 𝑉𝑃 𝑥, 𝑦 and through the following 

formulations we can also predict the 𝑝: pitch and 𝑒: yaw. 

• Coordinate 𝑦𝑣𝑝 holds information about the 𝑝.

• Coordinate 𝑥vp holds information about the 𝑒.
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Neural Camera Calibration



As a sidenote there has been research recently (from Microsoft 

in 2020) [SCH2009] which proposes that having 10.000 

parameters in your camera is much better than twelve. This is 

due to camera’s natural lens distortion that can’t be properly 

modelled in the 12 dimension parameter space.
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Neural Camera Calibration
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Definition of the variables/ sizes.

𝐗𝑛 : Position of the agent at discrete time-step 𝑛. (world 

coordinates)

𝓜 : The map, gets updated each time-step 𝑛 with 𝐦𝑛

22

Neural 

Mapping/Reconstruction



Neural 

Mapping/Reconstruction

Scene Reconstruction is the process of 

estimating the map 𝓜, of an unknown

environment by processing sensor cues 

(Image, Lidar data, etc..). 

3D Reconstruction : 𝐗𝑛 = (𝑋w, 𝑌w, 𝑍w)

2D Reconstruction : 𝐗𝑛 = (𝑋w, 𝑌w)
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3D reconstruction

𝑋w, 𝑌w, 𝑍w =

𝐗𝑛 = 𝑋w, 𝑌w𝓜 :



Neural 

Mapping/Reconstruction

There is a wide variety of applications that can or already use 

related algorithms. 

• Autonomous driving

• Robotics

• 3D printing

• Medical

• Architecture etc..
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Neural 

Mapping/Reconstruction

Traditionally scene reconstruction is done with geometrical 

approaches such as Structure from Motion, which in many 

cases is still fast and reliable.
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Neural 

Mapping/Reconstruction

Structure from Motion requires Multiview in order to reconstruct 

a scene in a point cloud. A typical algorithmic workflow:
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http://www.theia-sfm.org/sfm.html



Neural 

Mapping/Reconstruction

Since we have collected the point cloud, we proceed with 

densification, meshing and texturing to produce a 

photorealistic output. A common open-source library for that 

purpose: https://github.com/cdcseacave/openMVS

27
OpenMVS densification and texturing [github]



Neural 

Mapping/Reconstruction

Even though in many cases classical approaches can be 

enough, there are a bunch of scenarios where they fail:

• Not enough images, or enough overlap between them.

• Surfaces that can’t produce features (reflections)

• Thin or repeated structures.
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Neural 

Mapping/Reconstruction

The most common reason for SfM to fail as stated [SCH2016] is 

non-Lambertian Surfaces. 
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Reflectance Model of a surface



Neural 

Mapping/Reconstruction

We can tackle most of these problems with Deep Learning.

• Most methods will inference with monocular input.

• More descriptive, robust and problem-wise image 

representations.

• Make use of prior knowledge.

30



Neural 

Mapping/Reconstruction

2D Scenario

When reconstructing a map in 2D we focus on the top down 

egocentric projection of the map as it usually provides the 

richest geometrical information.
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Neural 

Mapping/Reconstruction

3D Scenario

We reconstruct the scene using 3D point clouds. Usually these 

techniques can acquire camera poses and trajectories too.
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Neural 

Mapping/Reconstruction

Mapping/Reconstruction total possible scenarios:

2D world + 2D Reconstruction

3D world + 2D Reconstruction

3D world + 3D Reconstruction

We will analyze each one of them.
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Neural 

Mapping/Reconstruction

Deep Learning 2D Reconstruction:

2D world to 2D map: where the agent has some kind of environment 

sensor, deep learning is not much needed, since the observations can 

almost always reconstruct the environment with a basic transformation of 

the sensor readings.
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Neural 

Mapping/Reconstruction

Deep Learning 2D Reconstruction:

3D world to 2D map: it’s more complex thus researchers tend to utilize 

deep learning techniques to overcome the complexity. Such as in 

“Learning to Explore using Active Neural SLAM” [CHA2020], Mapper

module.

35
3D world observation
[CHA2020]

2D map (in green)
CHA[2020]



Neural 

Mapping/Reconstruction

Deep Learning 2D Reconstruction:

3D world to 2D map: In this case the Mapper module consists of  

ResNet18 convolutional layers to produce an embedding of the 3D 

observation. This embedding is passed through 2 fully connected layers, 

followed by 3 deconvolutional to get the top-down 2D spatial map 

prediction.

36[CHA2020] Mapper Module from ‘Active Neural SLAM’



Neural 

Mapping/Reconstruction

Deep Learning 3D Reconstruction:

The most challenging Scene Reconstruction is 3D to 3D, where 

Deep Learning really shines. In most cases it’s sufficient to 

produce a Depth-Map from an image taken in the 3D world, and 

then reconstruct the 3D Scene. This is the most dominant 

approach, as stated in recenter research [GAR2016], 

[ZHO2017], [GUI2020]. 
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Research has moved towards inferring depth maps from

monocular images/videos.

Unsupervised depth/disparity estimation methods have

prevail due to their low cost and efficiency.

(Supervised needs labeling..)

Neural 

Mapping/Reconstruction



Unsupervised monocular depth map estimation using

stereo for training [GAR2016]:

• Pixel 𝐩 of 𝐈𝑙 (left image) should appear in 𝐈𝑟 (right image) at

position 𝐩′:

𝐩′ = 𝐩 +
𝑓𝑇

𝐷 𝐩
• 𝑓: focal length, 𝑇: stereo baseline,

• 𝐷 𝐩 : depth map entry at point 𝐩.

Neural 

Mapping/Reconstruction



Next, image 𝐈𝑟 is warped to form an approximation 𝐈′𝑙 of 𝐈𝑙, such

that:

𝐈𝑙 𝐩 ≈ 𝐈′𝑙 𝐩 = 𝐈𝑟 𝐩′ .

Neural 

Mapping/Reconstruction

[GAR2016] Algorithmic Pipeline



• Then, the photometric loss function 𝐽𝑝 is minimized for optimal

depth estimation:

𝐽𝑝 = ෍

𝐩∈𝒳

‖𝐈𝑙 𝐩 − 𝐈𝑟(𝐩′) ‖
2.

• During DNN training using stereo image pairs, DNN learns

to estimate 𝐷 𝐩 , by minimizing 𝐽𝑝.

• During testing, a monocular image 𝐈 is fed to DNN to

produce the desired disparity map 𝐃.

Neural 

Mapping/Reconstruction



Summary:

• Traditionally, scene geometry was directly sampled using 3D

sensors, such as LiDARs.

• Recently, Deep Neural Networks (DNNs) enabled accurate scene

geometry and semantics estimation, using visual sensors only, such

as RGB or RGB-D cameras.

Neural 

Mapping/Reconstruction



Deep Learning in Computer 

Vision

• Neural Camera Calibration

• Neural Mapping/Reconstruction

• Neural Localization

• Neural SfM

• Neural SLAM

43



Neural Localization

Robot localization is essential for navigation, planning, and 

autonomous operation. There are vision-based approaches 

addressing the robot localization problem in various 

environments both in 2D and 3D. 

Example uses : Autonomous cars, factory robots, housekeeping 

agents, delivery drones etc..
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Neural Localization

Definition of the variables/ sizes in global localization (initial 

position is unknown) problem: 

𝐳𝑛 : Robot 𝑟 observation at discrete time-step 𝑛.

𝑎𝑛 : Action taken by the agent at discrete time-step 𝑛.

𝐗𝑛: Position of the agent at discrete time-step 𝑛.

Can be up to 6DoF when 𝐗𝑛 = (𝑋r, 𝑌r, 𝑍r, 𝑅X, 𝑅Y, 𝑅Z) , 𝑟: robot

𝓜: The map, gets updated each 𝑛 with 𝐦𝑛.
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Neural Localization

Localization : Estimating the location 𝐗𝑛 of an autonomous 

agent given an observation 𝐳𝑛 (a) and a map of the 

environment 𝓜(b). 
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(a) Agent Observation [CHA2018] (b) A map of the environment [CHA2018]



Neural Localization

Passive Localization: Traditional localization algorithms, 

receive a sequence of observations and actions, and use the 

map information to output a sequence of location predictions.

Localization function : L 𝑎𝑛, 𝐳𝑛,𝓜 = 𝐗𝑛

𝑛 = 1 , L 𝑎1, 𝐳1,𝓜 = 𝐗1
𝑛 = 2 , L 𝑎2, 𝒛2,𝓜 = 𝐗2

…
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Neural Localization

Active Localization: When localizing actively, the agent is 

capable of predicting the actions to be taken. That's affecting

future observations and results in faster and more accurate 

algorithms.

Localization function : L 𝑎𝑛, 𝐳𝑛,𝓜 = 𝐗𝑛, 𝑎n+1

𝑛 = 1 , L 𝑎1, 𝐳1,𝓜 = 𝐗1, 𝑎2
𝑛 = 2 , L 𝑎2, 𝐳2,𝓜 = 𝐗2, 𝑎3

…
48



Neural Localization

With this in mind we are interested in the bellow probability of 

location 𝐗𝑛. 

B 𝐗𝑛 = P 𝐗𝑛 𝐳1:𝑛, 𝑎1:𝑛−1,𝓜

Where B 𝐗𝑛 is the Belief for 𝐱 at discrete time-step 𝑛.
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Neural Localization

With this in mind we are interested in the bellow probability of 

location 𝐗𝑛. 

B 𝐗𝑛 = P 𝐗𝑛 𝐳1:𝑛, 𝑎1:𝑛−1,𝓜

In the framework of Bayesian filtering the likelihood can be 

expressed as. 

l 𝐳𝑛 = P(𝐳𝑛| 𝐗𝑛)
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Neural Localization

Under the Markov assumption we can recursively calculate the 

𝐵 with these two equations.

• B𝑝 𝐗𝑛 = σX𝑡−1
P(𝐗𝑛|𝐗𝑛−1, 𝑎𝑛−1) 𝐵(𝐗𝑛−1)

• B 𝐗𝑛 =
1

𝑍
l(𝐳𝑛) B𝑝 𝐗𝑛

B𝑝 is the belief prior observing 𝐳𝑡, B is after.
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Neural Localization

How we incorporate Neural Networks for this task?

• Most common is to use a perception network to predict the 

l 𝐳𝑛 of the agent to be localized in 𝐗𝑛, after feeding the 

model observations of the environment 𝐳𝑛.

• Then a policy network which predicts the next action 𝑎𝑛, 

after feeding it the map 𝓜 and some past actions 𝑎𝑛−𝑛𝑢𝑚𝑏.
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Neural Localization

All we need is to formulate this : 

B 𝐗𝑛 =
1

𝑍
l 𝐳𝑛 B𝑝 𝐗𝑛

After the perceptual network predicts the likelihood, we 

element-wise dot product with the posterior belief of location 𝐗𝑛.
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Neural Localization

Visually the process looks like this:
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Neural Active Localization Network [CHA2018]



Neural Localization

For the particular 2D localization example scenario with 4 

possible agent orientations (East, North, West, South), the 

output would look like the left image although same principles 

can be expanded in 3D environments as in the right image.
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2D Localization [CHA2018] 3D Localization [GUI2020]



Neural Localization

Modern Deep Learning techniques such as Google’s SfM-

Learner[7] and Toyota’s PackNet[8], can also estimate 

camera’s trajectories in 6DoF.

56

Toyota’s PackNet Trajectory estimation



Neural Localization

But since these techniques emphasize in Structure from 

Motion, they will be analyzed in depth in the next section!
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Neural SfM

Google’s approach (2017) [ZHO2017], reaching 1000 citations 

is now a classic paper in the field. The code is publicly available 

on github https://github.com/tinghuiz/SfMLearner

59
[ZHO2017] Depth And Pose Network outputs



Neural SfM

Google’s approach (2017) [ZHO2017]

The model only requires a single image for inference, and it is 

additionally providing a camera pose estimation along with the 

depth-map. The training is performed in an unsupervised 

manner from unlabeled video sequences.
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Neural SfM

Google’s approach (2017) [ZHO2017]

SfM-learner consist of 2 major networks

• Single-view depth network (estimates the depth-map)

• Pose network (estimates the camera pose)

Even though these networks are trained jointly, they run 

separately on testing.

61



Neural SfM

Google’s approach (2017) [ZHO2017]

62

[ZHO2017] Network Architecture



Neural SfM

Google’s approach (2017) [ZHO2017]

As you can see benchmarked on the KITTI odometry, it outperforms the 

classic geometrical reconstruction approaches such as ORB-SLAM based 

on trajectory loss (Pose-Net). Similar results achieves the Depth-Net for 

depth-tasks and its even more accurate than supervised methods.
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[ZHO2017] Trajectory loss, Lower is Better



Neural SfM

TOYOTA’s approach (2020) [GUI2020]

Even though this particular research is recent, tends to become a classic 

due to extremely accurate results and real-time inference. Besides the 

powerful model itself, Toyota released a high quality related dataset both 

of them open source licensed. https://github.com/TRI-ML/packnet-sfm
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input and Depth-Map [GUI2020] Scene Reconstruction [GUI2020]



Neural SfM

TOYOTA’s approach (2020) [GUI2020]

65[GUI2020] Real-Time Inference on unknown samples



Neural SfM

TOYOTA’s approach (2020) [GUI2020]

The Pack-Net only needs one image for inference and 

predicts a depth-map and the camera trajectory, also it is 

trained in an unsupervised manner. Unlike Google’s approach 

Pack-Net is able to inference in real-time.
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Neural SfM

TOYOTA’s approach (2020) [GUI2020]

Pack-Net implementation:

• Depth Network (estimates the depth-map)

• Pose Network (estimates the camera-pose)
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Neural SfM

TOYOTA’s approach (2020) [GUI2020]

Pack-Net implementation: Depth-Net (training)

Depth-net aim to learn a monocular depth model 𝑓𝐷: 𝐈 → 𝐷 that 

predicts the depth 𝐷 = 𝑓𝐷 𝐈 𝐩 for every pixel 𝐩 in the target 

image 𝐈.

68



Neural SfM

TOYOTA’s approach (2020) [GUI2020]

Depth-net does 3D packing-unpacking (downsample -

upsample).

69
[GUI2020] Decoder-Encoder type-of network



Neural SfM

TOYOTA’s approach (2020) [GUI2020]

Depth-net takes a stereo image, transforms the right image 

plus a predicted depth of the left image into a synthesized left 

image. A fully differentiable loss is then defined between the 

left and the synthesized left image.
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Neural SfM

TOYOTA’s approach (2020) [GUI2020]

Pack-Net implementation: Pose-Net (training)

Pose-Net aim to learn a monocular ego-motion estimator 

𝑓𝑿: 𝐈𝑡 , 𝐈𝑆 → 𝐗𝑡→𝑆 that predicts the 6-DoF rigid transformations 

between the target image 𝐈𝑡 and the set of source images 𝐈𝑆. 

The transformations to be found are translation in 3D space and 

rotation respectively. 
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Neural SfM

TOYOTA’s approach (2020) [GUI2020]

These two networks are trained simultaneously in the following 

manner:

72[GUI2020] Algorithmic Pipeline



Neural SfM

TOYOTA’s approach (2020) [GUI2020] – PERFORMANCE

73
[GUI2020] Comparison with [ZHO2017] and other Depth-Map methods



Neural SfM

SLAM algorithms utilize certain features that differentiate them 

from SfM. 

• SLAM must operate online (real-time) while SfM usually 

operates with batch-processing (post-process)

• SLAM uses information from past-states, with a memory

component. (Can be 𝓜:map, past 𝑿𝑛 estimations etc.)

• Complete SLAM systems utilize a Navigation Policy 𝜋(. )
(active), while SfM doesn’t need to navigate (passive).
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Neural SLAM

A complete Neural SLAM system [CHA2020] is a multi-

module pipeline. The different modules synergize to solve 

different tasks:

• Reconstruction 𝓜

• Localization 𝑿𝑛

• Memory (Can be 𝓜: map, past 𝑿𝑛 estimations, past 𝑿′𝑛
sensor readings)

• Navigation policy π(. ) (because its active)
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Neural SLAM

Definition of the variables/ sizes in SLAM problem: 

𝐳𝑛 : Robot 𝑟 observation at discrete time-step 𝑛.

𝑎𝑛 : Action taken by the agent at discrete time-step 𝑛.

𝐗𝑛: Position of the agent at discrete time-step 𝑛.

Can be up to 6DoF when 𝐗𝑛 = (𝑋r, 𝑌r, 𝑍r, 𝑅X, 𝑅Y, 𝑅z) , 𝑟: robot

𝓜: The map, gets updated each 𝑛 with 𝐦𝑛.
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Neural SLAM

SLAM refers to the problem of Simultaneous localization and 

mapping, where the agent needs to reconstruct a 

representation of an unknown environment 𝓜 (a map) and 

simultaneously localize 𝑿𝑛 itself in it, using observations 𝐳𝑛
for each discrete time-frame 𝑛.  
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Neural SLAM

Research has shown [CHA2020] that in most exploration 

tasks Neural SLAM is more efficient when used Actively. As 

stated before, active navigation means that the agent is 

capable of having control over its future observations.

An example run of a SLAM algorithm, starting at 𝑛 = 1:

𝑛 = 1 , S 𝐳1 →𝓜1 +𝐦1, L 𝐳1, 𝑎1 =𝓜2, 𝐗2
𝑛 = 2 , S 𝐳2 →𝓜2 +𝐦2, L 𝐳2, 𝑎2 =𝓜3, 𝐗3
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Neural SLAM

In traditional geometric SLAM there is a big variety of sensors 

we can use to perceive the environment including LIDAR, 

RADAR, CAMERAS etc.

However in the case of Neural SLAM we will focus on visual 

passive sensors such as camera’s, since they are the most 

cost efficient and effective, paired with Deep Learning.
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Neural SLAM

This is an output of experiments on [CHA2020] ‘Neural Active 

Slam 2020’, an agent trained on domestic environments, 

Reconstructs the environment (with green) and Localize

itself + past states (red traces).

81
My experiments on [CHA2020]



Neural SLAM

In October of 2016, DeepMind introduced the term DNC in 

their paper “Hybrid Computing using A Neural Network with 

dynamic external memory” [GRA2016].

DNC is  an acronym for “Differential Neural Computer” and 

it solves the problem of external memory on neural networks.

82



Neural SLAM

DNC’s and Neural Turing Machines [GRA2014] have the 

ability to store their weights in external matrices, and do 

read’s and write’s between the entries and the actual weights 

using a neural controller (another neural network).

83

[GRA2014] How external memory works



Neural SLAM

All of the above motivated the publication of [ZHA2017] : 

Neural SLAM-Learning to Explore with External Memory

84

[ZHA2017] Gazebo [ZHA2017] 2D Generated Map



Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

• The agent’s can make long term decision based on an 

internal representation of a global map.

• Slam Model and Path Planning modules are deeply 

integrated as a whole, taking each other into account 

benefiting from learning alongside each other.
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Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

At timestep 𝑛 ∈ [0, 𝑁] the agent is at state 𝐒𝑛, 𝒔𝑛 ∈ 𝑺
Then selects an action 𝐀𝑛, 𝒂𝑛 ∈ 𝐀 based on the policy 𝜋 . 𝒔𝑛
which corresponds to a motion command for the agent. 

Agent receives reward signal 𝐑𝑛+1 ∈ ℝ and goes to the next 

state 𝑺𝑛+1.
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Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

The goal for the agent is to maximize the expected return .

This research utilized the A3C algorithm as a backbone Deep 

RL method, and the GAE to learn optimal policies.
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Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

They added an external memory chunk M of size 𝐻 𝑥 𝑊 𝑥 𝐶
containing 𝐻 𝑥 𝑊 memory slots (basically an array) with 𝐶
channels.

This can be accessed by the Deep RL Network via a write 

head and a read head as stated in DNC’s and NTM’s. 
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Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

Compared to the A3C without any memory, Neural Slam had 

significantly greater success ratio over random generated 2D 

map exploration.
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Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

Except the explored area success ratio, bellow you can see 

that Neural SLAM is faster too, due to the fact that “it 

remembers” its past states and decisions.
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Neural SLAM

Neural SLAM - Learning to Explore with External Memory:

Identical results occurred in a Gazebo 3D modelled 

environment where Neural Slam navigated more efficiently.
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Neural SLAM

SLAM and SfM algorithms as you have seen by now can be 

evaluated by a number of metrics. 

The last technique emphasized on the exploration efficiency

and the time of the algorithm, which relates with more 

theoretical SLAM scenarios.
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Neural SLAM

Other modern Deep Learning SLAM techniques emphasize 

on Reconstruction/Localization accuracy, sensor noise 

models etc., which is more practical and applicable in real 

world scenarios.

A major example is : Learning to Explore using Active 

Neural SLAM 2019 [CHA2020]
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Neural SLAM

Learning to Explore using Active Neural SLAM
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Neural SLAM

Learning to Explore using Active Neural SLAM

• This particular implementation can be utilized in real world 

scenarios.

• Can be robust to sensor input noises.

• Won the CVPR 2019 Navigation Challenge 

https://aihabitat.org/challenge/2019//
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Neural SLAM

Learning to Explore using Active Neural SLAM

The navigation model has 3 components:

• Neural Slam Module (predicts map and pose of agent)

• Global Policy (long term goal)

• Local Policy (each of short term goals)
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Neural SLAM

Learning to Explore using Active Neural SLAM
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

Takes as input:

• The current RGB observation 𝐳𝑛,

• The current and the last sensor reading of agent pose 𝐗𝑛−1:𝑛
′

• Last agent pose and map estimates 𝐗𝑛−1, 𝐦𝑛−1
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

And outputs:

• An updated map 𝓜𝒏 with the addition of 𝐦𝑛−1

• The current agent pose estimate 𝐗𝑛
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

All together mathematically formulated:

𝐦𝑛, 𝐗𝑛 = 𝑓𝑆𝐿𝐴𝑀(𝐳𝑛, 𝐗𝑛−1:𝑛
′ , 𝐗𝑛−1,𝐦𝑛−1|𝛉𝐙)

Where 𝜃S is all the trainable parameters of the 𝑓𝑆𝐿𝐴𝑀
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

The subcomponents which are ‘learned’ are the:

• Mapper (produces top-down egocentric 2D representation)

• Pose Estimator (predicts the pose)
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

102
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

The mapper 𝑓𝑀𝐴𝑃(𝐳𝑛|𝛉𝐌) consists of:

• Resnet18 Convolutional Layers

• 2 fully connected

• 3 deconvolutional layers
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Neural SLAM

Learning to Explore using Active Neural SLAM

Neural SLAM Module:

The pose estimator 𝑓𝑃𝐸(𝑝𝑡−1
′ |𝑓𝑀𝐴𝑃(𝐳𝑡|𝛉M)) consists of:

• 3 Convolutional layers

• 3 fully connected layers
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Neural SLAM

Learning to Explore using Active Neural SLAM

Global Policy: is the long term goal (blue dot) 
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Neural SLAM

Learning to Explore using Active Neural SLAM

Global Policy:

Takes as input :

• 𝐦𝑛 : The predicted map

• 𝐗𝑛 : The predicted location of agent
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Neural SLAM

Learning to Explore using Active Neural SLAM

Global Policy:

Also takes as input the visited locations which are saved, in 

order to plan the next long-term visit point and output it.
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Neural SLAM

Learning to Explore using Active Neural SLAM

Local Policy: (action to be taken)

Takes as input: 

• The current RGB observation 𝐳𝑛
• The short term goal 𝐠𝑛 (vector/point)
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Neural SLAM

Learning to Explore using Active Neural SLAM

Local Policy: (action to be taken)

Outputs: 

• The action to be taken 𝑎𝑛 = 𝜋𝐿(𝐳𝑛, 𝐠𝑛|𝛉𝐿), where 𝛉𝐿 are the 

parameters of the Local Policy.
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Neural SLAM

Learning to Explore using Active Neural SLAM

Is the state-of-the art right now in habitat environment 

exploration in terms of accuracy and speed.
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Neural SLAM

Learning to Explore using Active Neural SLAM

The code and the best pre-trained models are publicly 

available in their GitHub page:

https://github.com/devendrachaplot/Neural-SLAM/
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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