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Introduction

• The two most important tasks in machine learning are traditionally

supervised and unsupervised learning.

✓ In supervised learning, we have a set of data points consisting

of some input x and a label value y for each input, and we try

to construct a classifier or regressor that can estimate the

output value for previously invisible inputs.

✓ In unsupervised learning, we don't have an output value y and

we try to infer some underlying structure from the x inputs

improve learning accuracy.
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Introduction

• Semi-supervised learning is now one of the major branches of

machine learning that seeks to combine two tasks.

➢ Semi-supervised learning is a set of learning methods that, at the

training stage, combine a small amount of labeled data (y inputs)

with a large amount of unlabeled.

➢ Using a small amount of labeled data can greatly improve learning

accuracy.
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Introduction
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Introduction

• Inductive classifiers learn a global representation of the

data feature space and can be applied to "unseen" data that

were not included in the original dataset.

⚫ On the other hand, transductive semi-supervised classifiers

learn a local representation of the data feature space and

can be applied in a specific dataset consisting of labeled

and unlabeled data.
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Introduction

• The most popular transductive learning algorithms are:

• graph construction approaches

• label inference methods

• Τhese approaches are also called Label propagation

algorithms.
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Graph Construction 

Approaches

• In label propagation the similarity graph reflects the

similarity between the entities being labeled, with respect to

the specific task, and as a result is critical to the

performance of the process.
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Graph Construction 

Approaches
⚫ Graph construction methods are divided in 3 categories:

1. Adjacency matrix construction

2. Graph weighting

3. Simultaneous graph construction and weighting
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Adjacency Matrix 

Construction

• In these algorithms, the creation of an adjacency table

before the construction of the graph plays an important role.

• The elements of the neighborhood matrix indicate the

presence of edges between pairs of nodes.

• We present the most important algorithms of this category,

which are: ε-neighborhood, k-nearest neighbors and b-

matching.
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Adjacency Matrix 

Construction
• ε-neighbourhood

• In this approach, 𝑥𝑖 and 𝑥𝑗 node is connected if the following

mathematical property holds:

𝑑 𝑥𝑖 , 𝑥𝑗 ≤ 𝜀,

where 𝑑(·,·) is some distance measure.

• If the scale of patterns varies across the given input data, the method

does not give good results, since the ε is fixed.
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Adjacency Matrix 

Construction

• k-nearest neighbours (k-NN)

• In k-nearest neighbours (k-NN) graphs, each node is

connected to its k nearest neighbors.

• Α disadvantage of this approach is that the graphs are

asymmetric since certain nodes end up with a higher

degree than others.
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Adjacency Matrix 

Construction

• k-nearest neighbours (k-NN)

• To solve this problem many works have proposed some

additional processing to obtain an undirected graph:
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Adjacency Matrix 

Construction
• b-matching based method

⚫ A method that ensures that each node has the same number of
neighbours, and that the nodes have exactly the requested
number of edges.

⚫ Τhey define the distance matrix 𝐶 as:

𝐶𝑖𝑗 = 𝑊𝑖𝑖 + 𝑊𝑗𝑖 − 2𝑊𝑖𝑗 ,

these notions are equivalent.
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Adjacency Matrix 

Construction
• b-matching based method

• The corresponding optimization problem is formulated as:
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min
𝐴∈𝔹𝑛×𝑛



𝑗=1

𝑛



𝑖=1

𝑛

𝐴𝑖𝑗𝐶𝑖𝑗

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑖=1

𝑛

𝐴𝑖𝑗 = 𝑏 , 𝑖 = 1,… , 𝑛,

𝐴𝑖𝑗 = 0, 𝑖 = 1, … , 𝑛,

𝐴𝑖𝑗 = 𝐴𝑗𝑖 , 𝑗, 𝑖 = 1, … , 𝑛,
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Graph Weighting

⚫ The second step of graph construction is to determine the
weights for the edges in the graph.

⚫ In many works, proposed for weighting, the Gaussian edge
weighting:
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𝑊𝑖𝑗 = exp
𝑥𝑖 − 𝑥𝑗

2
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Graph Weighting

• Another algorithm is based on the assumption that the

graph must be constructed so that any data point 𝑥𝑗 can be

accessed as linear combination of its neighbors.

• This algorithm is called linear neighborhood

propagation(LNP) and the weights are given by the
following formula:
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𝑥𝑗 = 

𝑢𝑖∈𝑁(𝑢𝑗)

𝑊𝑗𝑖 𝑥𝑖 + ε𝑗



Graph Weighting

• A modification of the symmetric k-nearest neighbour

method based on the following rule: two nodes are

connected if either of them is in the other’s k-

neighbourhood, but the weight of the two connections is

summed if they are both in each other’s neighbourhoods.

• The modified weight matrix W is constructed based n the

original weight matrix 𝑊 as follows:
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𝑊𝑖𝑗 =

𝑊𝑖𝑗 + 𝑊𝑗𝑖 𝑖𝑓 𝑢𝑖 ∈ 𝑁 𝑢𝑗 𝑎𝑛𝑑 𝑢𝑗 ∈ 𝑁(𝑢𝑖)

𝑊𝑗𝑖 𝑖𝑓 𝑢𝑖 ∈ 𝑁 𝑢𝑗 𝑎𝑛𝑑 𝑁 ∉ 𝑁(𝑢𝑖)

𝑊𝑖𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Simultaneous Graph 

Construction and Weighting

• Many works have proposed a different method to infer the

weights and the graph structure.

• These methods are based on linearly reconstructing nodes

based on all other nodes, in contrast with the LNP algorithm

which for each node reconstruct as a linear combination of

its neighbours.
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Simultaneous Graph 

Construction and Weighting

• A based on the sparse coding approach formulated for face

recognition.

• This method based on the calculation of a coefficient vector

𝑎 ∈ 𝑅𝑛 for each node which denote the contributions of all

other nodes to the re-construction of 𝑥𝑖 .

• This reconstruction is then calculated as 𝑥𝑖 = 𝑋′ 𝑇𝑎, where 

𝑋′ 𝑇 ∈ 𝑅𝑛𝑥𝑑 denotes the full data matrix, but with a row of 

zeroes at index 𝑖.
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• Sparse representation for the incoming image using basis 

images.

25

Simultaneous Graph 

Construction and Weighting

Υan, Shuicheng, and Huan Wang. "Semi-supervised learning by sparse rep-resentation." Proceedings of the 2009 SIAM international conference on datamining. Society for Industrial and Applied 
Mathematics, 2009.
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Label Inference Methods

⚫ When the similarity graph has been constructed, label
propagation is performed on the graph nodes, through a label
inference method.

⚫ Label Inference determines how the labels are spread from the
set of labeled nodes to the unlabeled nodes according to the
rules that govern label dissemination, and the type and the
number of graphs they apply.
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Label Inference Methods

• Label inference methods divided in four basic categories:

➢ graph min-cut

➢ Probabilistic label assignments: Markov random fields

➢ Efficient probabilistic label assignments: Gaussian random fields

➢ Handling label noise and irregular graphs: local and global 

consistency

28
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Graph Min-cut

• The first graph-based semi-supervised classification.

• this approach combines the k-nearest neighbours algorithm

and the ε- neighbourhood.

• Specifically, a single source node v+ is added and

connected within finite weight to the positive data points,

and a single sink node v−, connected within finite weight to
the negative data points.
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Graph Min-cut

• The min-cut algorithm based on finding a set of edges with

a minimal combined weight that, when removed, result in a

graph with no paths from the source node to the sink node.

• All unlabeled nodes that are in the component containing v+

are labelled as positive (+), and all unlabeled nodes that are

in the component containing v− are labelled as negative (-),
based in the resulting graph from the previous steps.
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Markov Random Fields
• A basic disadvantage of the min-cut is the lack of an

efficient way of estimating classification probabilities.

• It would be important to estimate the probability that an

unlabeled data point xi has label c.

• In other words, the probability: 𝑃 𝑦𝑖 = 𝑐

• The solution to this problem gives an approaching graph-

based method from the perspective of Markov random

fields.
33



Markov Random Fields

• Hammersley-Clifford theorem : A probability distribution 𝑃(𝑋 =
𝑥) (where 𝑋 and 𝑥 to denote random variables and their 
realizations) for random variables 𝑋1, . . . , 𝑋𝑛corresponds to a 
Markov random field if a graph G exists such, that the joint 
probability function 𝑃(𝑋 = 𝑥), can be factorized over the 
(maximal) cliques of 𝐺 . 
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Markov Random Fields

• Set 𝑍 is a normalization constant, 𝐶𝐺 is the set of cliques in

𝐺 , 𝜓𝑐 is an arbitrary function, and 𝑥𝑐 contains the
realizations of random variables in clique 𝑐.

• 𝑃(𝑋 = 𝑥) corresponds to a Markov random field formed by G if:

35

𝑃 𝑋 = 𝑥 =
1

𝑍
∙ ෑ

𝑐∈𝐶𝐺

ψc( 𝑥𝑐)
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Gaussian Random Fields
• There is no closed-form solution for calculating the marginal

probabilities in the Markov random field with binary labels
described previously.

• However, when the random variables 𝑌 are relaxed to take real
values, a closed-form solution exists.

• Ιt involves fixing the labels of the labelled data points and using
quadratic cost for the pairs of predictions ෝ𝑦𝑖 , ෝ𝑦𝑗 ∈R.

• This results in an objective function identical to that used in the
min-cut formulation, except for the relaxation of the predictions
to real numbers.
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Gaussian Random Fields

• Using real-valued predictions with a quadratic loss function,

the exponential form for 𝑃( 𝑌 = ො𝑦) is a multivariate Gaussian

distribution. Thus, a closed-form solution for the mode of

the field, which equals its mean, exists.

• Furthermore, the marginal probability distribution 𝑃( 𝑌 =
ො𝑦) is Gaussian as well, allowing for computation of the label

predictions minimizing the error rate.

• This is why the random field is called a Gaussian random

field.
38



Gaussian Random Fields

• We defined the graph Laplacian as 𝐿 = 𝐷 − 𝑊, where 𝐷 is the
degree matrix (i.e. a diagonal matrix with the vertex degrees on
the diagonal)

• The predicted label at each n unlabeled data point is equal to the
average of the predictions of its neighbors, i.e

where 𝑁 𝑣𝑖 denotes the neighbourhood of node 𝑣𝑖 , that is,
𝑁 𝑣𝑖 = {𝑣𝑗: 𝑊 𝑖 𝑗 ≠ 0}.

39

ෞ𝑦𝑖 =
1

𝐷𝑖𝑖
∙ 

𝑢𝑗∈𝑁 𝑢𝑖

𝑊𝑖𝑗 ∙ ෝ𝑦𝑗 𝑓𝑜𝑟 𝑖 = 𝑙 + 1 ,… , 𝑛,



Gaussian Random Fields
• Label propagation algorithm

• It is an iterative algorithm that computes soft label assignments
ෝ𝑦𝑖 ∈ 𝑅 by pushing (propagating) the estimated label at each
node to its neighbouring nodes based on the edge weights.

• In other words, the new estimated label at each node is
calculated as the weighted sum of the labels of its neighbors. In
matrix notation, let 𝐴𝑖𝑗 denote the transition matrix as follows:

40

𝐴𝑖𝑗 =
𝑊𝑖𝑗

σ𝑢𝑘∈𝑁(𝑢𝑖)
𝑊𝑖𝑘



Gaussian Random Fields
• Label propagation algorithm

• The label propagation algorithm then consists of two steps,
which are repeated until the label assignment ො𝑦 converges.
Starting with an initial label assignment ො𝑦 ,which is random for
the unlabeled data points and equal to the true labels for the
labelled data points:

➢ Propagate labels from each node to the neighboring nodes: ො𝑦 =
𝐴𝑇 ො𝑦

➢ Reset the predictions of the labelled data points to the 

corresponding true labels 41
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Local and Global 

Consistency

• The Gaussian random fields method has two

disadvantages: the true labels are clamped to the labeled

data points and that means that it does not handle label

noise well and also, in irregular graphs, the influence of

nodes with a high degree is large at many times.

• To solve that issue proposed an approach closely related to

the Gaussian random fields method, which is called the

local and global consistency(LGC) method.
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Local and Global 

Consistency
• The algorithm:

1. Form the affinity matrix 𝑊 defined by 𝑊𝑖𝑗 = exp
𝑥𝑖−𝑥𝑗

2

2𝜎2
and 𝑊𝑖𝑗 = 0.

2. Construct the matrix 𝑆 = 𝐷−
1

2𝑊𝐷−
1

2 in which 𝐷 is a diagonal matrix with its (𝑖, 𝑖) −element 

equal to the sum of the 𝑖-th row of 𝑊.

3. Iterate 𝐹(𝑡 + 1) = 𝛼𝑆𝐹(𝑡) + (1 − 𝛼)𝑌 until convergence, where is a parameter in (0, 1).

4. Let 𝐹∗ denote the limit of the sequence 𝐹(𝑡)which is equal to: 𝐹∗ = lim
𝑥→∞

𝐹 = 𝐼 − 𝛼𝑆 −1𝑌.

5. Label each point xi as a label:

44

𝑦𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗≤𝑐 𝐹𝑖𝑗
∗



Local and Global 

Consistency

• Smooth classification results given by supervised classifiers 

with the global consistency: (a) the classification result 

given by the SVM with a RBF kernel; (b) smooth the result 

of the SVM using the consistency method

45

Zhou, Dengyong, et al. "Learning with local and global consistency." Ad-vances in neural information processing systems 16 (2003): 321-328.
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Label Propagation on Data

with Multiple Representations

⚫ In real world scenarios, multimedia data is represented in

multiple feature spaces.

⚫ In such cases, a separate similarity graph can be

constructed for each of these representations.
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Label Propagation on Data with

Multiple Representations

• The information from the multiple data representations can

be fused in two ways. Fusion can take place during graph

construction (early fusion) or fusion can be performed at the 

decision level (late fusion). Late fusion is also referred to as

multi-modal fusion or multi-modality learning.
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Label Propagation on 

Hypergraphs

⚫ Most applications usually exhibit complex non-pairwise

relationships, which involve an arbitrary number of data

samples such as in the case of multiple labels per sample.

⚫ In order to efficiently represent complex relationships

between data samples, hypergraphs are adopted.
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Label Propagation on 

Hypergraphs

• Such methods utilize hypergraph clustering, hypergraph

spectral learning, hypergaph normalization, hypergraph

Laplacian Regularization for semi-supervised label

propagation, random walk interpretation of hypergraph

Laplacian Regularization is also presented, and the 

extension of normalized and ratio cut to hypergraphs.
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Label Propagation for 

Deep Learning
⚫ Deep neural networks are used in many vision problems on

the computer.

⚫ But obtaining large amounts of annotated training data

annotated by humans for every single task is often

impossible.

⚫ Iscen, Ahmet, and et al. suggested a novel algorithm that

combines transductive learning with modern deep learning.
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Label Propagation for 

Deep Learning
• The Iterative algorithm (Algorithm 2) is defined as follows:

• First, they construct a sparse affinity matrix 𝐴 ∈ 𝑅𝑛×𝑛 with
elements:

where 𝑁𝑁𝑘 denotes the set of 𝑘 nearest neighbors in 𝑋, and 𝛾
is a parameter following recent work on manifold-based 

search. Also, let 𝑊 = 𝐴 + 𝐴𝑇, which is indeed a symmetric 

nonnegative adjacency matrix with zero diagonal.
54

𝐴𝑖𝑗 ≑
𝑣𝑖
𝑇 𝑣𝑗 +

𝛾
, 𝑖𝑓 𝑖 ≠ 𝑗ሥ𝑣

𝑖

∈ 𝑁𝑁𝑘(𝑣𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Label Propagation for 

Deep Learning

• Then, calculate the 𝑍 ≔ 𝐼 −𝑊 −1𝑌and infer the pseudo-

labels the class prediction for an unlabeled example xi with
the follow way:

55

𝑦𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗≤𝑐 𝐹𝑖𝑗
∗



Label Propagation for 

Deep Learning

• pseudo-labels from matrix Z have two disadvantages: we

define pseudo-labels on all unlabeled nodes while we do

not have the same certainty for each of them.

• Second, pseudo-labels may not be balanced over classes,

which will impede learning. To solve this issue we use

entropy, as a measure of uncertainty, to assign weight 𝜔𝑖 to

example 𝑥𝑖, defined by:

56

𝜔𝑖 = 1 −
𝐻 ෞ𝑧𝑖𝑗

log 𝑐



Label Propagation for 

Deep Learning

• To deal with the latter issue of class imbalance, we assign

weight 𝜁𝑗 to class 𝑗 that is inversely proportional to class

population, defined as:

Ζ𝑗 ≔ 𝐿𝑗 + 𝑈𝑗
−1
,

where 𝐿𝑗(resp.𝑈𝑗) supervised loss of the examples labeled

(resp. pseudo-labeled) as class 𝑗.

• Training is performed on all data, using certainty-based

weights.
57



Label Propagation for 

Deep Learning

58

Iscen, Ahmet, et al. "Label propagation for deep semi-supervised learning."Proceedings of the IEEE conference on computer vision and pattern recognition.2019.
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Thank you very much for your attention!

Contact: Prof. I. Pitas
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