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Introduction

• Gesture: expressive meaningful body motion involving

physical movement of head, body, hands etc.

• Intention:

• Convey meaningful information

• Interact with environment.

• Gestures can be:

• Static: certain body posture or configuration.

• Dynamic: prestrike, stroke and poststroke phases.
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Introduction 

• Gestures are cultural specific.

• Gestures can be categorized based on the body part as:

• Hand gestures: 
• hand poses, sign language etc.

• Head and face gestures: 
• Shaking head

• Speaking by opening and closing the mouth 

• Raising the eyebrows

• Emotions: surprise, anger, happiness, sadness

• Body gestures: full body motion.
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Introduction 

Gesture taxonomy

• Emblems: “OK” sign with thumb and index finger connected

in a circle with the other three fingers sticking up

• other culture-specific “rude” gestures.

• Gesticulations are spontaneous movement of hands and

arms, accompanying speech.

• Pantomimes are gestures depicting objects or actions.
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Introduction

Hand and arm movements

• Unintentional or intentional.

• Manipulative Gestures:

• They act on objects in an environment (object movement, rotation etc.)

• Communicative.

• Communicative gestures can be:

• Acts 

• Mimetic or Deictic

• Symbols: gestures with linguistic role

• Referential or Modelizing.
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Introduction

Hand and arm movements.
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Introduction

Gesture Recognition

• a process where users perform gestures

• receiver recognizes them

• Goal: interpretation of human gestures through

mathematical structures and algorithms.

• A way for computers to understand human body language.
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Introduction 

• Human gestures from visual data are analyzed by:

• Computer Vision

• Machine Learning

• Data sources:

• Visual: RGB, Depth, Thermal images

• Wearable: Magnetic field trackers, body suits, instrumented gloves (active 

or passive)

• Audio
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Hand morphology
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Hand morphology
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Hand skeleton model.



a) 3D volumetric hand model; b) 3D geometric model; c) 3D Skeleton model, d)

colored marker based model; e) Non-geometric shape model (binary silhouette);

f) 2D deformable template model; g) Motion based model [RAF2012].
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Gesture types

Gesture types based on variousbody parts.

• Hand Gestures: waving goodbye, showing points…

• Head Gestures: nodding, winking…

• Body Gestures: kicking, raise knee or elbow…
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Gesture types 

Gesture types based on duration.

• Static Gestures: static body (part) posture in an instant

time.

• An image of the position of the body part (showing the thumb…).

• Dynamic Gestures: changeable pose over a small period

of time (waving palm…).

15



Gesture types

Gesture types based on timing information.

• Online gestures:

• Instant interpretation of gestures. They are used to manipulate

an object (scaling, rotation).

• Offline gestures:

• They are processed after the procedure of the user interaction
with the object.

• Example: the gesture to activate a menu.
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RGB Cameras

Digital cameras produce red, green and blue color

channels.

• High image resolution.

• Cheap and ubiquitous sensors.

• RGB videos can be used to recover depth

information.
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Sensor Technologies
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Sensor Technologies

• Stereo Camera

• Two lens with the same distance apart.

• It simulates human vision.

• It indirectly conveys 3D information.

• Depth cameras

• They produce depth image maps

• They may produce registered RGB and depth images.
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Sensor Technologies

• Thermal Cameras

• It images the infrared radiation emanating from a target object.

• Proximity sensors:

• Used in situation when other forms of image-based recognition is

inconvenient.
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Depth Data

Depth images: a map of per-pixel data containing depth-related

information.

• Disparity or depth map.

• Conversion methods, focus information, and camera calibration.

• A depth map pixel describes the distance to an image object from

the camera plane.

• Horizontal disparity:

𝑑 = 𝑥𝑟 – 𝑥𝑙 ≤ 0.

• 𝑑 is inversely proportional to scene depth 𝑍𝑤 (by triangle similarity):

• 𝑑 = −𝑓 𝑇

𝑍𝑤
.
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Depth Data

• Depth sensing devices produce depth data.

• They can provide automatic body part segmentation via skeleton tracking.

• Advantage:

• track and segment hands automatically, providing depth data related 

specifically to the hands
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Depth Data
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Microsoft Kinect.



Depth Data

Microsoft Kinect

• Kinect creates a skeletal representation of the body real-

time for RGB video and depth images. 

• The body skeleton is represented as a graph with vertices 

the joints of the body that shows the main parts of the body 

such as the head, the hands or the legs. 

• For each joint we extract its 3D coordinates that identify 

every single joint.
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Depth Data

Microsoft Kinect

• It consists of an infrared laser projector combined with a monochrome

CMOS sensor.

• Captures video data in 3D under any ambient light condition.

• Achieves a rate of 30 frames per second of depth sensing.

• Infrared projector sends out modulated infrared light.

• Light reflecting off closer objects will have a shorter time of flight than

those more distant.

• Infrared sensor captures the amount deformation of the modulation

pattern from the time of flight, pixel-by-pixel.
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Depth Data

Microsoft Kinect

• Uses a type of edge detection to delineate closer objects from the

background of the shot.

• Track moving objects.

• Assumption: only people will be moving around in the image.

• Isolate human shapes from the image.

• Shape segmentation can be performed to identify specific body parts

like the head, arms, and hands, and track those segments individually.

• Construct a 20-point skeleton of the human body.
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Depth Data

Microsoft Kinect

• Includes a QVGA (320 × 240) depth camera and a VGA (640 × 480) 

video camera, which produce image streams at 30 fps.

• Microsoft developed the Kinect for full-body tracking to be used for 

interacting with games, videos and menus on the Xbox 360 game 

console. 

• The proprietary body-tracking methods, as well as access to the depth 

and video streams, are avavailabe through a closed-sourse Kinect 

SDK  or through the open-source OpenNI4 framework.
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Depth Data

29

a) Infrared image taken by the Kinect infrared (left); b) pseudocolored depth image.

https://en.wikipedia.org/wiki/File:Kinect2-ir-image.png
https://en.wikipedia.org/wiki/File:Kinect2-deepmap.png


Depth Data

• A common method to isolate the hands is with depth thresholding.

• This determines the hands as the points between some near and far

distance thresholds around the depth of the expected predetermined

3D hand centroid.

• An effective method of reducing noise sensitivity is also to place limits

on the area of the detected hand.
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Depth Data

Depth data Preprocessing

• The raw data we get from the sensors need to be processed in order

to get the desired results from our model.

• E.g., the images may come from different sources or they have many missing or

irrelevant information.

• Data registration.

• Data segmentation.

• Segment the raw depth data into skeleton and joint representation

Data Augmentation.

• Augmenting the existing dataset by slightly modified versions of the

existing images, like scaling, rotations etc.
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Depth Cameras
RGBD cameras provide a map for the depth in each pixel. In

this way, the depth map describes the distance of an object.

• The advantage of this data is that body segmentation can

be performed and body skeleton can be detected and

tracked.

• In this way, hands can be tracked and the segmented.

• Image distortions may be present, due to lens

imperfactions.
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Leap Motion

Leap Motion device is compact and economical and it is used

for gesture recognition.

• It can track the 3D forearms, the hands and the fingers in

real time.

• It consists of two infrared cameras, situated in an 120°

angle and three LEDs on infrared radiation.

• Up to 200 fps (frames per second) can be recorded.
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Leap Motion operating mode [JES2020].
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Sensor Technologies

Wired Gloves

• Provide input to the computer about position and rotation

• Magnetic or inertial devices

• Data Glove

• A glove-type device

• Detects hand position, movement and finger bending

• Fiber gloves use fiber optic cables

• Light pulses are created when fingers bent

• Light leaks thought small cracks giving the approximation of hand pose
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Gesture Acquisition  

Devices

Data Gloves

• Gloves can be used to calculate the hand position and the

motion.

• Active gloves have a sensor or accelerometer.

• Passive gloves have colour markers for image

identification.
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Passive gloves to help differentiate finger position [JES2020].
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Electromyography

Electromyography (EMG).

• Instead of gloves, wearable bracelets with

electromyography sensors can measure the

electrical signals from the muscles.

• EMG has been used for medical diagnosis, control

of prosthetics and for the rehabilitation after severe

musculoskeletal injuries.
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Ultrasound

Sonomyography uses ultrasound images and

provide the observation of the muscles in the human

body on a real-time.

• A technique recording based on the Doppler Effect

uses ultrasonic frequency signals, where a device

emits ultrasonic continuous tones.
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WiFi

• WiFi has the ability to perform Non-Line Of Sight

(NLOS) gesture recognition.

• There are already researches for the strength of a

signal indicator-RSSI, also on the signal of the

indicator of flight time –ToF, or where there is an

observation of the channel status information-CSI.
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WiFi recognition of different hand positions [JES2020].
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Radio Frequency Identification

Radio Frequency Identification (RFID) systems

embody ultra-high frequency-UHF readers from the

commercial market, which they can detect labels.

• Information such as phase change from received

UHF signals and they can be used for gesture

recognition with very good results.
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Gesture Recognition 

Datasets

• Recently, deep learning models are used for gesture

recognition.

• Data inputs of various modalities(the skeleton joints,

the shape of the body of human, RGB, the optical

flow, and the depth frames) are combined for the

training of these models.

• There is a significant number of datasets which had

been created for gesture recognition.
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DVS128 Gesture Dataset

• It consists of 11 hand gestures which are performed by 29

participants in 3 different illuminations [DVS].

• Each trial consists of 2 files: the data file which contains the

events of DVS128, and the annotation file which describes

the time stamps of the beginning and of the end for each

gesture.
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3D Skeletal Dataset for Hand 

Gesture Recognition 

• There are 14 hand gestures in this dataset executed in 2 ways: with

a specific finger and with the whole hand [SKD].

• There are 2800 sequences, every gesture is performed in a range of 1

to 10 times by 28 subjects in both ways.

• In every sequence has gesture, number of the used fingers, user and

trial information.

• In the 2D depth image space and in the 3D world space, there are 22

joints, which form a full hand skeleton. Their coordinates are

contained in each frame of sequences.

• The videos were recorded at 30 frames per second.
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HGM-4 dataset
• The HGM-4 dataset is used for hand gesture recognition [GM4].

• It consists of 4,160 color images (1280 × 700 pixels) of 26 hand

gestures which are recorded by 4 cameras, each one at a different

position.

• The images were taken indoor at different positions and the

background was removed semi-automatically.

• This dataset can be used for Multiview hand gesture recognition.

• Every image from 4 cameras were combined to be in the set for

training or in the testing set with all possible combinations.
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EgoGesture Dataset
EgoGesture dataset consists of 2081 RGB-D videos, 24161 samples of

gestures and 2,953,224 frames from 50 participants [EGO2018].

• There are static or dynamic gestures classified in 83 gesture classes.

They are performed with wearable devices.

• The videos were made in 6 different scenes: 4 indoor and 2 outdoor

ones. There are videos where the gestures were performed by

people, while they were walking.

• The RGB and depth videos are captured with a resolution of 640ⅹ480
pixels at 30 fps.

• The gestures were performed in random order. Thus the videos can

be applied for the evaluation of the gesture detection in sequence.

• The volume of the data is about 46 Gbyte of RGB-D videos and about

32Gbyte of 320 × 240 pixel images.
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The 83 gesture classes of the EgoGesture dataset [EGO2018].
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PUTEMG and 

PUTEMG-FORCE
• They are datasets of electromyographic activity, which was captured on the

forearm surface [PEM].

• Signals were captured from 24 electrodes, which were fixed around participant right

forearm with the use of 3 elastic bands, with the creation of a 3 × 8 matrix, Data are

sampled at the rate of 200 Hz.

• The dataset contains 7 active gestures (hand flexion, extension…) + idle and a set

of trials with isometric contractions.

• They are used for gesture recognition and for grasp force recognition.

• While a gesture was executed, a HD Camera giving an RGB feed and a depth

camera with a close view of hand of the participant were utilized. Gesture depth

images and videos are attached with EMG data.
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Electromyography signal acquisition [PEM].
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HMD Gesture Dataset

• This dataset contains about 360,000 image pairs for gesture

recognition. They were recorded using 31 participants and 30 different

environments [HMG].

• The images are recorded by a stereo monochrome fisheye pair

mounted in front of an HMD system.

• The dataset contains 8 gesture classes. For each image pair, the

following information is provided: a gesture class label and a bounding

box where hands are located.

• Images also may contain cluttered background and exacting lighting

conditions.
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WLASL
WLASL dataset is a large-scale signer-independent American Sign

Language (ASL) dataset containing 34404 videos [DON2020].

• Ddata annotations:

• Temporal sign boundary.

• Body Bounding-box.

• Signer Diversity: there are inter-participant variations (example:

participant appearance and signing pace).

• Dialect Variation Annotation: the dialect variations of signs

containing different sign primitives, like hand-shapes and

movements, have been annotated for each gloss (written

approximation of ASL).
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20BN-jester Dataset V1

• This is a hand gesture dataset. The subjects performed

hand gestures in front of a webcam or laptop camera [JES].

• The video data is split into parts of 1 GB. The number of the

videos is 148092 and their total size is 22.8 GB.

• The number of videos for the training, testing and validation

sets are 118562, 14743 and 14787, respectively.
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UAV-Gesture
• The data was recorded in a wheat field from a rotorcraft UAV (3DR

Solo) in low-altitude and slow flight [ASA2018].

• The videos have a HD resolution (1080 × 1920 pixels) at 25 fps.

• In the videos, the participant is located in the center of the frame and

executes 13 gestures.

• Each of gesture is performed between five to ten times.

• There is an annotation of 13 body joints in 37151 frames, e.g., for

ankles, knees, hip-joint, wrists, elbows, shoulders and head.

• Each annotation has also the gesture class, the participant identity

and the bounding box.
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Datasets

UT-Kinect

• Contains 10 different gestures such as push, pull, pick up 

etc.

• These are carried out by 10 subjects and captured using 

Kinect. 

• The participants move around creating gestures that have 

different starting, illumination, orientation etc. 

• The data contains three synchronized channels for RBG, 

depth and skeleton data.
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Datasets
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UT-Kinect Dataset.



Datasets

DHG 14/28

• Dataset involved 20 participants making 14 different

gestures using either one finger or the whole hand for 5

times.

• Every frame contains the depth map and the coordinates of

22 joints that create the skeleton data.

• The depth images were collected using the intel RealSense

camera with resolution of 640×480 and 30 fps.
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Datasets

Cambridge Hand Gesture

• Has 9 classes of 100 images per class for right and left

hands with 5 different illuminations and arbitrary motions.

• The samples were recorded using a fixed camera.

• Gestures are composed of flat, spread and V-shape hand

shapes and leftward, rightward and contract motions.
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Datasets
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Cambridge Hand Gesture Dataset.



Datasets
Leap Motion Dynamic Hand Gesture (LMDHG)

• Contains 608 motion and 526 rest gesture samples,

corresponding to a total of 1134 gestures using a Leap

Motion sensor.

• These gesture instances fall into 14 gesture classes with

unequal size:

• Point to

• Catch

• Zoom

• Rest

• Scroll etc.
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Gesture Recognition 

Problem Statement
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Production and perception of gestures.



Gesture Recognition 

Problem Statement

• Gestures are a way of communication.

• Models used in language processing can be applied.

• The production and perception modeling:

𝐻 = 𝑇ℎ𝑔𝐺, 𝑉 = 𝑇𝑣ℎ𝐻,

𝑉 = 𝑇𝑣ℎ 𝑇ℎ𝑔𝐺 = 𝑇𝑣𝑔𝐺.

• 𝑇: transformation of different models

• 𝐺: gestures, 𝑉: visual images, 𝐻: hand and arm motion.
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Gesture Recognition 

Problem Statement

• Gestures are made in a dynamic process.

• Important to consider temporal characteristics of gestures.

• Three phases in gesture making:

• Preparation: preparatory movement

• Nucleus: definite form

• Retraction: returns to the resting position or repositions for the new

gesture phase

• Consider a set of classes 𝒟 = {𝒞𝑖}𝑖=1
𝑚 where 𝑚 is the

number of different gestures and 𝐱𝑖 is a single gesture.
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Gesture Recognition 

Problem Statement

Spatial Gesture Model

• 3D Hand/Arm Model: 

• Volumetric models: describe the 3D visual appearance 

• Skeletal models

• Joints connecting the bones naturally exhibit different degrees of freedom 

(DoF)

• The human hand skeleton consists of 27 bones, divided in three groups:

• carpals (wrist bones—eight)

• metacarpals (palm bones—five)

• phalanges (finger bones—14).
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Gesture Recognition 

Problem Statement

Spatial Gesture Model

• Appearance-Based Model:

• Based on the appearance in the visual image.

• Deformable 2D templates

• The sets of points on the outline of an object, used as interpolation nodes 

for the object outline approximation.

• The simplest interpolation function used is a piecewise linear function.

• The templates consist of the average point sets, point variability 

parameters, and so-called external deformations. 

• Point variability parameters describe the allowed shape deformation 

(variation) within that same group of shapes.
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Gesture Recognition 

Problem Statement

• Dynamic gestures present difficulties in recognition:

• Time variability,

• Space Complexity.

• Starting and ending point is not clear,

• Repetitiveness.

• Gesture can be considered as states.
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Gesture Recognition 

Problem Statement

69



Algorithms of Gesture 

Recognition
• 3D model-based algorithms: the interpretation of an object

as a list of vertices and lines in the 3D mesh version.

• Skeletal-based algorithms: models the object but with less

parameters than the version of volumetric.

• Appearance-based models: acquire the parameters from

the images or from the videos directly, with the use of a

template database.

• Electromyography-based models: classify the body

movement with data of electrical signals generated by the

muscles.
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Tree of algorithms
Spatial 
gesture 
Models

3D Model-
based

Skeletal Volumetric

NURBS Primitives
Super-

quadrics

Appearance –
based Models

Image 
sequences

Deformable 
2D templates
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Problems of Gesture 

Recognition
• Illumination condition: the changes of the light in the image make

the extraction of the skin region more difficult.

• Rotation: there is problem when the subject that performs the gesture

is rotated in any direction.

• Scaling: the pose of the body or the hand have different sizes in the

image of the gesture.

• Interpretation: the changes of the position of the subject in different

images, may give false representation of the features.

• Background: when there is complex background with different

objects that confuse the detection and lead to misclassification.
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Deep Gesture 

Recognition

DeepGRU

• Deep learning methods applied.

• An end-to-end network-based gesture recognition utility.

• Recurrent architecture neural network for action recognintion.

• Proposed by NVIDIA researchers M. Maghoumi and J. LaViola.

• Uses raw skeleton, pose or vector data.
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Deep Gesture 

Recognition

DeepGRU

• Input: raw samples from the device represented as a temporal 

sequence of gesture images.

• Dimension of the feature vector is N, depends on the device.

• 𝐱𝑡 ∈ ℝ𝑛: the feature column vector at time t.

• 𝐱 ∈ ℝ𝑛×𝐿: the entire temporal sequence of a single sample, where 𝐿 is 

the length of the sequence.

• Consider 3D position of 21 joints human skeleton in 𝐿 time steps then 

𝑛 = 3 × 21 = 63 dimensional and if we double the number of time steps 

𝐱 ∈ ℝ63×𝐿.
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Deep Gesture 

Recognition

DeepGRU

• Encoder network serves as feature extractor.

• Input is the all the training samples of gestures collected.

• Consists of five stacked unidirectional GRUs.

• GRUs are simpler and faster to train for small number of parameters.

• Consider input 𝐱𝑡 and  hidden state vector of previous time step 𝐡𝑡−1.

𝐫𝑡 = 𝜎( 𝐖𝑥
𝑟𝑥𝑡 + 𝐛𝑥

𝑟 + 𝐖ℎ
𝑟𝐡𝑡−1 + 𝐛ℎ

𝑟 )
𝐮𝑡 = 𝜎( 𝐖𝑥

𝑢𝑥𝑡 + 𝐛𝑥
𝑢 + 𝐖ℎ

𝑢𝐡𝑡−1 + 𝐛ℎ
𝑢 )

𝐜𝑡 = 𝑡𝑎𝑛ℎ( 𝐖𝑥
𝑐𝑥𝑡 + 𝐛𝑥

𝑐 + 𝑟𝑡 𝐖ℎ
𝑐ℎ𝑡−1 + 𝐛ℎ

𝑐 )
𝐡𝑡 = 𝐮𝑡 ∘ 𝐡𝑡−1 + 1 − 𝐮𝑡 ∘ 𝐜𝑡
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Deep Gesture 

Recognition

DeepGRU

• 𝐫𝑡: reset

• 𝐮𝑡: update

• 𝐜𝑡: candidate gates

• 𝐖𝑝
𝑞
: trainable weights

• 𝐛𝑝
𝑞
: biases

• 𝐡𝑜: initially set to zero for all GRUs

• 𝜎: the sigmoid function
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Deep Gesture 

Recognition

DeepGRU

• The output of the encoder network is a set of features for performing 

classification.

• Given all hidden states 𝐡 attention module computes the attentional 

context vector 𝐜 ∈ ℝ128:

𝐜 =
exp 𝒉𝐿−1

𝑇 𝑾𝑐𝒉

σ𝑡=0
𝐿−1 exp 𝒉𝐿−1

𝑇 𝑾𝑐𝒉𝑡
.
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Deep Gesture 

Recognition

DeepGRU

• Contextual feature vector is formed through concatenation [𝒄; 𝒉𝐿−1].

• Auxiliary context 𝐜 = Γattn(𝐜, 𝐡𝐿−1), Γattn is the attentional GRU.

• Attention module output 𝑜𝑎𝑡𝑡𝑛 = [𝐜; 𝐜′]

• Final layers consist of two FC layers, ReLU activation and the 

probability distribution is calculated through:

ො𝐲 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐹2 𝑅𝑒𝐿𝑈 𝐹1 𝑜𝑎𝑡𝑡𝑛 .

• The input of 𝐹1 and 𝐹2 is processed with batch normalization and 

dropout. In the training process, cross-entropy is applied to reduce 

false predictions.
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Dynamic Gesture Recognition 

with Recurrent 3D CNN

The method proposed by [MOL2015] for camera-based

gesture recognition uses a Convolutional Neural Network

(CNN) to classify dynamic hand gestures.

• VIVA challenge dataset used, which contains 19 different

hand gestures and 855 intensity and depth video

sequences acquired by Microsoft Kinect with a resolution of

115 × 250 pixels.

• Preprocessing with resampling to 32 frames using nearest

neighbor interpolation and downsampling the intensity and

depth of the images by by 2.
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Dynamic Gesture Recognition 

with Recurrent 3D CNN

• The architecture of the convolutional neural network

includes a low-resolution and a high-resolution network with

parameters 𝒲𝐿 and 𝒲𝐻.

• Consider a gesture input 𝐱 and a class 𝒞 then the

probability of the class-membership is given by:

𝑃(𝒞|𝐱) = 𝑃(𝒞|𝐱,𝒲𝐿)𝑃(𝒞|𝐱,𝒲𝐻).

• The class label is predicted:

𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃 𝒞 𝐱 .
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Dynamic Gesture Recognition 

with Recurrent 3D CNN

• The high resolution layer consists of four 3D convolutional

layers, which are all followed by a max-pooling.

• After those layers, there are two fully-connected layers and

finally a softmax layer.

• The final output of the high-resolution layer gives the

probability of class-membership𝑃(𝒞|𝐱,𝒲𝐻).

• Similarly, the low-resolution network has the same

architecture with different sizes of the convolutional kernels

and outputs the probability of class-membership 𝑃 𝒞 𝐱,𝒲𝐻 .
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Dynamic Gesture Recognition 

with Recurrent 3D CNN

• All the layers except the softmax used the ReLU activation 

function.

• The output of the softmax layers is given by:

𝑃 𝒞 𝐱,𝒲 =
exp(𝑧𝒞)

σ𝑞 exp(𝑧𝑞)

for 𝑧𝑞 the output of the neuron.
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Dynamic Gesture Recognition 

with Recurrent 3D CNN

84

High and low resolution 3D CNN network architecture.



Dynamic Gesture Recognition 

with Recurrent 3D CNN

85

• The training of the network involves the minimization of the 

cost function:

ℒ 𝒲,𝒟 = −
1

𝒟
෍

𝑖=0

𝒟

log 𝑃 𝒞 𝑖 𝐱 𝑖 ,𝒲 .

• The optimization algorithm used for this task is stochastic 

gradient descent with mini-batches of 40 training samples 

for the LRN and 20 for the HRN.



Dynamic Gesture Recognition 

with Recurrent 3D CNN

86

• The parameters 𝑤 ∈ 𝒲 are updated at every iteration 𝑖
using Nestorov Acelerated Gradient:

∇ 𝑤𝑖 =<
𝛿ℒ

𝛿 𝑤𝑖−1
>𝑏𝑎𝑡𝑐ℎ ,

𝑣𝑖 = 𝜇 𝑣𝑖−1 − 𝜆 ∇ 𝑤𝑖 ,
𝑤𝑖 = 𝑤𝑖−1 + 𝜇 𝑣𝑖 − 𝜆 𝑤𝑖 .

where 𝜆 is the learning rate, 𝜇 the momentum coefficient. The

weights of the 3D convolution layers are initializes with values

from the uniform distribution. The two LRN and HRN networks

are trained separately.



Dynamic Gesture Recognition 
with Recurrent 3D CNN
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CNN RNN Depth and Skeleton 

based Gesture Recognition

• The paper [LAI2020] introduced a method that combines

Convolutional Neural Networks with Recurrent Neural

Networks (RNN) for hand gesture recognition using as input

depth depth and skeleton data.

• This proposed method includes CNN and an RNN that uses

features from depth sensors. There are two main

components in the architecture:

• the depth-based CNN and RNN and,

• the skeleton-based RNN.
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CNN RNN Depth and Skeleton 

based Gesture Recognition

• For CNN+RNN module, the RNN processes the time series

of the dynamic gesture images using two Long Short

Memory network (LSTM) of 256 units.

• CNN consists of six 3 × 3 convolutional layers, each

followed by a max pooling 2 × 2 layer and is used to extract

features that are needed for the classification step using

Multilayer Perceptron.

• Finally, for the decision-making step there are three fully-

connected layers of 256, 265 and 14 units and a softmax

layer.
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CNN RNN Depth and Skeleton 

based Gesture Recognition

90
Skeleton based LSTM gesture recognition.



CNN RNN Depth and Skeleton 

based Gesture Recognition
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Depth based CNN+LSTM gesture recognition.



CNN RNN Depth and Skeleton 

based Gesture Recognition

92CNN+LSTM and LSTM gesture recognition.



CNN RNN Depth and Skeleton 

based Gesture Recognition

• Similarly, the RNN skeleton-based module extracts features

from the skeleton data.

• The architecture is the same as the previous with the

difference that there are LSTM units at each layer and one

more fully connected layer.

• The researchers used feature-level, which is performed

before the MLP, and score-level fusion, which is performed

between the fully connected and softmax layer.
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CNN RNN Depth and Skeleton 

based Gesture Recognition

• For the experimental results, the DHG-14/28 dynamic hand

gesture dataset was used which has data collected from a

depth sensor and contains , also, the skeleton data for

many of them.

• The depth images were normalized, the images were

cropped and kept only the region of the gesture.

• The 2D skeleton points in a sequence are normalized by

subtracting every point by the palm location from the initial

frame.
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Dynamic Gesture Recognition 

via Hybrid Model

• The [LI2019] shows in the paper a hybrid deep learning

model for dynamic gestures. The model consists of three

different parts: a CNN, a MVRB and a NN.

• The CNN takes as input a video, which is a sequence of

images with spatial information.

• For every frame, it produces a feature vector. When it

obtains all features for a single video, the vectors are put all

together and create a matrix.
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Dynamic Gesture Recognition 

via Hybrid Model

• The CNN is pretrained  using labeled frames. 

• The model includes 5 convolutional layers with kernel size 

15, 3 max-pooling layers, 2 fully-connected layers with 64 

nodes and a softmax layer.

• The Matrix Variate Restricted Boltzmann Machine or 

MVRBM helps us get robust representation of the 3D hand 

gesture that is transformed into matrix form.
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Dynamic Gesture Recognition 

via Hybrid Model

• The Neural Network that predicts the class label of a given 

video depicting a gesture. 

• The model is trained using the input from MVBR. 

• The weights are initialized and modified properly in order to 

discriminate with minimum number of errors the gestures. 

• The next step involves a testing phase to prove how well 

the model predicts labels for the video samples. 
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Dynamic Gesture Recognition 

via Hybrid Model

• The data are preprocessed by removal of illumination

variation and data augmentation.

• The experimental results show the performance of Neural

Network without pretraining, using pretraining by the CNN-

RBM-NN and finally using CNN-MVRBM-NN.

• The MVRBM and NN submodels are implemented by

Matlab 2014a while the CNN by caffe VS2015.T

• he models are run on an Intel Core i7-4470 3.50 GHz CPU

machine with 12G RAM.
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3D CNN+LSTM

ConvLSTM
• The neural model combines a 3D convolution neural network

connected with a long short-term memory (LSTM) [NOO2019].

• As input data there can be Depth data, RGB and multimodal data.

• The control with the Finite State Machine-FSM help to reduce some

flows of the gesture and to border the classes of the recognition.

• The removing of the background and all the pixels that are

unnecessary is made by the attention on the hand.

• The global side of the hand gesture recognition is analyzed. The input

data includes the whole handshape instead of the use of the finger

feature for classification.

99



3D CNN+LSTM

ConvLSTM
• The datasets contains 2162 videos of participants while they perform 24 gestures,

13 static and 11 dynamic.

• Each gesture sequence contains a dynamic gesture of 3 seconds which consists of

120 frames.

• The sensor for the data was the depth camera Real Sense SR300 thus the dataset

includes the RGB and Depth data.

• For the extraction of the hand, given the whole RGB image 𝐼𝑟 , and depth image 𝐼𝑑 ,

fixed distance 𝑑𝑡 to cut off the background and minimum distance min𝑜𝑓 𝐼𝑑 as the

range filter was defined. Let 𝐼𝑟𝑏 be the RGB image and 𝐼𝑑𝑏 be Depth image, after the

cut off of the background. The calculation of the average distance of a point

𝑑𝑎𝑣 𝑖𝑛 𝐼𝑑𝑏 in the range [min, 𝑑𝑡] :

𝑑𝑎𝑣 =
σ𝑖
𝑛 𝐼𝑑𝑏

𝑖

𝑛
𝑤ℎ𝑒𝑟𝑒 𝐼𝑑𝑏

𝑖 > min𝑎𝑛𝑑 𝐼𝑑𝑏
𝑖 < 𝑑𝑡
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The architecture of the model [NOO2019].
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3D CNN+LSTM

ConvLSTM



The preprocess of the extraction of the based on the threshold  of the 

average depth [NOO2019]. 102

3D CNN+LSTM

ConvLSTM



• The architecture of the model consists of 3D-CNN layers, followed by

one stack LSTM layer and, then there is a fully connected layer and in

the end the softmax layer.

• The use of the Batch normalization make possible for the model to

utilize learning rates much higher.

• The size of the kernel of each Conv3D layer is 3 × 3 × 3, the stride

and padding are sizes of 1 × 1 × 1.

• After the Conv3D layer, there is a batch normalization layer, followed

by a ReLU layer and a 3D Max Pooling layer with a pool size of 3 ×
3 × 3.

• There is an extraction of the features from the 3D-CNN, then there is

an one stack of LSTM with 256 sizes of the unit.

• There is a value of 0.5 addition in every section in several dropout

layers.
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The proposed 3DCNN + LSTM architecture [NOO2019].
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• The depth and RGB fused to form the input data, and that may have a

better result rather than the use of input data from one stream.

• The three kinds of multimodal types based on the level of their fusion:

• Early fusion: 4 channels, 3 channels RGB+1 channel depth, fused

before the input to the 3D CNN layers.

• Middle fusion: the output of the separated 3D CNN layers, one from

the RGB and the other from the Depth, are fused for the input to

LSTM layer.

• Late fusion: in the same way, the fusion takes place after the LSTM

layer and before Fully Connected layer.
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3D CNN+LSTM

ConvLSTM



[NOO2019]

Early fusion+Depth+RGB hand 
only, accuracy rate 95,8%

Middle fusion+Depth+RGB 
hand only, accuracy rate 95,1%

Late fusion+Depth+RGB hand 
only, accuracy rate 97,6%
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• For the increase of the rate of the recognition in the system there must

be a recognition of smaller gesture class.

• In a Context-Aware recognition control system, the class for the

recognition was bounded in every context.

• The Finite State Machine-FSM is attached with the Deep learning

model and restrict the softmax decision probability with the

manipulation of the weight in the last layer.

• The system in a current context or state interacts with the Finite State

Machine to make a decision about which gesture not to be taken in

account.

• The weights which were pre-defined to the last layer’s node that join

to the FSM ignored class are applied, thus just the correct gestures

are accepted.
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FSM model controller with GRM-Gesture Recognition Machine [NOO2019].
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A two contexts example  in FSM model

[NOO2019]
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Deep learning for 

spatiotemporal systems
• According to [EGO2018] there are 4 ways of modelling for

spatiotemporal systems:

• The 2D ConvNets extract features of one frame. The classifiers

are trained for the prediction of the labels of videos based on the

frame features.

• The 3D ConvNets can derive features of video clips. Afterwards,

they accumulate the clip features into video descriptors.

• The usage of recurrent neural networks-RNN to handle the

temporal frames sequences is based on features of convolution.

• Formatting a video in one or in multiple compact frames and

classify it with a neural network.
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• In [EGO2018], deep learning models are being compared

using the dataset EgoGesture.

• The data splits into training set (60%) 1.239 videos, in

validation set (20%) 411 videos and in testing set (20%)

sets 431 videos.

• To classify, there is a segmentation of the video sequences

into isolated samples of gestures based on the first and the

last frames, which have annotations in advance.

• The aim of the learning is to anticipate the labels of the

class for each sample of gesture.
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• VGG16 is a 2D CNN with 13 convolutional and 3 FC layers.

• C3D is a 3D CNN with eight 3D convolutional layers, one 2D pooling layers, four 3D

pooling layers and three fully-connected layers.

• C3D+hand mask: C3D method is for the segmentation for the hand, since the depth

camera get rid of most of the background information and consider the depth frame

as a hand mask.

• C3D+LSTM+RSTTM: a C3D augmented model with a recurrent spatiotemporal

transform module (RSTTM).

• VGG16+LSTM a single-layer LSTM with 256 hidden units after the first fully-

connected layer of VGG16 .

• IDMM+CaffeNet handles spatial and temporal data of a video into an image called

improved depth motion map (IDMM)and in this way there can be classified by 2D

ConvNets.
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Gesture Classification Accuracy of the models with EGOGESTURE 

Dataset

[EGO2018] 

METHOD RGB DEPTH RGB-D

IDMM+CaffeNet - 0,664 -

VGG16 softmax 0,572 0,579 0,612

VGG16 fc6 0,625 0,623 0,665

VGG16+LSTM  softmax 0,673 0,690 0,725

VGG16+LSTM  lstm7 0,747 0,777 0,814

C3D fc6, 8 frames 0,817 0,844 0,865

C3D softmax, 16 frames 0,851 0,868 0,887

C3D fc6, 16 frames 0,864 0,881 0,897

C3D+HandMask - - 0,872

C3D+LSTM+RSTTM 0,893 0,906 0,922
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CS: cross subject setting, when the set of training and of testing  are from 

different participants

Classification accuracy with or without CS
[EGO2018]

Method Modality Accuracy without CS Accuracy with CS Variance

VGG16 fc6 RGB 0,667 0,625 0,042

VGG16+LSTM 

lstm7

RGB 0,764 0,689 0,075

C3D fc6, 16 frames RGB 0,892 0,864 0,028

VGG16 fc6 depth 0,647 0,623 0,024

VGG16+LSTM 

lstm7

depth 0,801 0,732 0,069

C3D fc6, 16 frames depth 0,907 0,881 0,026

VGG16 fc6 RGB-D 0,697 0,665 0,32

VGG16+LSTM 

lstm7

RGB-D 0,826 0,753 0,73

C3D fc6, 16 frames RGB-D 0,922 0,897 0,025
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DNN Architecture 

Comparison
• The [DON2020] shows a study of comparing models which

were trained with WLASL dataset

• 2D CNN+RNN: RNN are used for the temporal relations and 2D

CNN for the spatial features of the frames.

• 3D CNN can be applied for both the spatial and temporal

relationship between the frames.

• Pose based models: use RNNs to interpret the sequences of the

poses to analyze the movements.

• Temporal Graph Convolution Networks-TGCN models the

spatiotemporal dependencies of the pose sequence.
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[DON2020] 

2D Conv. RNN 3D CNN
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the keypoints are the joints of human bodies

[DON2020]

Pose RNN Pose TGCN
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Skeleton-based Gesture 

Recognition
• The [LIU2020] proposed architecture is built for a skeleton-based

Gesture recognition and its approach is that the gesture is a sequence

of complexly composite movements.

• The innovation of this architecture is that it is combined of two model:

one applied on the hand posture variations and the other on the hand

movements.

• HPEV (3D hand posture evolution volume) is the model applied on

the posture variations and HMM-2D hand movement map model

captures holistic movements.

• The HPEV integrates spatiotemporal information of hand postures

with a 3D CNN, and on the other hand, the HMM uses a 2D CNN

model to manipulate features of hand motions.
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Hand gesture separated into variations of hand posture and hand 

movements [LIU2020]. 121

Skeleton-based Gesture 
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• FRPV describes the movement of the finger and the positions of the 4

fingers and the thumb of each frame construct it.

• For frame 𝑡, the 4 relative positions are concatenated as a vector 𝑢𝑡 :

𝑢𝑡 = 𝑃𝐼,𝑡 , 𝑃𝑀,𝑡 , 𝑃𝑅,𝑡 , 𝑃𝐿,𝑡 − (𝑃0,𝑡 , 𝑃0,𝑡 , 𝑃0,𝑡 , 𝑃0,𝑡)

• where 𝑝(0, 𝑡) is the coordinate of thumb of the 𝑡 − 𝑡ℎ frame, and

𝑝(𝐼, 𝑡), 𝑝(𝑀, 𝑡), 𝑝(𝑅, 𝑡) 𝑎𝑛𝑑 𝑝(𝐿, 𝑡) are the coordinates of index fingertip,

middle fingertip, ring fingertip and little fingertip at frame 𝑡
respectively.

• The FRPV is the concatenation of all the 𝑢𝑡 of each frame [𝑁 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠]: 𝑈𝐹𝑅𝑃𝑉 = (𝑢1, 𝑢2, … , 𝑢𝑡, … , 𝑢𝑁)
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• The system consists two main streams and each of them extracts a

vector of the features that has built for: HPEV-Net and HMM-Net.

• HPEV-Net is applied for the hand movement map and uses a 3D CNN

for the low-level features with the size of the kernel 7x3x3 and

afterwards there is a stack of four bottleneck modules [KAI2016] for

the high level features.

• In every CNN layer the activation function is RELU, and the batch

normalization is used. Also, the max pooling layers are 4x2x2.

• The Fingertip Relative Position Vector-FRPV, is applied to describe

movements of the fingers, because the restrictions on the resolution

make very difficult the encoding of these movements.
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• The output of FRPV goes to the next FC layer with Batch Normalization and ReLU

activation.

• In the same stream, the outputs of HPEV and FRPV, are concatenated and there is a

classification of the hand gesture sequences with a softmax algorithm.

• On the other stream, Hand Movements Map (HMM), uses a 2D CNN for the for the

motion of the hand.

• HMM-Net is based on the Hierarchical Co-occurrence Network (HCN) the [CHA2018 ]

proposed network, to extract features.

• In the same way like the HPEV-Net, there is a stack of four bottleneck modules.

• The output channels of the four bottleneck modules are 128, 128, 256 and 512.

• The output of the last bottleneck after global average pooling ends into a feature

vector.
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The two Neural Networks HPEV-Net+HMM-Net [LIU2020].
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• SHREC’17 Track: This dataset [QUE2017] contains 14 gestures. They

are performed twice: with one finger and with the whole hand. It

includes 2800 sequences, 1960 for the training set and 840 for testing

set.

• DHG-14/28: The dataset [HAZ2016] comprises 14 gestures with 2800

sequences. The DHG-14/28 and the SHREC’17 Track datasets have

the same hand joints and the same method of data collection.

• FPHA: The last dataset [GUI2018] provides dynamic hand

sequences. It includes 1175 action had sequences, with 45 categories

handling 26 different objects in 3 scenarios. It has one less hand joint

from the SHREC’17 Track dataset. The training set (600 sequences)

and testing set (575 sequences) have almost the same percentage of

data.
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Gesture recognition accuracy rates with the use of  different 

combinations of input on FPHA dataset [LIU2020]. 127
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Gesture Recognition accuracy rates for different input combinations on SHREC’17 

Track and FPHA dataset.

14G:14 gestures, 28G:28 gestures

[LIU2020]

Method

SHREK

FPHA
14G 28G

HPEV 0,734 0,714 0,770

HMM 0,927 0,866 0,677

FRPV 0,628 0,588 0,664

HPEV+HMM 0,944 0,902 0,829

HPEV+HMM+FRP

V

0,948 0,922 0,909
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Gesture recognition comparison of some of the latest proposed models with SHREC’17 dataset

14G:14 gestures, 28G:28 gestures [LIU2020].

METHOD ACCURACY 14G ACCURACY 28G

HON4D [OMA2013] 0,785 0,740

SoCJ+Direction+Rotation [SME2017] 0,869 0,842

SoCJ+HoHD+HoWR [HAZ2016] 0,882 0,819

Two-stream 3D CNN [JUA2018] 0,834 0,774

Res-TCN [JIN2018] 0,911 0,873

STA-Res-TCN [JIN2018] 0,936 0,907

ST-GCN [YAN2018] 0,927 0,877

ST-TS-HGR-NET [XUA2019] 0,942 0,894

DG-STA [YUX2019] 0,944 0,907

HPEV+HMM+FRPV 0,948 0,922
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Temporal Graph 

Convolution Networks

• In the Temporal Graph Convolution Networks (TGCN), the input

sequence of poses 𝑋1:𝑁 = [𝑥1, 𝑥2, … , 𝑥𝑁] where 𝑁 = 𝑓𝑟𝑎𝑚𝑒𝑠 and

𝑋𝑖∈ ℝ𝐾 are the 2D keypoints in 𝐾 dimensions.

• encodes the body movements as a holistic representation of the

trajectories of body keypoints.

• In this way the dependencies among the joints of the human body are

represented in a graph network.

• A residual graph convolutional block stacks two graph convolutional

layers.
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• a human body is represented as graph that is a fully-connected with 𝐾
vertices and the edges in the graph as a weighted adjacency matrix:

𝐴 ∈ ℝ𝐾∗𝐾

• In a deep graph convolutional network, the 𝑛 − 𝑡ℎ graph layer is a

function 𝐺𝑛 that take as input features a matrix: 𝐻𝑛 ∈ ℝ𝐾∗𝐹

𝐹 is the feature dimension output by the previous layer.

• The set of trainable weights: 𝑊𝑛 ∈ ℝ𝐹∗𝐹′

• The computation of a graph convolutional layer: 𝐻𝑛+1 = 𝐺𝑛 𝐻𝑛 =
𝜎(𝐴𝑛𝐻𝑛𝑊𝑛)

where 𝐴𝑛 is a trainable adjacency matrix for 𝑛 − 𝑡ℎ layer and 𝜎(·)
implies the activation function tanh(·)
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top-10 accuracy rates by each model on WLASL subsets with 

different number of glosses

[DON2020]

Method WLASL 100 WLASL 300 WLASL 1000 WLASL 2000

Pose GRU 0,856 0,760 0,701 0,613

Pose TGCN 0,876 0,796 0,719 0,622

VGG+GRU 0,639 0,610 0,493 0,325

3D CNN 0,899 0,869 0,843 0,663
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Residual Graph Convolution Block [DON2020]. 
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Top-10 accuracy rates of 3D CNN and Pose-TGCN with different 

training set (rows) and testing set (columns) on WLASL subsets

[DON2020]

TRAINING 

SET/TESTI

NG SET

WLASL100 WLASL300 WLASL1000 WLASL2000

3D CNN TGCN 3D CNN TGCN 3D CNN TGCN 3D CNN TGCN

WLASL10
0

0,899 0,876 - - - - - -

WLASL30
0

0,883 0,814 0,869 0,796 - - - -

WLASL10
00

0,852 0,775 0,862 0,742 0,843 0,719 - -

WLASL20
00

0,720 0,678 0,711 0,654 0,673 0,645 0,663 0,622
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Deep Multimodal Multi-stream 
Activity Recognition 

[SON2016] Propose of a multimodal multi-stream DL framework for 

egocentric activity recognition, using video & sensor data. 

1) Experiment & Extend a multi-stream CNN to learn spatial and temporal 

features from egocentric videos. 

2) Proposal of a multi-stream LSTM architecture to learn the features from 

multiple sensor streams (accelerometer, gyroscope, etc.). 

3) Propose of using a two-level fusion technique and experiment different 

pooling techniques to compute final prediction results. 



For sensor data → multi-stream LSTM framework to analyze multiple-

axis sensor measurements: accelerometer, gyroscope, magnetic field & 

rotation. 

To fuse results (spatial, optical flow and stabilized optical flow for video 

data, various sensor measurements)→ average pooling & maximum 

pooling & a two-level fusion approach

Deep Multimodal Multi-stream 
Activity Recognition 
For video data → extension of  2-stream ConvNets to a 3-stream 

ConvNets for spatial, optical flow & stabilized optical flow data. 



[SON2016]  To fuse the three streams (spatial, optical flow & stabilized optical flow) →

average pooling & maximum pooling to predict labels of activities. 

Deep Multimodal Multi-stream 
Activity Recognition 
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Deep Multimodal Multi-stream 
Activity Recognition 

Types of sensor data: 

accelerometer, gravity, gyroscope, 

linear acceleration, magnetic field & 

rotation vector. 

15 seconds duration & sampling rate 

of 10

[SON2016] Sample frames of video data from Multimodal 

Egocentric Activity Dataset 
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Deep Multimodal Multi-stream 
Activity Recognition 

Accuracy results

Basic RNN takes in sequential input and for each data in the sequence, 

it calculates hidden states which take part in predicting the next data in 

the sequence → performs prediction or classification for a certain data 

point by finding the temporal relationship from the previous data point in 

the sequence. 
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Deep Ecocentric Activity 
Recognition 

[CAO2017] Challenge: arises from the global camera motion 

caused by the spontaneous head movement of the device 

wearer

→ address problem by a recurrent 3D convolutional neural network 

for end-to-end learning
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Deep Ecocentric Activity 
Recognition 

Reference

1)Egocentric motion: since camera is worn on user’s head, camera 

motion can be significant due to the head movement 

2)Hands in close range: due to short distance from camera to hands 

and the narrow field-of-view of the egocentric camera, hands are 

prominent in the frame but meanwhile could be partly or even totally 

out of the field-of-view.

Design end-to-end learnable egocentric gesture recognition model 

without detecting hand and estimating head motion explicitly & 

independently
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Deep Ecocentric Activity 
Recognition 

Reference

→ 3D CNN + RNN to process video sequences

→ Proposal of a spatiotemporal transformer module (STTM) to 

transform 3D feature maps to a canonical view in both spatial and 

temporal dimensions. 

• Use of homography transformations to deal with head motion

• Estimate the transformation parameters at current time based on the 

previous ones on video sequences by introducing recurrent connections
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Reference

[CAO2017] 

Deep Ecocentric Activity 
Recognition 
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Reference

[CAO2017] 

Propose a framework of recurrent 3D CNN in an end-to-end learning 

paradigm, which can not only capture short-term spatiotemporal 

features, but also model long-term dependencies

There are 3 parts in a recurrent spatiotemporal transformer module: a 

localization network, a grid generator and a sampler. 

Example of the 3D grids before and after a 

transformation of homography

Deep Ecocentric Activity 
Recognition 
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[CAO2017] 

Localization network

Example of the 3D grids before 

and after a transformation of 

homography

Deep Ecocentric Activity 
Recognition 
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Applications

• Sign Language.

• Navigation or/and the manipulation in VR

environment.

• Distance learning.

• Understanding of the human behavior in the

interaction of a human with a computer.

• The distance controlling of devices and of machines.
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Applications

• Sign Language

• Developing aid for the deaf

• Navigating or/and manipulating in virtual environment

• Distance learning

• Understand human behavior in human-computer interaction

• Monitoring machines from a distance

• automobile drivers’ alertness levels

• Doctors monitor patient states 
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Applications

Sign Language Recognition

• Manual gesture features either combined or individually

posed from hands, face or other body part.

• Each region defines each own lexicon and linguistics.

• Three main components:

• Finger spelling: spelling words letter by letter

• Manual features: gestures made with hands that include motion and

express meaningful things

• Non-manual features: facial expressions, hand and arm moves or body

posture
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Applications
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Human-Machine Interaction

• The interaction between a human and a device can be performed with

gesture recognition.

• A driver–vehicle interaction is presented in [ZEN2018]. Camboard

Nano Time-of-Flight (ToF) sensor is used for the getting depth data.

• ToF sensors are able to record as depth data the hand gestures in real

time.

• This sensor provides depth images. Their resolution is 165 × 120
pixels at a frame rate of 90 fps.

• The control system is applied on a computer-tablet which is situated on

the center of the console of the vehicle.

153



Performing hand gesture detected in the range of the sensor of time-of-

flight-ToF (area of detection in red) [ZEN2018].
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Preprocessing data with PCA
the green area (left) remain to classify the class of the correct hand posture (right)

[ZEN2018]
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Lane change with gesture control [ZEN2018].
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Human-Robot Interaction

Gesture-controlled robots are used in various fields:

• Industry (car factories).

• Medicine (remote robotic surgery).

• In military (armed robotic vehicles).

• In space (articulated hands).
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Robot programming 

using gestures 
Robot programming using body and hand gestures

[TSA2016].

• The data come from two devices:

• An RGB-D device for the capture of the body gestures,

• Leap motion for the hand gestures.

• The body gestures control robot arm motion in six directions:

+ 𝑥,−𝑥,+𝑦,−𝑦,+𝑧,−𝑧.

• Dynamic hand gestures involve finger movements. They create

identical movements to the ones of the body gestures.

• It is applied to on line human and industrial robot interaction.
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Performing body gestures as commands for robot [TSA2016].
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Robot programming 

using gestures 
• The two sensors (Kinect and Leap motion) are connected to a

computer through an ethernet cable.

• A vocabulary includes body and hand gestures as high level robot

commands.

• The body gestures are acquired through Kinect. 18 human skeleton

nodes are detected.

• Analysis of the nodes ends up to vocabulary-based command

classification.

• The data from the Leap motion sensor is used to recognize of the

hand gestures in the same way.
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HW architecture of Robot programming using gestures  [TSA2016].
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Human-Drone Interaction

A remote drone control by gesture recognition has 5 modules

[HUA2019]:

• A scene-understanding module.

• A pilot detection module. 

• An action detection and recognition module.

• A gesture recognition module.

• A joint reasoning and control module.

163



Human-Drone Interaction

Gesture Controlled Drones

• Issues by using hand controlled devices: 

• limited control by the range of electromagnetic radiation

• susceptibility to interference noise

• Researchers investigate the use of computer vision methods because 

of the ability of drones camera to capture surrounding

• Two types:

• Fixed wing

• Multirotor
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Human-Drone Interaction

Gesture Controlled Drones

• Camera sensors are used because they are low cost, low power.

• Image outputted by the camera may be used for a range of purposes

and is send directly to the controller.

• Controller may command the drone a new instruction via a remote

control device, depending on the current environment image.

• Current controllers use wi-fi or Bluetooth as a channel to communicate

and mobile devices such as phones, tablets or wired gloves.

• Computer vision techniques enable users to move their hands and

fingers and perform gestures, which are then converted in digital

commands, recognized by sensors.
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Human-Drone Interaction

Gesture Controlled Drones

• Video stream is recorded through the camera and segmented into 

sequences of images.

• Each image is then recognized by a classification process.

• Typical commands:

• Take off

• Land

• Move right or left

• Finally the action planner on the drone 

166



Human-Drone Interaction

Gesture Controlled Drones

• Safety issues:

• Misinterpreted gesture 

• Execution of the most appropriate action according to the environment

• Collision avoidance due to wind, air flows etc
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Human-Drone Interaction

168Gestures for drone control [NAT2018].



Human-Drone Interaction model [HUA2019].
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A skeleton sequence  represented with the ST-GCN spatial temporal graph, 

which is used for human action classification [HUA2019].
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System performance when two users perform identical gestures [HUA2019].
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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