Crowding out the truth? A simple model of misinformation, polarization and meaningful social interactions

Fabrizio Germano U Pompeu Fabra

U Pompeu Fabra

Vicenç Gómez Francesco Sobbrio Tor Vergata U. Rome

Computational Politics e-symposium

Ranking matters for users!

9 Search ess Caused By Flu. Videos Next is tacking at whether or not the fla vacaine in at for the first time will receive it in two separate shots a Change location the flux shat to become effective Pages from Cana to the shafts importance, prompting many to Any time Past hour much the needle every year, but a new at does not work all the time. Its about 70 to 90 per cent effective which. The successor rate is somewhat leave in thicken and Post year More search tools our hands, cover your mouth. It's cald, the tree - DL Ordre WANKE: Boo to the Bu - Evening Neve (Flu Shot) Fects and Side Effects by MedicineNet ... Infuenza veccine - Wikipedia, the free encyclopedia Jump to Directiveness of veccing. Yell immunization against fits provided about a 75 immunit of first/senses tab in proverting baselabations from ... Effectiveness of Flu Shots Wildy Overestmated - Infuenza Veccine ... In a flaveocine celosis published in the Canadian Medical Association Journal about the effectiveness of the mass influence resciration program in Defants, ... Obesity May Hinder Flu Shots Effectiveness - Yahool News Flu shot: Your best bet for evolding influenze - MayoClinic.com Fig shots are the most effective way to prevent influenza and its complications. The Are flu shots effective? - Flu treatments naturally Fig shots are ineffective against new strains of fig, and only moderately effective Fig anota are instructive against new strains of ful, and only modelabley after analised common house. They also come all's series side affects. These are Get the flu veccine very fightly ca Here you getter your the shed this year? Are Flu Shots Effective? The Truth About File Shell Effective receiption The File Shell Proport Today. Goooooooogle > No Advanced search Search Help Sive us feedback Go to Google.com Marker Mary Description of the region reaction 11-111 07/84 which here Types 00 00 01 0000-10 000 10 000 Google Home Advertisies Programs Business Solutions Privacy About Google

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pan et al. (2007); Novarese & Wilson (2013) Yom-Tov et al. (2013); Glick et al. (2014) Epstein & Robertson (2015)

Engagement matters for platforms!

Weight Decision 12/15/2017

* Component	Final Weight for 2018Q1	
Like	1	
Reaction, Reshare without Text	5	
Non-sig Comment, Non-sig Reshare Non-sig Message, Rsvp	15	
Significant Comment, Significant Reshare, Significant Message	30	
Groups Multiplier (Non-friends)	0.5	
Strangers Multiplier (non-friend-of-friend, small pages)	0.3	

 \Downarrow

Facebook whistleblowers (*WSJ*, 2021): MSI allegedly led to adverse effects in terms of misinformation and polarization (among others)

This paper

1) Theoretical framework

Interactions of behavioural individuals with algorithmic weights

- \Rightarrow Assess impact of an increase in MSI & personalization on:
 - Platform Engagement
 - Misinformation
 - Polarization

Main insights:

MSI: ↑ Engagement; ↑ Misinformation; ↑ Polarization

2) Direct empirical evidence on impact of MSI on polarization

Model

State of the world $\theta \in \mathbb{R}$ (e.g., net benefits of vaccines/emission reduction)

M news items (e.g., Facebook's post, Tweet, etc).

• Each carries an informative signal $y_m \sim N(\theta, \sigma_y^2)$.

N individuals:

- Each receives a private informative signal $x_n \sim N(\theta, \sigma_x^2)$.
- Sequentially access (in random order) a social media platform to read and, possibly, "highlight" (e.g., share) a news item m
- Are able to see whether m is "like-minded" or not. Yet they need to click on the news item in order to see y_m.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model – Clicking (absent ranking)

 $\gamma_n =$ individual *n*'s propensity to click on "like-minded" news, *absent ranking*

Individuals can be of three clicking types:

- confirmatory (τ_C): more likely to click on "like-minded" news (γ_C > 1/2)
- exploratory (τ_E): less likely to click on "like-minded" news ($\gamma_E < 1/2$)
- indifferent (ranking-driven) (τ_I) : $\gamma_I = 1/2$

The three types occur with probabilities $p_C \ge 0$, $p_E \ge 0$, & $p_I = 1 - p_C - p_E$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model – Highlighting

After clicking on m, individual sees the actual signal ym

Then highlight (e.g., share/comment) m with probability p_a

Assumptions:

- ▶ Highlight only if sufficiently close to prior $(|x_n y_m| < \frac{\sigma_x}{2})$, An et al. 2014; Garz et al 2020)
- Individuals with more extreme priors are more likely to highlight. (Bakshy, Messing, Adamic, 2015, for "hard" news (i.e., political).

▶ Bakshy et. al (2015)

A D N A 目 N A E N A E N A B N A C N

Model – Attention Bias

Individuals have an attention bias calibrated by $\beta \geq 1$.

Interpretation:

If news items m_a and m_b have the same sign and m_a is one position up in the ranking $\Rightarrow m_a$ will be β times more likely to be clicked wrt to m_b

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Model – Attention Bias

Individuals have an attention bias calibrated by $\beta \geq 1$.

Interpretation:

If news items m_a and m_b have the same sign and m_a is one position up in the ranking $\Rightarrow m_a$ will be β times more likely to be clicked wrt to m_b

All in all, the higher:

- a) the ranking of news item m;
- b) the propensity (absent ranking) of individual n to click on m

 \Rightarrow the more likely *m* is to be clicked \bigcirc Clicking Prob.

(Germano, Gómez, Le Mens 2019; Germano and Sobbrio, 2020)

Model – Algorithm: Popularity Ranking

Ranking algorithm updates popularity of each news item such that:

- a click has a weight of 1
- ▶ a highlight has a weight of $\eta \in \mathbb{R}_+$.

Popularity of news item m, $\kappa_{n,m}$ updated according to:

$$\kappa_{n,m} = \kappa_{n-1,m} + \begin{cases} 0 & \text{if } m \text{ is not clicked on by } n \\ 1 & \text{if } m \text{ is clicked on and not highlighted by } n \\ 1 + \eta & \text{if } m \text{ is clicked on and highlighted by } n \end{cases}$$

Ranking observed by *n* inversely related to popularity before clicking:

$$r_{n,m} < r_{n,m'} \iff \kappa_{n-1,m} < \kappa_{n-1,m'}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap

At time t = n, (random) individual n:

- Gets private signal x_n on θ (e.g., net benefits of vaccine)
- Access social media and observes ranking of news items $r_{n,m}$
- Given ranking, attention bias β, and propensity to choose like-minded items γ_n: decides which m to click
- After learning y_m, highlights m with probability p_a and only if sufficiently close to her prior
- Algorithm updates the popularity (and ranking) of items:

$$\kappa_{n,m} = \kappa_{n-1,m} + \begin{cases} 0 & \text{if } m \text{ is not clicked on by } n \\ 1 & \text{if } m \text{ is clicked on and not highlighted by } n \\ 1 + \eta & \text{if } m \text{ is clicked on and highlighted by } n. \end{cases}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

At time t + 1 = n + 1....

Algorithm personalizes the ranking according to whether x_n on the left/right wrt θ (group L/R)

Two rankings based on two separate measures of popularity.

 $\lambda \in [0,1]$ is a parameter calibrating the degree of personalization.

- \triangleright $\lambda = 0$: clicks and highlights from the other group do not count at all
- > $\lambda = 1$: no personalization: popularity for both groups always coincides.

Evaluation indices

Effects of η and λ on engagement and users' welfare?

Engagement: ENG= sum of clicks and highlights

• Misinformation:
$$MIS = \frac{1}{N} \sum_{n \in N} |y(n) - \theta|;$$

• Polarization:
$$POL = \frac{1}{N} |\sum_{n \in R} y(n) - \sum_{n' \in L} y(n')|;$$

where:

- ▶ $y(n) \in M$ denotes the signal of the news item clicked on by individual n.
- ▶ L(R) denotes the individuals with signals x_n with sign $(x_n) = -1$ (= +1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main results - Crowding out the truth

Figure: Users' clicking behavior (top) and highlighting behavior (bottom) for small η (left) and for large η (right) under non-flat highlighting.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main results: Intuition

An increase in η :

- More individuals willing to highlight items (more extremist) will be clicking on items they are actually interested in highlighting → Higher engagement
- Individuals less likely to click on news near the truth (y's ≈ θ)
 & more likely to click on items further away from the truth (y's ≈ -x*, x*). → More misinformation and polarization

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \Rightarrow Crowding out the truth.

MSI and Polarization: Empirical analysis

Theoretical prediction: an increase in weight of "highlights" (η)

∜

Individuals more exposed to extremists contents
 Higher level of political polarization.

Empirical test: exploit Facebook's MSI update

Jan 2018: boost in the weight given to comments and shares

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Empirical analysis (2)

Data. Focus on Italy (IPSOS *Polimetro*):

- Weekly interviews on representative sample of Italian voting pop.

Info on whether internet primary source to form pol. opinion

 Italy 2017-2018: FB by far the first social media: 60% penetration rate (Twitter 23%), ~ 80% among internet users

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Ideological self-position: Dummy for moderate/non-moderate
- Probability of voting for each party: affective polarization.

Empirical strategy

Difference-in-Differences:

 $Y_{i,m,t} = \alpha + \beta_1$ Opinion via internet_{i.m,t} × Post MSI

 $+\beta_2$ Opinion via internet_{*i*,*m*,*t*} $+\beta_3$ Post MSI $+\alpha_m + X_{i,t} + \varepsilon_{i,m,t}$ (1)

- Y_{i,m,t} represents the outcome of interest relative to individual *i*, leaving in municipality *m* interviewed in the survey wave *t* (i.e., probability of declaring a non-moderate political ideology or weighted affective polarization).
- $\triangleright \alpha_m$ municipality fixed effect
- X_{i,t}: socio-demographic control (age, gender, n. of resident family members, level of education, type of occupation, religiosity).
- Observations weighted according to Ipsos sampling weights

Results: MSI and Non-moderate ideology

	(1) Non-moderate	(2) Non-moderate	(3) Non-moderate	(4) Non-moderate
	Ideology	Ideology	Ideology	Ideology
Opinion via internet $ imes$ Post MSI	0.062***	0.058***	0.051***	0.051***
	(0.016)	(0.015)	(0.014)	(0.018)
Opinion via internet	-0.012	-0.006	-0.012	-0.012
	(0.020)	(0.020)	(0.024)	(0.022)
Post MSI	-0.017*			
	(0.009)			
Observations	25,690	25,690	25,690	25,690
Mean outcome	0.36	0.36	0.36	0.36
SD outcome	0.48	0.48	0.48	0.48
Municipality FE	YES	YES	YES	YES
Date of interview FE	NO	YES	NO	NO
Province-Date of interview FE	NO	NO	YES	YES
Cluster SE	Region	Region	Region	Province

Table: MSI and non-moderate ideological position

Note: Time horizon: June 2017-June 2018 . Robust Standard Errors in parenthesis. ** p<0.01, ** p<0.05, * p<0.1

Results: MSI and Affective Polarization

Table: MSI and Affective Polarization

	(1) Affective Polarization	(2) Affective Polarization	(3) Affective Polarization	(4) Affective Polarization	
Opinion via internet \times Post MSI	0.054**	0.055**	0.073***	0.073***	
Opinion via internet	-0.012	-0.011	-0.006	-0.006	
Post MSI	(0.023) 0.118*** (0.020)	(0.022)	(0.023)	(0.025)	
Observations Mean outcome	14,499 1.29	14,499 1.29	14,499 1.29	14,499 1.29	
SD outcome	0.61	0.61	0.61	0.61	
Municipality FE Date of interview FE Province-Date of interview FE	YES NO NO	YES YES NO	YES NO YES	YES NO YES	
Cluster SE	Region	Region	Region	Province	
Nate: Time having 1, une 2017 June 2018 Debugt Standard Every in acceptage					

Note: Time horizon: June 2017-June 2018 . Robust Standard Errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

Conclusions

A higher η (\uparrow weight on highlights in the ranking algorithm)

- Assuming bimodal propensity to highlight (Bakshy et al. 2015):
 - increases engagement
 - increases polarization
 - increases misinformation.
- ▶ Higher ideological extremism & affective polarization in Italy
- \Rightarrow Theoretical & Empirical evidence on adverse effects of FB 2018 MSI update
 - A lower λ (\uparrow personalization) increases engagement & polarization.
- \Rightarrow Theoretical support for "filter bubble" (Pariser, 2011)

