
Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr
Version 4.1

Multilayer Perceptron.

Backpropagation

summary

Perceptron

5

𝑎 = 𝑓 𝑧 = 𝑓 𝐰𝑇𝐱 + 𝑏 = 𝑓

𝑖=1

𝑁

𝑤𝑖𝑥𝑖 + 𝑏

Multi-Layer Perceptrons (MLP)
Universal Approximation Theorem:
Let 𝑓 ⋅ be a nonconstant, bounded and continuous function. Let 𝐻𝑛 denote the
𝑛-dimensional unit Hypercube 0,1 𝑛. The space of continuous functions on
𝐻𝑛 is denoted as 𝐶 𝐻𝑛 . Then, given any 𝜖 > 0 and any function G(𝐱) ∈ 𝐶 𝐻𝑛 ,
there exist an integer 𝑁, real constants 𝑢𝑖 , 𝑏𝑖 ∈ ℝ and real vectors 𝐰𝑖 ∈ ℝ𝑛,
where 𝑖 = 1,… ,𝑁, such that we may define:

𝑔 𝐱;𝐰 =

𝑖=1

𝑁

𝑢𝑖𝑓 𝐰𝑖
𝑇𝐱 + 𝑏𝑖 ,

as an approximate realization of the function 𝐹:

𝐺 𝐱 − 𝑔 𝐱;𝐰 < 𝜖, ∀ 𝐱 ∈ 𝐻𝑛.

8

MLP Architecture

Multilayer perceptrons are feed-
forward neural networks and typically
consist of 𝐿 layers with 𝐿𝑙 neurons in
each layer: 𝑙 = 1,… , 𝐿.

⚫ The first layer (technically layer 𝑙 = 0)
contains 𝑛 inputs, where 𝑛 is the
dimensionality of the input sample
vector.

⚫ The 𝐿 − 1 hidden layers 𝑙 = 1,… , 𝐿 − 1
can contain any number of neurons.

9

MLP with 𝐿 = 4 layers.

Fully connected MLP Example

• Example architecture with 𝐿 = 2 layers, 𝑛 input features, 𝐿1 neurons at the first

layer and 𝑚 output units.

17

MLP Training
• Mean Square Error (MSE):

𝐽 𝛉 =
1

2𝑁
σ𝑖=1
𝑁 σ𝑗=1

𝑚 ො𝑦𝑖𝑗 − 𝑦𝑖𝑗
2
.

• It is suitable for regression and classification.

• Categorical Cross Entropy Error:

𝐽 𝛉 = −σ𝑖=1
𝑁 σj=1

𝑚 𝑦𝑖𝑗 log ො𝑦𝑖𝑗 .

• It is suitable for classifiers that use softmax output layers.

37

MLP Training

• Differentiation: 𝛻𝐽 𝛉 = 𝟎 can provide the critical points of multivariate
function 𝐽(𝛉):

Minima, maxima and saddle points.

• Analytical differentiation is usually impossible.

• We must resort to numerical optimization methods.

• Iteratively search the parameter space for the optimal values.

• In gradient descent, weights are update in the opposite direction of
the gradient, factored by the learning rate 𝜂:

𝛉 𝑡 + 1 = 𝛉 𝑡 + 𝜂𝛻𝐽 𝛉 .

19

MLP Training

Steepest descent on a function surface.

21

Backpropagation

⚫ Consider the MSE objective function for a single input vector:

𝐽 =
1

2

𝑖=1

𝑚

(𝑦𝑖 − 𝑎𝑖
(𝐿)

)2 .

⚫ We introduce the notation for the delta rule as:

𝛿𝑖
(𝑙)

=
𝜕𝐽

𝜕𝑧𝑖
(𝑙)

=
𝜕𝐽

𝜕𝑎𝑖
(𝑙)

𝜕𝑎𝑖
(𝑙)

𝜕𝑧𝑖
(𝑙)
.

⚫ The sample is first fed forward throughout the network and the neuron
outputs are stored. The computation of the error starts at the output and
propagates backwards.

23

Backpropagation

⚫ Overall:

𝜕𝐽

𝜕𝑤𝑖𝑗
(𝑙)

= 𝛿𝑖
(𝑙)
𝑎𝑗
(𝑙−1)

,

𝛿𝑖
(𝑙)

=
𝜕𝑎𝑖

(𝑙)

𝜕𝑧𝑖
(𝑙)

𝑎𝑖
(𝐿)

− 𝑦𝑖 , 𝑙 = 𝐿,

𝑗=1

𝐿𝑙+1

𝛿𝑗
(𝑙+1)

𝑤𝑗𝑖
(𝑙+1)

, 𝑙 < 𝐿.

23

Gradient Descent Overview

When multiple training samples are available, parameter updates in the
Backpropagation algorithm can be applied in three different ways:

• Batch Gradient Descent, where the gradients are computed for each sample
of the training set {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁} , and then the update rule becomes:

𝛉 𝑡 + 1 = 𝛉 𝑡 − 𝜂𝛻𝐽(𝛉 𝑡)

𝛻𝐽(𝛉 𝑡) =
σ𝑖=1
𝑁 𝛻𝐽𝐱𝑖(𝛉 𝑡)

𝑁
,

• 𝐽𝐱𝑖 is the value of cost function 𝐽 when given input sample 𝐱𝑖.

• Stochastic Gradient Descent, where the parameters are updated for every
training sample:

𝛉 𝑡 + 1 = 𝛉 𝑡 − 𝜂𝛻𝐽𝐱𝑖(𝛉 𝑡).
32

Gradient Descent Overview

• A training epoch is a complete cycle of training, in which all training samples
have been processed once.

• Usually, multiple epochs are used when training a network, for better
convergence.

35

Gradient Descent Overview

• A more refined and popular momentum approach is the Nesterov momentum
method, in which the momentum is applied first and then the gradient is
computed:

𝒖 𝑡 = 𝜇𝒖 𝑡 − 1 − 𝜂𝛻𝐽 𝛉 𝑡 + 𝜇𝒖 𝑡 − 1 ,

𝛉 𝑡 + 1 = 𝛉 𝑡 + 𝒖 𝑡

38

Gradient Descent Overview
AdaGrad algorithm:

• Maintains the sum of squares of all previous gradients.

𝜂(𝑡) =
𝜂(0)

σ𝑖=1
𝑡−1 𝜕𝐽

𝜕𝜃
(𝑖)

2

+ 𝜖

• The learning rate decreases faster for more frequently updated parameters.

• The problem is that eventually the learning rate vanishes and the training
stops.

39

Gradient Descent Overview

ADAM algorithm:

𝑢 𝑡 =
𝛽1𝑢 𝑡 + (1 − 𝛽1)

𝜕𝐽
𝜕𝜃

(𝑡)

1 − 𝛽1
𝑡 ,

𝑟 𝑡 =
𝛽2𝑟 𝑡 + (1 − 𝛽2)

𝜕𝐽
𝜕𝜃

(𝑡)
2

1 − 𝛽2
𝑡 ,

𝜃 𝑡 = 𝜃 𝑡 − 1 −
𝜂

𝑟 𝑡 + 𝜖
𝑢 𝑡 .

• 𝛽1, 𝛽2: exponential decay rates for the moment estimates.

• 𝑢, 𝑟: first and second moment values respectively.

40

Generalization
Underfitting occurs when a model cannot accurately capture the underlying data
structure.

• Underfitting can be detected by a very low performance in the training set.

43

Generalization

• The whole process uses the validation error as a proxy
for the generalization performance.

45

Generalization

• Depending on the functional form of Ω ∙ , the effect on the model
parameters is different:

• 𝐿2 regularization: Ω 𝛉 = 𝛉 2 = σ𝑖 𝜃𝑖
2.

• 𝐿1 regularization: Ω 𝛉 = 𝛉 = σ𝑖 𝜃𝑖 .

47

Revisiting Activation Functions

• Sigmoid function, until recently, was the default choice for activation function.

• Sigmoid functions saturate, which can prevent some neurons from updating.

• Sigmoid functions lead to the vanishing gradients problem, as the delta
signal is repeatedly multiplied by a value smaller than 1. Near zero gradients
effectively mean that earlier layers stop learning.

48

Sigmoid Derivative of sigmoid

Training on Large Scale Datasets

• Large number of training samples in the magnitude of hundreds of thousands.

• Problem: Datasets do not fit in memory.

• Solution: Using mini-batch SGD method.

• Many classes, in the magnitude of hundreds up to one thousand.

• Problem: Difficult to converge using MSE error.

• Solution: Using Categorical Cross Entropy (CCE) loss on Softmax output.

50

Towards Deep Learning
⚫ Increasing the network depth (layer number) 𝐿 can result in negligible weight

updates in the first layers, because the corresponding deltas become very
small or vanish completely

⚫ Problem: Vanishing gradients.

⚫ Solution: Replacing sigmoid with an activation function without an upper

bound, like a rectifier (a.k.a. ramp function, ReLU).

• Full connectivity has high demands for memory and computations

• Very deep fully connected DNNs are difficult to implement.

• New architectures come into play (Convolutional Neural Networks, Deep
Autoencoders etc.)

51

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr

