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Perceptron C\ZML
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Multi-Layer Perceptrons (MLP) C\ZML

Universal Approximation Theorem:
Let f(-) be a nonconstant, bounded and continuous function. Let H,, denote the

n-dimensional unit Hypercube [0,1]™. The space of continuous functions on
H, is denoted as C(H,,). Then, given any € > 0 and any function G(x) € C(H,,),
there exist an integer N, real constants u; b; € R and real vectors w; € R",

where i = 1, ..., N, such that we may define:

N

gew) = ) wif (WX +by),

i=1
as an approximate realization of the function F:

IG(x) — g(x; W)| < €, VX E H,,.
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MLP Architecture VML

Multilayer perceptrons are feed-
forward neural networks and typically
consist of L layers with L; neurons in
each layer: [=1,..,L.

. The first layer (technically layer [ = 0)
contains n Inputs, where n is the
dimensionality of the Input sample
vector.

« The L—1 hidden layers [ =1, ..,L —1
can contain any number of neurons.
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Fully connected MLP Example C\ZML

« Example architecture with L = 2 layers, n input features, L, neurons at the first
layer and m output units.
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MLP Training @ML

« Mean Square Error (MSE):

1 ~ 2
J(0) = — XL X7 (P — i)
« |tis suitable for regression and classification.

« Categorical Cross Entropy Error:

J(8) = =X, Y% vijlog(9i)).

« |tis suitable for classifiers that use softmax output layers.
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MLP Training (vmL

« Differentiation: VJ(0) = 0 can provide the critical points of multivariate
function J(0):

Minima, maxima and saddle points.
« Analytical differentiation is usually impossible.
 We must resort to numerical optimization methods.
« |teratively search the parameter space for the optimal values.

« In gradient descent, weights are update in the opposite direction of
the gradient, factored by the learning rate n:

8(t + 1) = 8(t) + nVJ ().
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MLP Training
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Backpropagation C\ZML

« Consider the MSE objective function for a single input vector:
m
1 L
]=§Z(J’i—ai( '),
i=1

« We Introduce the notation for the delta rule as:

l
so_ 0 _ 9 da’
O

0z" 9a® 0z

. The sample iIs first fed forward throughout the network and the neuron
outputs are stored. The computation of the error starts at the output and
propagates backwards.
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Backpropagation VML

« Overall:
o _ a1
ow (D i 7J
]f
(L) _
PO ( y‘) =1L
(D a; Liyq
O, = 4
i azi(l) Z 6(z+1) (l+1) 1<l
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Gradient Descent Overview C\ZML

When multiple training samples are available, parameter updates in the
Backpropagation algorithm can be applied in three different ways:

« Batch Gradient Descent, where the gradients are computed for each sample
of the training set {(x;,y;),i = 1,...N}, and then the update rule becomes:

0(t +1) =0(t) —nV/(8())

SiLy Vx; (0(D))
N )

Vj(0(t) =

* Jx,; Is the value of cost function / when given input sample x;.

« Stochastic Gradient Descent, where the parameters are updated for every
training sample:

. . 0(t+1)=0(t) — V]xi(e(t))_
O”O Artificial Intelligence & .
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Gradient Descent Overview C\ZML

« Atraining epoch is a complete cycle of training, in which all training samples
have been processed once.

« Usually, multiple epochs are used when training a network, for better
convergence.

—V.J(61)

| | Artificial Intelligence &
Information Analysis Lab

35



Gradient Descent Overview C\ZML

* A more refined and popular momentum approach is the Nesterov momentum
method, in which the momentum is applied first and then the gradient is
computed:

u(t) = pu(t — 1) —nvJ(0(t) + pu(t — 1)),
0(t+1) =0(t) +u(t)
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Gradient Descent Overview C\ZML

AdaGrad algorithm:

« Maintains the sum of squares of all previous gradients.
1(0)
n(t) =

. t 1(61 (l))

« The learning rate decreases faster for more frequently updated parameters.

« The problem is that eventually the learning rate vanishes and the training
stops.
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Gradient Descent Overview

ADAM algorithm:
Buu®) + (1 - B) & ()

Mo = -
2
Bar(®) + (1= ) (35,0
(6) = 7 ,
U]
6(t)=0(t—-1)— :
(© =0t = 1) - u(®

* [, >:exponential decay rates for the moment estimates.

« u,r: first and second moment values respectively.
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Generalization C\ZML

Underfitting occurs when a model cannot accurately capture the underlying data
structure.

e Underfitting can be detected by a very low performance in the training set.
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Generalization C\ZML

- The whole process uses the validation error as a proxy
for the generalization performance.
A

Stop training

Error

| - Validation set

— Training set

Training epochs
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Generalization C\ZML

« Depending on the functional form of Q(-), the effect on the model
parameters is different:

- L, regularization: Q(0) = ||0]|2 = X, 67.
« L, regularization: Q(0) = ||0]| = >;16;].

Y
A

—— Unregularized

—— Regularized
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Revisiting Activation Functions C\ZML

Sigmoid function, until recently, was the default choice for activation function.

Sigmoid functions saturate, which can prevent some neurons from updating.

0.2
S5 4 3

AR, S il W 3 4 3

Sigmoid

Derivative of sigmoid

Sigmoid functions lead to the vanishing gradients problem, as the delta
signal is repeatedly multiplied by a value smaller than 1. Near zero gradients

effectively mean that earlier layers stop learning.
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Training on Large Scale Datasets C\ZML

« Large number of training samples in the magnitude of hundreds of thousands.
* Problem: Datasets do not fit iIn memory.
« Solution: Using mini-batch SGD method.

* Many classes, in the magnitude of hundreds up to one thousand.

* Problem: Difficult to converge using MSE error.
« Solution: Using Categorical Cross Entropy (CCE) loss on Softmax output.
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Towards Deep Learning C\ZML

. Increasing the network depth (layer number) L can result in negligible weight
updates Iin the first layers, because the corresponding deltas become very
small or vanish completely

« Problem: Vanishing gradients.

« Solution: Replacing sigmoid with an activation function without an upper
bound, like a rectifier (a.k.a. ramp function, ReLU).

¢ Full connectivity has high demands for memory and computations
e \Very deep fully connected DNNSs are difficult to implement.

e New architectures come Iinto play (Convolutional Neural Networks, Deep
Autoencoders etc.)
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(VML

Q&A

Thank you very much for your attention!

p

Contaet:-Prof, 1. Pitas
pitas@csd.auth.gr i

” Artificial Intelligen
|fmt AIy Lb



