

Deep Object Detection summary

V. Nousi, E. Patsiouras, A. Tefas, I. Pitas
Aristotle University of Thessaloniki
pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 3.8

Object Detection for UAV sports (VML cinematography

Object Detection for UAV sports (VML cinematography

Target/object examples: athletes, boats, bicycles.

- Object detection = classification + localization:
- Find what is in a picture as well as where it is.

Classification

Classification + Localization

Object Detection

CAT, DOG, DUCK

Object Detection with CNNs

Object detection: CNN pipeline for bounding box regression.

Region proposal-based detectors

- R-CNN, Fast R-CNN, Faster R-CNN
- R-FCN

Single Stage Detectors

- YOLO
- SSD
- YOLO v2, v3, v4
- RetinaNet, RBFnet
- CornerNet, CenterNet
- DETR.

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

[GIR2014]

R-CNN

R-CNN

Fast R-CNN

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: CxHxWwith region proposal

Rol conv features: Cxhxwfor region proposal

ROI pooling.

R-FCN

[HUA2017]

SSD

SSD architecture [HUA2017].

Single Shot Detector

Sinale Shot Detector

- (a) Image with GT boxes
- (b) 8×8 feature map (c) 4×4 feature map
- Example: The cat has 2 anchors (ROIs) that match on the 8×8 feature map, but none match the dog.
- On the 4×4 feature map there is one anchor that matches the dog and it is refined.

YOLO (You Only Look Once) architecture:

- Darkenet19 convolutional network plus FC layer.
- Prediction only at the final convolutional feature map.

[RED2016]

YOLO v4

YOLO v4 design:

• Backbone: CSPDarknet53.

[BOC2020]

- Neck: Spatial pyramid pooling (SPP) and Path Aggregation
 - Network (PAN).
- Head: Same as YOLO v3.

RetinaNet

- ResNet is used as a backbone for feature extraction.
- Feature Pyramid Network (FPN) is used as a neck on top of ResNet for constructing a rich multi-scale feature pyramid from one single resolution image.

RFBNet

Spatial Array

3x3 conv

rate=1

1x1 conv

• It inspired by the structure of receptive fields in human visual system [LIU2018].

 Use of multiple dilated convolutions with different kernel sizes in each convolutional layer.

State-of-the-art results and fast inference time.

CornerNet

- Each set of heatmaps has C channels and is of size h × w pixels:
 - *C*: number of categories to detect.

CenterNet

 A CNN backbone applies cascade cornel pooling and center pooling in order to output two corner heatmaps and a center keypoint heatmap, respectively.

Architecture of CenterNet. [DUA2019].

DETR

DETR architecture [CAR2020].

Using object detectors for drone-based shooting

- Reducing the input image size can also increase the detection speed
 - However, this can significantly impact the accuracy when detecting very small objects (which is the case for drone shooting)

Model	Input Size	Pascal 2007 test mAP*
YOLO v.2	544x544	77.44
YOLO v.2	416x416	74.60
YOLO v.2	288x288	67.12
YOLO v.2	160x160	48.72
YOLO v.2	128x128	40.68

Object Localization Performance Metrics

Object detection: a) $J(\mathcal{A}, \mathcal{B}) = 0.67$; b) $J(\mathcal{A}, \mathcal{B}) = 0.27$.

Object Detection Performance Metrics

Detection Results (DET)

CNN comparison

[HUA2017]

VML

Input Size NxN

- Faster R-CNN is more accurate but slower.
- YOLO, SSD are much faster but not as accurate.
- YOLO, SSD make more mistakes when objects are small and have trouble correctly predicting the exact location of such objects.

Object detection acceleration

- Examples of acceleration techniques:
 - Input size reduction.
 - Specific object detection instead of multi-object detection.
 - Parameter reduction.
 - Post-training optimizations with TensorRT (NVIDIA), including FP16 (floating point 16 bit) computations.

Face detection examples

Object Detection for UAV powerline (VML inspection

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

