

Camera Geometry summary

Prof. Ioannis Pitas
Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 4.3

Image acquisition

- A still image visualizes a still object or scene, using a still picture camera.
- A video sequence (moving image) is the visualization of an object or scene illuminated by a light source, using a video camera.
- The captured object, the light source and the video camera can all be either moving or still.
- Thus, moving images are the projection of moving 3D objects on the camera image plane, as a function of time.
- Digital video corresponds to their spatiotemporal sampling.

Light reflection

Camera structure

Pinhole Camera and Perspective Projection

Pinhole camera geometry.

Pinhole Camera and Perspective Projection

Pinhole Camera and Perspective Projection

- We want to derive the equations that connect a 3D point (3D vector) $\mathbf{P}_c = [X_c, Y_c, Z_c]^T$ referenced in the camera coordinate system with its projection point (2D vector) $\mathbf{p}' = [x', y']^T$ on the virtual image plane.
- By employing the similarity of triangles $\mathbf{O}_c \mathbf{o}' \mathbf{p}'$ and $\mathbf{O}_c \mathbf{Z}_c \mathbf{P}_c$:

$$\frac{x'}{X_c} = \frac{y'}{Y_c} = \frac{f}{Z_c}, \qquad x' = f\frac{X_c}{Z_c}, \qquad y' = f\frac{Y_c}{Z_c}.$$

• Coordinates on the real image plane are given by the same equations, differing only by a minus sign.

The Weak-Perspective Camera Model

• While a weak-perspective camera preserves parallelism in the projected lines, as orthographic projection does (b), perspective projection (a) does not.

Camera Parameters and Projection Matrix

Camera Parameters and Projection Matrix

Camera Parameters and Projection Matrix

- $P = P_I P_E$ is the 3×4 camera projection matrix.
- Also called *camera calibration matrix*:

$$\mathbf{P} = \begin{bmatrix} -\frac{f}{s_x} & 0 & o_x \\ 0 & -\frac{f}{s_y} & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & -\mathbf{R}_1^T \mathbf{T} \\ r_{21} & r_{22} & r_{23} & -\mathbf{R}_2^T \mathbf{T} \\ r_{31} & r_{32} & r_{33} & -\mathbf{R}_3^T \mathbf{T} \end{bmatrix}.$$

- The camera coordinate system is first translated and then rotated P_E has the form $P_E = [R_1|R_2|R_3| RT]$.
- Otherwise it would be $P_E = [R_1|R_2|R_3|T]$.

Properties of the Projective Transformation

A bit of History...

a) Byzantine icon; b) Canaletto painting.

Properties of the Projective Transformation

- Chirp effect: the increase in local image spatial frequency proportionally to the distance of the projected scene area from the camera.
- It is evident in 2D image regions where distant and close-up scene parts are projected.

Camera Calibration

Calibration patterns.

Direct camera parameter estimation

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \mathbf{R} \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + \mathbf{T} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}.$$

• It can be decomposed into:

$$X_c = r_{11}X_w + r_{12}Y_w + r_{13}Z_w + T_x$$

$$Y_c = r_{21}X_w + r_{22}Y_w + r_{23}Z_w + T_y$$

$$Z_c = r_{31}X_w + r_{32}Y_w + r_{33}Z_w + T_z$$

Bibliography

[PIT2019] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.

[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.

[SZE2011] R.Szelinski, "Computer Vision", Springer 2011

[HAR2003] Hartley R, Zisserman A., "Multiple view geometry in computer vision". Cambridge university press; 2003.

[DAV2017] Davies, E. Roy. "Computer vision: principles, algorithms, applications, learning". Academic Press, 2017

[TRU1998] Trucco E, Verri A. "Introductory techniques for 3-D computer vision", Prentice Hall, 1998.

[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

