Region Segmentation

Prof. Ioannis Pitas

Aristotle University of Thessaloniki
pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 3.4

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Region Segmentation

Object shape can be described in terms of:

- Its boundary:
- It requires image edge detection and following.
- The region (set of pixels) it occupies:
- It requires image segmentation in homogeneous regions.
- Image regions are expected to have homogeneous characteristics (e.g. intensity, texture).
- These characteristics can form a feature vector that can be used to discriminate region from one another.

Region Segmentation

- An image domain \mathcal{X} must be segmented in N different regions $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$.
- The segmentation rule is a logical predicate of the form $P(\mathcal{R})$.

Region Segmentation

- Image segmentation partitions the set \mathcal{X} into the subsets $\mathcal{R}_{i}, i=$ $1, \ldots, N$, having the following properties:

$$
\mathcal{X}=\bigcup_{i=1}^{N} \mathcal{R}_{i}
$$

$$
\begin{array}{ll}
\mathcal{R}_{i} \cap \mathcal{R}_{j}=\varnothing, & \text { for } i \neq j, \\
P\left(\mathcal{R}_{i}\right)=\text { TRUE }, \quad \text { for } i=1,2, \ldots, N, \\
P\left(\mathcal{R}_{i} \cup \mathcal{R}_{j}\right)=\text { FALSE, } \quad \text { for } i \neq j .
\end{array}
$$

Region Segmentation

- Region segmentation can employ a logical predicate of the form $P(\mathcal{R}, \mathbf{x}, \mathbf{t})$.
- \mathbf{x} is a feature vector associated with an image pixel or pixel set.
- t is a parameter vector (usually thresholds).
- A simple segmentation rule has the form:

$$
P(\mathcal{R}): f(k, l)<T .
$$

Region Segmentation

- In RGB colour images, the feature vector \mathbf{x} can be the three $R G B$ image components:

$$
\mathbf{x}=\left[f_{R}(k, l), f_{G}(k, l), f_{B}(k, l)\right]^{T}
$$

- A simple RGB image segmentation rule having $\mathbf{t}=\left[T_{R}, T_{G}, T_{B}\right]^{T}$ may have the form:

$$
P(\mathcal{R}, \mathbf{x}, \mathbf{t}):\left(f_{R}(k, l)<T_{R}\right) \& \&\left(f_{G}(k, l)<T_{G}\right) \& \&\left(f_{B}(k, l)<T_{B}\right) .
$$

Region Segmentation

- Geometrical proximity plays an important role in image segmentation.
- Segmentation algorithms must incorporate both pixel proximity and pixel homogeneity.
- A simple approach to geometrical proximity is through image neighrborhood definition.

Region Segmentation

We can define two types of image neighbourhoods on \mathbb{Z}^{2} :

- The 4-neighbourhood $\mathcal{N}_{4}(\mathbf{x})$ of a pixel $\mathbf{x}=[x, y]^{T}$ is the set that includes its horizontal and vertical neighbours:

$$
\mathcal{N}_{4}(\mathbf{x})=\left\{[x-1, y]^{T},[x+1, y]^{T},[x, y-1]^{T},[x, y+1]^{T}\right\} .
$$

- The 8-neighbourhood $\mathcal{N}_{8}(\mathbf{x})$ of pixel $\mathbf{x}=[x, y]^{T}$ is a superset of the 4-neighbourhood and contains the horizontal, vertical and diagonal neighbours:

$$
\mathcal{N}_{8}(\mathbf{x})=
$$

$$
\mathcal{N}_{4}(\mathbf{x}) \cup\left\{[x-1, y-1]^{T},[x-1, y+1]^{T},[x+1, y-1]^{T},[x+1, y+1]^{T}\right\} .
$$

Region Segmentation

- The paths defined by using the 4-neighbourhood consist of horizontal and vertical streaks of length $\Delta x=\Delta y=1$.
- The paths using the 8-neighbourhood consist of horizontal and vertical streaks of length 1 and of diagonal streaks having length $\sqrt{2}$.

Region Segmentation

- A region \mathcal{R} is called connected region if:
- any two pixels $\mathbf{x}_{A}, \mathbf{x}_{B}$ belonging to \mathcal{R} can be connected by a path $\mathbf{x}_{A}, \ldots, \mathbf{x}_{i-1}, \mathbf{x}_{i}, \mathbf{x}_{i+1}, \mathbf{x}_{B}$, whose pixels \mathbf{x}_{i} belong to \mathcal{R}; and
- any pixel \mathbf{x}_{i} is adjacent to both the previous pixel \mathbf{x}_{i-1} and the next one \mathbf{x}_{i+1} in the path.
- A pixel \mathbf{x}_{k} is said to be adjacent to pixel \mathbf{x}_{l}, if it belongs to its immediate neighbourhood.

Region Segmentation

Region segmentation techniques can be grouped in three different classes:

- Local region segmentation techniques are based on the local properties of the pixels and their neighbourhoods.
- Global region segmentation techniques segment an image on the basis of information obtained globally (e.g., by using the image histogram).
- Split, merge and growing techniques use both the notions of homogeneity and geometrical proximity.

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Image Thresholding

- The simplest image segmentation problem occurs when an image contains:
- an object having homogeneous intensity.
- a background with a different intensity level.
- Such an image can be segmented in two regions by simple thresholding:

$$
g(x, y)= \begin{cases}1, & \text { if } f(x, y)>T \\ 0, & \text { otherwise }\end{cases}
$$

Image Thresholding

- The choice of threshold T can be based on image histogram measuring intensity level frequencies in an image having $N_{1} \times N_{2}$ pixels:

$$
h(i)=\frac{1}{N_{1} N_{2}} \sum_{k=0}^{N_{1}-1} \sum_{l=0}^{N_{2}-1} \delta(f(k, l)-i)
$$

Image Thresholding

- If the image contains one object and a background having homogeneous intensity, it usually possesses a bimodal image histogram.

Bimodal image histogram and histogram choice.

Image Thresholding

Image thresholding.

Image Thresholding

- If the histogram is noisy:
- The calculation of the local histogram minimum is difficult.
- Histogram smoothing or image smoothing (e.g., by using one-dimensional low-pass filtering) is recommended.
- If the object and/or background intensity varies:
- Image histogram may not contain two clearly distinguished lobes.
- Threshold can be calculated so that only $a \%$ of image prixels belong to object.
Antica spatially varying threshold can be applied.

Image Thresholding

Multiple thresholding can be used for segmenting images containing N objects, provided that each object \mathcal{R}_{i} occupies a distinct intensity range, defined by two thresholds T_{i-1}, T_{i}.

- The thresholding operation takes the following form:

$$
g(x, y)=\mathcal{R}_{i}, \quad \text { if } T_{i-1} \leq f(x, y) \leq T_{i}, \quad i=1, \ldots, N .
$$

- Thresholds can be obtained from the image histogram.
- In many cases, the various histogram lobes are not clearly distinguished.

Image Thresholding

Multiple thresholding can be used for segmenting images containing N objects, provided that each object \mathcal{R}_{i} occupies a distinct intensity range, defined by two thresholds T_{i-1}, T_{i}.

- The thresholding operation takes the following form:

$$
g(x, y)=\mathcal{R}_{i}, \quad \text { if } T_{i-1} \leq f(x, y) \leq T_{i}, \quad i=1, \ldots, N .
$$

- Thresholds can be obtained from the image histogram.

Image Thresholding

- In many cases, the various histogram lobes are not clearly distinguished.
- Image thresholding in N different equirange regions:

$$
g(x, y)=\left\{\begin{array}{l}
\mathcal{R}_{i} \text { if } i[L / N] \leq f(k, l)<(i+1)[L / N], i=0,1, \ldots, N-2, \\
\mathcal{R}_{N-1} \text { if }(N-1)[L / N] \leq f(k, l)<L .
\end{array}\right.
$$

Image Thresholding

(a)

(b)
a) Original image; b) Image segmentation in four equirange regions.

Image Thresholding

- Histogram modification: Perform edge detection and exclude all pixels belonging to edges, from histogram calculation.
- Another approach is to define a modified histogram:

$$
h(i)=\sum_{k=0}^{N_{1}-1} \sum_{l=0}^{N_{2}-1} t(e(k, l)) \delta(f(k, l)-i)
$$

$e(k, l)$ is an edge detector output, $\delta(i)$ is the delta function.

Image Thresholding

- A monotonically decreasing function t can be chosen for histogram modification:

$$
t(e(k, l))=\frac{1}{1+|e(k, l)|}
$$

Image Thresholding

- If the image histogram is concentrated in a small intensity range:
- Uniform thresholding does not give good results.
- Non-uniform thresholding creates much better results in this case.
- Non-uniform thresholding can be based on histogram equalization described by $G(f(k, l))$:

$$
g(k, l)=\left\{\begin{array}{lc}
\mathcal{R}_{i}, & \text { if } i[L / N] \leq G(f(k, l))<(i+1)[L / N] \\
\mathcal{R}_{N-1}, & \text { if }(N-1)[L / N] \leq G(f(k, l))<L .
\end{array}\right.
$$

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Region growing

- Image segmentation can start from some pixels (seeds) representing distinct image regions.
- Pixel seeds can be chosen in a supervised or unsupervised mode.
- At least one seed $s_{i}, i=1, \ldots, N$ is chosen per image region \mathcal{R}_{i}.
- Seeds are grown, until they cover the entire image.
- We need:
- a rule describing a growth mechanism and
- a rule checking region homogeneity after each growth step.
Artificlal Intelligence \&
Information Analysis Lab

Region growing

- Growth mechanism: at each stage (k) and for each region $\mathcal{R}_{I}^{(k)}, i=1, \ldots, N$, we check if there are unclassified pixels in the 8-neighbourhood of each pixel of the region border.
- Before assigning such a pixel \mathbf{x} to a region $\mathcal{R}_{I}^{(k)}$, we check if the region homogeneity:

$$
P\left(\mathcal{R}_{i}^{(k)} \cup\{\mathbf{x}\}\right)=T R U E
$$

is still valid.

Region growing

Region merging can be incorporated in the growing mechanism:

- If we are currently at the pixel $\mathbf{x}=[k, l]^{T}$:
- First, we try to merge this pixel with one of its adjacent regions \mathcal{R}_{i}.
- If this merge fails, or if no adjacent region exists, this pixel is assigned to a new region.
- The merging rule can be based on the region mean and standard deviation described by m_{i} and σ_{i}.

Region growing

- The arithmetic mean m_{i} and standard deviation σ_{i} of a class \mathcal{R}_{i} having n pixels are given by:

$$
\begin{gathered}
m_{i}=\frac{1}{n} \sum_{(k, l) \in \mathcal{R}_{i}} f(k, l), \\
\sigma_{i}=\sqrt{\frac{1}{n} \sum_{(k, l) \in \mathcal{R}_{i}}\left[f(k, l)-m_{i}\right]^{2}} .
\end{gathered}
$$

- Merging is allowed, if the pixel intensity is close to the region mean value:

$$
\left|f(k, l)-m_{i}\right| \leq T_{i}(k, l) .
$$

Region growing

Decision on merging a pixel with a region.

Region growing

- If more than one merge are possible, the region with the closest mean value is chosen.
- Threshold T_{i} varies, depending on the region \mathcal{R}_{i} and the intensity of the pixel $f(k, l)$. It can be chosen this way:

$$
T_{i}(k, l)=\left(1-\frac{\sigma_{i}}{m_{i}}\right) T
$$

Region growing

- If merging $P\left(\mathcal{R}_{i} \cup\{\mathbf{x}\}\right)$ was allowed, the updated mean and standard deviation of region \mathcal{R}_{i} are given by:

$$
\begin{gathered}
m_{i}^{\prime}=\frac{1}{n+1}\left[f(k, l)+n m_{i}\right] \\
\sigma_{i}^{\prime}=\sqrt{\frac{1}{n+1}\left(n \sigma_{i}^{2}+\frac{n}{n+1}\left[f(k, l)-m_{i}\right]^{2}\right)} .
\end{gathered}
$$

Region growing

- The region statistics can be used to decide if the merging of two regions $\mathcal{R}_{1}, \mathcal{R}_{2}$ is allowed.
- If arithmetic means m_{1}, m_{2} are close to each other:

$$
\left|m_{1}-m_{2}\right|<k \sigma_{i}, \quad i=1,2
$$

the two regions are merged.

- If no a priori information is available about the image, the image can be scanned in a row-wise manner.

Region growing

Decision on merging two regions.

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Region Splitting/Merging

- The opposite approach to region merging is region splitting:
- It is a top-down approach.
- It starts with the assumption that the entire image is homogeneous.
- If this is not true, the image is split into four sub-images.
- This splitting procedure is repeated recursively until we split the image into homogeneous regions.

Region Splitting/Merging

- If the original image is square $N \times N$, having dimensions that are powers of $2\left(N=2^{n}\right)$:
- All regions produced by the splitting algorithm are squares having dimensions $M \times M$, where M is a power of 2 as well ($M=2^{m}, m \leq n$).
- Since the procedure is recursive, it produces an image representation that can be described by a quadtree whose nodes have four sons each.
- A quadtree is a very convenient region representation.

Region Splitting/Merging

a) Image segmentation by region splitting; b) Quadtree.

Region Splitting/Merging

Disadvantages of region splitting techniques:

- Oversegmentation. Regions are created that may be adjacent and homogeneous, but not merged.
- Oblique lines create many small regions of size 2×2 pixels.
- Solution: region split and merge algorithm.
- Sensitivity to geometrical transformations.
- As this is a recursive algorithm, stack overflow may occur.

Region Splitting/Merging

Region split and merge algorithm.

- It is an iterative algorithm that includes both splitting and merging at each iteration:
- If a region \mathcal{R} is inhomogeneous $(P(\mathcal{R})=F A L S E)$, it is split into four subregions.
- Two adjacent regions $\mathcal{R}_{i}, \mathcal{R}_{j}$ are merged if they are homogeneous: $P\left(\mathcal{R}_{i} \cup \mathcal{R}_{j}\right)=T R U E$.
- The algorithm stops when no further splitting or merging is possible.

Region Splitting/Merging

- The split and merge algorithm produces more compact regions than the pure splitting algorithm.
- Its major disadvantage is that it does not produce quadtree region descriptions.
- Several modifications of the basic split and merge algorithm have been proposed to solve this problem.
- The most straightforward procedure is to use the splitting algorithm and to postpone merging until no further splitting is possible.

Region Splitting/Merging

Output of: a) region thresholding; b) region growing; c) region splitting; d) region split and merge algorithm.

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Relaxation Labeling

- All previous region segmentation methods are deterministic:
- they assign each image pixel to just one region.
- Such a segmentation is desirable, but not always useful, because they treat ambiguous cases in a rather inflexible way.

Relaxation Labeling

- It is more useful to produce confidence vectors \mathbf{p}_{k} for each pixel \mathbf{x}_{k} that contain the probabilities $p_{k}(i)$ that a pixel \mathbf{x}_{k} belongs to a class $\mathcal{R}_{i}, i=1, \ldots, N$:

$$
\mathbf{p}_{k}=\left[p_{k}(1), \ldots, p_{k}(N)\right]^{T} .
$$

- Probabilities $p_{\kappa}(l)$, called confidence weights, must satisfy the following relations:

$$
0 \leq p_{k}(i) \leq 1, \quad \sum_{i=1}^{N} p_{k}(i)=1
$$

- Pixel \mathbf{x}_{k} is assigned to the region \mathcal{R}_{l} having the maximal probability $p_{\kappa}(l)$.

Relaxation Labeling

- Let $m_{i}, i=1, \ldots, N$, be the arithmetic means of the intensity of each region that usually correspond to histogram peaks and $f\left(\mathbf{x}_{k}\right)=f(n, l)$ the pixel intensity at location $\mathbf{x}_{k}=[n, l]^{T}$.
- The initial estimate of confidence weights is given by:

$$
p_{k}^{(0)}(i)=\frac{\frac{1}{\left|f(n, l)-m_{i}\right|}}{\sum_{i=1}^{N} \frac{1}{\left|f(n,, l)-m_{i}\right|}}, \quad i=1, \ldots, N .
$$

Relaxation Labeling

- It is inversely proportional to the distance:

$$
d_{i}=\left|f(n, l)-m_{i}\right|
$$

of the pixel intensity $f(n, l)$ from the region arithmetic mean m_{i}.

Relaxation Labeling

- In many cases, it is highly probable that two adjacent pixels belong to two specific compatible classes $\mathcal{R}_{i}, \mathcal{R}_{j}$, e.g.,:
- Pixels of classes 'Road’ and 'Pavement'.
- Incompatible regions are those that are not expected to be found in adjacent image locations, e.g.,:
- Pixels of classes 'Road' and 'Sea'.

Relaxation Labeling

- The compatibility between two regions $\mathcal{R}_{i}, \mathcal{R}_{j}$, is described in terms of a compatibility function $r(i, j)$, whose range is:

$$
-1 \leq r(i, j) \leq 1
$$

Its values have the following meaning:

$$
r(i, j)= \begin{cases}<0, & \text { Regions } \mathcal{R}_{i}, \mathcal{R}_{j} \text { are incompatible } . \\ =0, & \text { Regions } \mathcal{R}_{i}, \mathcal{R}_{j} \text { are independent. } \\ >0, & \text { Regions } \mathcal{R}_{i}, \mathcal{R}_{j} \text { are compatible } .\end{cases}
$$

Relaxation Labeling

- Compatibility functions are known a priori or can be estimated from an initial image segmentation.
- Incompatible regions tend to compete in adjacent image pixels, whereas compatible regions tend to cooperate.
- Competition and cooperation can continue in an iterative way until a steady state is reached.
- Each pixel \mathbf{x}_{k} receives confidence contributions from any pixel \mathbf{x}_{l} lying in its 4- or 8-neighbourhood.

Relaxation Labeling

The resulting change in confidence weight $p_{k}(i)$ of the pixel \mathbf{x}_{k} at step (n) is the following:

$$
\Delta p_{k}^{(n)}=\sum_{l} d_{k l}\left[\sum_{j=1}^{N} r_{k l}(i, j) p_{l}^{(n)}(j)\right] .
$$

- The sum of the parameters $d_{k l}$ is chosen to be equal to 1 :

$$
\sum_{l} d_{k l}=1 .
$$

Relaxation Labeling

- The updated probabilities for the pixel \mathbf{x}_{k} are given by:

$$
p_{k}^{(n+1)}(i)=\frac{p_{k}^{(n)}(i)\left[1+\Delta p_{k}^{(n)}(i)\right]}{\sum_{i=1}^{N} p_{k}^{(n)}(i)\left[1+\Delta p_{k}^{(n)}(i)\right]}
$$

- The iterations stop when convergence is achieved.
- The iterative equations form relaxation labelling.
- It is expected to produce relatively large connected homogeneous image regions, by removing small spurious noisy regions within larger regions.

NN region segmentation

Region Boundary Following

- In certain cases, the region boundary is desired.
- If the segmented image $g(x, y)$ is available, the boundary obtained by finding region transition pixels $b(x, y)$:

$$
b(x, y)=\left\{\begin{array}{l}
1, \quad \text { if }\left\{\left(g(x, y) \in \mathcal{R}_{i} \text { and } g(x, y-1) \in \mathcal{R}_{j}, i \neq j\right)\right. \\
\text { or } \left.\left(g(x, y) \in \mathcal{R}_{i} \text { and } g(x-1, y) \in \mathcal{R}_{j} . i \neq j\right)\right\} \\
0, \quad \text { otherwise. }
\end{array}\right.
$$

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Connected Component Labeling VML

- Digital image segmentation produces either a binary or a multivalued image output $g(k, l)$.
- Each image region is labelled by a region number.
- Typically, background has label 0.
- Each region may consist of several disconnected subregions.
- Connected component labeling assigns a unique number to each pixel blob of 1 s .

Connected Component Labeling VML

- Connected component labeling algorithms can be divided into two large classes:
- Local neighborhood algorithms (performing local operations, typically in a recursive manner).
- Divide-and-conquer algorithms.
- If each blob corresponds to a single object, connected component labeling performs object counting in a binary image.

Connected Component Labeling VML

Fire propagation algorithm:

- The image is scanned in a row-wise manner, until the first pixel at an object boundary is hit.
- A 'fire' is set at this pixel that propagates to all pixels belonging to the 8-neighbourhood of the current pixel.
- Then the curent pixel is burned out (e.g., takes value 0).
- This recursive operation continues, until all image pixels of the image object are 'burnt out' and the fire is extinguished.

Connected Component Labeling VML

- When an object is burned out, all its pixels have value 0 and cannot be distinguished from the background.
- This procedure is repeated until all objects in the image are counted.
- A by-product of this algorithm is the area of each object (number of its pixel).

Connected Component Labeling VML

a) Microscopy image; b) Negative image; c) Thresholded negative image; d) Labelled connected regions (some of them are not visible).

Connected Component Labeling VML

Local CCL algorithm:

- Each pixel $f(n, l)$ having value 1 is labeled by the concatenation of its (n, l) coordinates.
- We scan the labeled image.
- We assign to each pixel the minimum of the labels in its 4-connected or 8-connected neighborhood.
- This process is repeated until no more label changes are made.

Connected Component Labeling VML

Blob coloring algorithm.

- It has two passes:
- In the first pass, colors are assigned to image pixels by using a three-pixel L-shaped mask, while color equivalencies are established and stored, when needed.
- In the second pass, the pixels of each connected region are labeled with a unique color by using the color equivalences obtained in the first pass.

Connected Component Labeling VML

Shrinking algorithm.

- If a pixel $f(n, l)$ has value 1 , it retains this value after local shrinking, if and only if at least one of its East, South or South-East neighbors has value 1.
- This local operation is described by the following recursive relation:

$$
\begin{gathered}
f(n, l)=\frac{h[h[f(n, l-1)+f(n, 1)+f(n+1, l)-1]+}{h[f(n, l)+f(n+1, l-1)-1]] .}
\end{gathered}
$$

Connected Component Labeling VML

- Function $h(t)$ is given by:

$$
h(t)= \begin{cases}0, & \text { for } t \leq 0 \\ 1, & \text { for } t>0\end{cases}
$$

- After repeated binary image scanning by this shrinking operation, each connected component shrinks to the NorthWest corner of its bounding box, before it vanishes at the next shrinking operation.

Connected Component Labeling

Divide-and-conquer CCL algorithm.

- It uses the split and merge algorithm:
- Inhomogeneous regions consisting of $0 s$ and $1 s$ are split recursively, until we reach homogeneous regions consisting only of 1 s .
- These regions are assigned a unique label (split step).
- Label equivalences can be established, by checking the borders of all homogeneous regions.
- Those regions having equivalent labels are merged to a single connected component.

Region Segmentation

- Introduction
- Image Thresholding
- Region Growing
- Split/Merge Techniques
- Relaxation Algorithms in Region Analysis
- Connected Component Labeling
- Texture Description.

Texture description

Image texture is a measure of image coarseness, smoothness and regularity.

- Texture description methods:
- Statistical techniques:
- They are based on region histograms.
- They measure contrast, granularity, and coarseness.

Texture description

a) Coarse image texture;

b) Fine image texture.

Texture description

Directional image texture [RES].

Texture description

- Spectral methods:
- They are based on:
- autocorrelation function of an image region or
- image periodogram (Fourier transform power distribution),
- in order to exploit texture periodicity.
- Structural methods:
- They describe the texture by using pattern primitives accompanied by certain geometrical placement rules.

Texture description

The simplest texture descriptors are based on image pixel probability distribution (pdf) $p_{f}(f)$.

- Image histogram is an estimation of pixel pdf, when assuming image signal stationarity.
- Let $f_{k}, k=1, \ldots, N$ be the various image intensity levels.
- The first four histogram central moments are given by:
- Image Mean:

$$
\mu=\sum_{k=1}^{N} f_{k} p_{f}\left(f_{k}\right)
$$

Texture description

- Image Skewness:

$$
\mu_{3}=\frac{1}{\sigma^{3}} \sum_{k=1}^{N}\left(f_{k}-\mu\right)^{3} p_{f}\left(f_{k}\right)
$$

- Image Variance:

$$
\sigma^{2}=\sum_{k=1}^{n}\left(f_{k}-\mu\right)^{2} p_{f}\left(f_{k}\right)
$$

Texture description

- Image Kurtosis:

$$
\mu_{4}=\frac{1}{4} \sum_{k=1}^{n}\left(f_{k}-\mu\right)^{4} p_{f}\left(f_{k}\right)-3 .
$$

- Image entropy is defined in terms of the histogram as well:

$$
H=-\sum_{k=1}^{N} p_{f}\left(f_{k}\right) \ln p_{f}\left(f_{k}\right)
$$

and can be used for feature description.

Texture description

Spatial information can be described by using the histogram of grey-level differences:

- Let $\mathbf{d}=\left[d_{1}, d_{2}\right]^{T}$ be the displacement vector between two image pixels and $g(\mathbf{d})$ the grey-level difference at a displacement d:

$$
g(\mathbf{d})=\left|f(k, l)-f\left(k+d_{1}, l+d_{2}\right)\right| .
$$

- $p_{g}(g, \mathbf{d})$ denotes the grey-level difference histogram at a displacement d.

Texture description

- If an image region has coarse texture, the histogram $p_{g}(g, \mathbf{d})$ tends to concentrate around $g=0$ for small displacements d.
- If the region has fine texture, it tends to spread, when is larger than the texture grain size.

Texture description

Several texture measures can be extracted from the histogram of grey-level differences:

- Mean:

$$
\mu_{\mathbf{d}}=\sum_{k=1}^{N} g_{k} p_{g}\left(g_{k}, \mathbf{d}\right)
$$

- Variance:

$$
\sigma_{\mathbf{d}}^{2}=\sum_{k=1}^{N}\left(g_{k}-\mu_{\mathbf{d}}\right)^{2} p_{g}\left(g_{k}, \mathbf{d}\right)
$$

Texture description

- Contrast:

$$
c_{\mathbf{d}}=\sum_{k=1}^{N} g_{k}^{2} p_{g}\left(g_{k}, \mathbf{d}\right)
$$

- Entropy:

$$
H_{\mathbf{d}}=-\sum_{k=1}^{N} p_{g}\left(g_{k}, \mathbf{d}\right) \ln p_{g}\left(g_{k}, \mathbf{d}\right)
$$

- Advantages: computational simplicity and capability to give information about the spatial texture organization.

Texture description

- A run length l of pixels having equal intensity f in a direction θ is an event denoted by (l, f, θ).
- Run lengths reveal both texture directionality and texture coarseness.
- Coarse textures tend to produce long grey-level runs.
- Directional texture tends to produce long runs at specific directions θ.

Texture description

a) Original image; b) Run-length image.

Texture description

Let $N(l, f, \theta)$ denote the number of events (l, f, θ) in an image having dimensions $N_{1} \times N_{2}$ and N_{R} denote the total number of existing runs:

$$
T_{R}=\sum_{k=1}^{N} \sum_{l=1}^{N_{R}} N\left(l, f_{k}, \theta\right)
$$

- The ratio $N(l, f, \theta) / T_{R}$ is the grey-level run histogram at a specific direction θ.

Texture description

The following texture features can be calculated from the grey-level run lengths:

- Short-run emphasis:

$$
A_{1}=\frac{1}{T_{R}} \sum_{k=1}^{N} \sum_{l=1}^{N_{R}} \frac{1}{k^{2}} N\left(l, f_{k}, \theta\right)
$$

Long-run emphasis:

$$
A_{2}=\frac{1}{T_{R}} \sum_{k=1}^{N} \sum_{l=1}^{N_{R}} k^{2} N\left(l, f_{k}, \theta\right)
$$

Texture description

- Grey-level distribution:

$$
A_{3}=\frac{1}{T_{R}} \sum_{k=1}^{N}\left[\sum_{l=1}^{N_{R}} \frac{1}{k^{2}} N\left(l, f_{k}, \theta\right)\right]^{2} .
$$

- Run-length distribution:

$$
A_{4}=\frac{1}{T_{R}} \sum_{l=1}^{N_{R}}\left[\sum_{k=1}^{N} \frac{1}{k^{2}} N\left(l, f_{k}, \theta\right)\right]^{2}
$$

Texture description

- Run percentages:

$$
A_{5}=\frac{1}{N_{1} N_{2}} \sum_{k=1}^{N} \sum_{l=1}^{N_{R}} N\left(l, f_{k}, \theta\right)
$$

Texture description

Grey-level co-occurrence matrix elements $p\left(f_{k}, f_{l}, \mathbf{d}\right)$ denote the joint probability of two pixels f_{k}, f_{l} that are displaced by \mathbf{d}.

- It is estimated from an image by counting the number $n_{k l}$ of occurrences of the pixel values f_{k}, f_{l} distanced by displacement \mathbf{d} in the image.
- If n be the total number of any possible joint pairs, cooccurrence matrix elements $C_{\mathbf{d}}(k, l)$ are given by:

$$
C_{\mathbf{d}}(k, l)=\hat{p}\left(f_{k}, f_{l}, \mathbf{d}\right)=\frac{n_{k l}}{n}
$$

Texture description

- Co-occurrence matrix $\mathbf{C}_{\mathbf{d}}$ has dimension $N \times N$, where N is the number of grey levels in the image.
- Co-occurrence matrices carry very useful information about spatial texture organization.
- If the texture is coarse, their mass tends to be concentrated around the main diagonal of $\mathbf{C}_{\mathbf{d}}$.
- If the texture is fine, co-occurrence matrix values are much more spread.
- If texture carries strong directional information along direction d, co-occurrence matrix entries tends to have atheirmass in the main diagonal of $\mathbf{C}_{\mathbf{d}}$.

Texture description

Several texture descriptors have been proposed to characterize the cooccurrence matrix content:

- Maximum probability:

$$
p_{\mathbf{d}}=\max _{k, l} C_{\mathbf{d}}(k, l)
$$

- Entropy:

$$
H_{\mathbf{d}}=-\sum_{k=1}^{N} \sum_{l=1}^{N} C_{\mathbf{d}}(k, l) \ln C_{\mathbf{d}}(k, l)
$$

- Moment of order m:

$$
I_{\mathbf{d}}=\sum_{k=1}^{N} \sum_{l=1}^{N}|k-l|^{m} C_{\mathbf{d}}(k, l)
$$

Texture description

Spectral texture characterization is based on:

- image power spectrum, e.g., periodogram $|F(u, v)|^{2}$:

$$
F(u, v)=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f(n, m) \exp \left[-i\left(\frac{2 \pi n u}{N}+\frac{2 \pi m v}{M}\right)\right]
$$

- autocorrelation function $R_{f f}(k, l)$ of an image $f(i, j)$:
$R_{f f}(k, l)=\frac{1}{\left(2 N_{1}+1\right)\left(2 N_{2}+1\right)} \sum_{i=-N_{1}}^{N_{1}} \sum_{i=-N_{2}}^{N_{2}} f(i, j) f(i+k, j+l)$.

Texture description

- It can be calculated both for positive and negative lags (k, l).
- It usually attains a maximum for zero lag $(0,0)$.
- It drops exponentially with (k, l) (positive or negative).
- Direct definition-based computation of the autocorrelation function is preferred for a small number of lags (k, l).
- The calculation of $R_{f f}(k, l)$ for a large number of lags is performed using 2D FFT.

Texture description

- Autocorrelation function $R_{f f}(k, l)$ is given by the inverse 2D DFT:

$$
R_{f f}(k, l)=\frac{1}{N M} \sum_{u=0}^{N-1} \sum_{u=0}^{M-1} F(u, v) F^{*}(u, v) \exp \left[i\left(\frac{2 \pi k u}{N}+\frac{2 \pi l v}{M}\right)\right] .
$$

- Autocorrelation function $R_{f f}(k, l)$ is the inverse 2D DFT of Periodogram:

$$
|F(u, v)|^{2}=F(u, v) F^{*}(u, v) .
$$

Texture description

- Pre-multiplication of the image $f(m, n)$ by a two-dimensional window $w(m, n)$ produces a relatively smooth power spectrum estimate.
- Both 2D DFT and inverse 2D DFT can be calculated via 2D Fast Fourier Transform algorithms.

Texture description

- If polar coordinates are used for power spectrum $R_{f f}(r, \varphi)$ description:

$$
\begin{gathered}
r=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}} \\
\phi=\arctan \left(\frac{\omega_{2}}{\omega_{1}}\right) .
\end{gathered}
$$

- Angular power spectrum distribution $P_{\phi}(\phi)$ is a very good descriptor of texture directionality:

$$
P_{\phi}(\phi)=\int_{0}^{r_{\text {max }}} P_{f f}(r, \phi) d r .
$$

Texture description

- This integral can be approximated by a summation within a wedge $\phi_{1} \leq \phi<\phi_{2}$ in the spectral domain:

$$
P_{\phi}(\phi) \approx \sum_{\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}<r_{\text {max }}^{2}, \phi_{1} \leq \phi<\phi_{2}}\left|F\left(\omega_{1}, \omega_{2}\right)\right|^{2} .
$$

Integration wedge for the calculation of $P_{\phi}(\phi)$.

Texture description

- Radial power spectrum distribution:

$$
P_{r}(r)=\int_{0}^{2 \pi} P_{f f}(r, \phi) d \phi
$$

can describe texture coarseness.

- It can be approximated, by splitting the spectral domain into concentric rings:

$$
P_{r}(r) \approx \sum_{r_{1}^{2} \leq \sqrt{\omega_{1}^{2}+\omega_{2}^{2}<r_{2}^{2}}}\left|F\left(\omega_{1}, \omega_{2}\right)\right|^{2}, \quad r_{1} \leq r<r_{2} .
$$

Texture description

Integration ring for the calculation of $P_{r}(r)$.

Bibliography

[PIT2019] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[SZE2011] R.Szelinski, " Computer Vision " , Springer 2011
[PIT2017] I. Pitas, "Digital video processing and analysis ", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television ", Createspace/Amazon, 2013.
[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.
[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.
[APOLLO] http://apolloscape.auto/
[RES] https://www.researchgate.net/figure/1-directional-2-directional-and-the-lic-like-texture-patterns-as-in-KHSIO3b fig8 228697126

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

