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Object shape can be described in terms of:

• Its boundary:

• It requires image edge detection and following.

• Τhe region (set of pixels) it occupies:

• It requires image segmentation in homogeneous regions.

• Image regions are expected to have homogeneous

characteristics (e.g. intensity, texture).

• These characteristics can form a feature vector that can be

used to discriminate region from one another.

Region Segmentation
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• An image domain 𝒳 must be segmented in 𝑁 different regions

ℛ1, … , ℛ𝑁.

• The segmentation rule is a logical predicate of the form 𝑃(ℛ).
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• Image segmentation partitions the set 𝒳 into the subsets ℛ𝑖, 𝑖 =
1,… , 𝑁, having the following properties:

𝒳 = ራ

𝑖=1

𝑁

ℛ𝑖 ,

ℛ𝑖 ∩ ℛ𝑗 = ∅, for 𝑖 ≠ 𝑗,

𝑃(ℛ𝑖) = TRUE,   for 𝑖 = 1,2, … , 𝑁,

𝑃 ℛ𝑖 ∪ ℛ𝑗 = FALSE, for 𝑖 ≠ 𝑗.
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• Region segmentation can employ a logical predicate of the

form 𝑃(ℛ, 𝐱, 𝐭).

• 𝐱 is a feature vector associated with an image pixel or pixel

set.

• 𝐭 is a parameter vector (usually thresholds).

• A simple segmentation rule has the form:

𝑃 ℛ : 𝑓 𝑘, 𝑙 < 𝑇.

Region Segmentation
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• In RGB colour images, the feature vector 𝐱 can be the three 𝑅𝐺𝐵
image components:

𝐱 = 𝑓𝑅 𝑘, 𝑙 , 𝑓𝐺 𝑘, 𝑙 , 𝑓𝐵 𝑘, 𝑙 𝑇 .

• A simple RGB image segmentation rule having 𝐭 = 𝑇𝑅 , 𝑇𝐺 , 𝑇𝐵
𝑇

may have the form:

𝑃(ℛ, 𝐱, 𝐭): 𝑓𝑅 𝑘, 𝑙 < 𝑇𝑅 && (𝑓𝐺 𝑘, 𝑙 < 𝑇𝐺) && (𝑓𝐵 𝑘, 𝑙 < 𝑇𝐵).

Region Segmentation
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• Geometrical proximity plays an important role in image

segmentation.

• Segmentation algorithms must incorporate both pixel

proximity and pixel homogeneity.

• A simple approach to geometrical proximity is through image

neighrborhood definition.
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We can define two types of image neighbourhoods on ℤ2:

• The 4-neighbourhood 𝒩4 𝐱 of a pixel 𝐱 = 𝑥, 𝑦 𝑇 is the set that

includes its horizontal and vertical neighbours:

𝒩4 𝐱 = 𝑥 − 1, 𝑦 𝑇 , 𝑥 + 1, 𝑦 𝑇 , 𝑥, 𝑦 − 1 𝑇 , 𝑥, 𝑦 + 1 𝑇 .

• The 8-neighbourhood 𝒩8 𝐱 of pixel 𝐱 = 𝑥, 𝑦 𝑇is a superset of the

4-neighbourhood and contains the horizontal, vertical and diagonal

neighbours:

𝒩8 𝐱 =

𝒩4 𝐱 ∪ 𝑥 − 1, 𝑦 − 1 𝑇 , 𝑥 − 1, 𝑦 + 1 𝑇 , 𝑥 + 1, 𝑦 − 1 𝑇 , 𝑥 + 1, 𝑦 + 1 𝑇 .
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• The paths defined by using the 4-neighbourhood consist of

horizontal and vertical streaks of length 𝛥𝑥 = 𝛥𝑦 = 1.

• The paths using the 8-neighbourhood consist of

horizontal and vertical streaks of length 1 and of diagonal

streaks having length 2.
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• A region ℛ is called connected region if:

• any two pixels 𝐱𝐴, 𝐱𝐵 belonging to ℛ can be connected by

a path 𝐱𝐴, … , 𝐱𝑖−1, 𝐱𝑖 , 𝐱𝑖+1, 𝐱𝐵 , whose pixels 𝐱𝑖 belong to ℛ;

and

• any pixel 𝐱𝑖 is adjacent to both the previous pixel 𝐱𝑖−1 and

the next one 𝐱𝑖+1 in the path.

• A pixel 𝐱𝑘 is said to be adjacent to pixel 𝐱𝑙, if it belongs to its

immediate neighbourhood.
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Region Segmentation

Region segmentation techniques can be grouped in three different

classes:

• Local region segmentation techniques are based on the local

properties of the pixels and their neighbourhoods.

• Global region segmentation techniques segment an image on the

basis of information obtained globally (e.g., by using the image

histogram).

• Split, merge and growing techniques use both the notions of

homogeneity and geometrical proximity.
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• The simplest image segmentation problem occurs when an

image contains:

• an object having homogeneous intensity.

• a background with a different intensity level.

• Such an image can be segmented in two regions by simple

thresholding:

𝑔 𝑥, 𝑦 = ቊ
1, if 𝑓 𝑥, 𝑦 > 𝑇,

0, otherwise.
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• The choice of threshold 𝑇 can be based on image

histogram measuring intensity level frequencies in an

image having 𝑁1 × 𝑁2 pixels:

ℎ 𝑖 =
1

𝑁1𝑁2
෍

𝑘=0

𝑁1−1

෍

𝑙=0

𝑁2−1

𝛿 𝑓 𝑘, 𝑙 − 𝑖 .
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Image Thresholding

• If the image contains one object and a background having

homogeneous intensity, it usually possesses a bimodal

image histogram.

Bimodal image histogram and histogram choice.



Image Thresholding

Image thresholding.
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• If the histogram is noisy:

• The calculation of the local histogram minimum is difficult.

• Histogram smoothing or image smoothing (e.g., by using

one-dimensional low-pass filtering) is recommended.

• If the object and/or background intensity varies:

• Image histogram may not contain two clearly distinguished

lobes.

• Threshold can be calculated so that only 𝑎% of image

prixels belong to object.

• A spatially varying threshold can be applied.
18
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Image Thresholding

Multiple thresholding can be used for segmenting images

containing 𝑁 objects, provided that each object ℛ𝑖 occupies a

distinct intensity range, defined by two thresholds 𝑇𝑖−1, 𝑇𝑖.
• The thresholding operation takes the following form:

𝑔 𝑥, 𝑦 = ℛ𝑖 , if 𝑇𝑖−1 ≤ 𝑓 𝑥, 𝑦 ≤ 𝑇𝑖 , 𝑖 = 1, … , 𝑁.

• Thresholds can be obtained from the image histogram.

• In many cases, the various histogram lobes are not clearly

distinguished.



20

Image Thresholding

Multiple thresholding can be used for segmenting images

containing 𝑁 objects, provided that each object ℛ𝑖 occupies a

distinct intensity range, defined by two thresholds 𝑇𝑖−1, 𝑇𝑖.
• The thresholding operation takes the following form:

𝑔 𝑥, 𝑦 = ℛ𝑖 , if 𝑇𝑖−1 ≤ 𝑓 𝑥, 𝑦 ≤ 𝑇𝑖 , 𝑖 = 1, … , 𝑁.

• Thresholds can be obtained from the image histogram.
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• In many cases, the various histogram lobes are not clearly 

distinguished.

• Image thresholding in 𝑁 different equirange regions: 

𝑔 𝑥, 𝑦 = ቊ
ℛ𝑖 if 𝑖[ Τ𝐿 𝑁] ≤ 𝑓(𝑘, 𝑙) < (𝑖 + 1)[ Τ𝐿 𝑁] , 𝑖 = 0,1, … , 𝑁 − 2,

ℛ𝑁−1 if (𝑁 − 1)[ Τ𝐿 𝑁] ≤ 𝑓(𝑘, 𝑙) < 𝐿.



a) Original image; b) Image segmentation in four equirange regions.
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(a) (b)



• Histogram modification: Perform edge detection and

exclude all pixels belonging to edges, from histogram

calculation.

• Another approach is to define a modified histogram:

ℎ 𝑖 = ෍

𝑘=0

𝑁1−1

෍

𝑙=0

𝑁2−1

𝑡(𝑒 𝑘, 𝑙 )𝛿 𝑓 𝑘, 𝑙 − 𝑖 .

𝑒 𝑘, 𝑙 is an edge detector output,

𝛿(𝑖) is the delta function.
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Image Thresholding

• A monotonically decreasing function 𝑡 can be chosen for

histogram modification:

𝑡 𝑒 𝑘, 𝑙 =
1

1 + 𝑒(𝑘, 𝑙)
.



Image Thresholding

• If the image histogram is concentrated in a small intensity range:

• Uniform thresholding does not give good results.

• Non-uniform thresholding creates much better results in this

case.

• Non-uniform thresholding can be based on histogram

equalization described by 𝐺 𝑓 𝑘, 𝑙 :

𝑔 𝑘, 𝑙 = ൝
ℛ𝑖 , if 𝑖[ Τ𝐿 𝑁] ≤ 𝐺(𝑓 𝑘, 𝑙 ) < 𝑖 + 1 Τ𝐿 𝑁 ,

ℛ𝑁−1, if (𝑁 − 1)[ Τ𝐿 𝑁] ≤ 𝐺(𝑓 𝑘, 𝑙 ) < 𝐿.
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• Image segmentation can start from some pixels (seeds)

representing distinct image regions.

• Pixel seeds can be chosen in a supervised or

unsupervised mode.

• At least one seed 𝑠𝑖, 𝑖 = 1,… , 𝑁 is chosen per image

region ℛ𝑖.

• Seeds are grown, until they cover the entire image.

• We need:

• a rule describing a growth mechanism and

• a rule checking region homogeneity after each

growth step.
27
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• Growth mechanism: at each stage 𝑘 and for each region

ℛ𝐼
(𝑘)
, 𝑖 = 1, … , 𝑁, we check if there are unclassified pixels in

the 8-neighbourhood of each pixel of the region border.

• Before assigning such a pixel 𝐱 to a region ℛ𝐼
(𝑘)

, we check if

the region homogeneity:

𝑃(ℛ𝑖
𝑘
∪ 𝐱 ) = 𝑇𝑅𝑈𝐸

is still valid.

Region growing



Region merging can be incorporated in the growing mechanism:

• If we are currently at the pixel 𝐱 = 𝑘, 𝑙 𝑇:

• First, we try to merge this pixel with one of its adjacent

regions ℛ𝑖.

• If this merge fails, or if no adjacent region exists, this pixel is

assigned to a new region.

• The merging rule can be based on the region mean and

standard deviation described by 𝑚𝑖 and 𝜎𝑖.
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• The arithmetic mean 𝑚𝑖 and standard deviation 𝜎𝑖 of a class ℛ𝑖

having 𝑛 pixels are given by:

𝑚𝑖 =
1

𝑛
෍

(𝑘,𝑙)∈ℛ𝑖

𝑓(𝑘, 𝑙) ,

𝜎𝑖 =
1

𝑛
σ(𝑘,𝑙)∈ℛ𝑖

[𝑓 𝑘, 𝑙 − 𝑚𝑖]
2 .

• Merging is allowed, if the pixel intensity is close to the region

mean value:

𝑓 𝑘, 𝑙 − 𝑚𝑖 ≤ 𝑇𝑖 𝑘, 𝑙 .
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Decision on merging a pixel with a region.

Region growing
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• If more than one merge are possible, the region with the closest

mean value is chosen.

• Threshold 𝑇𝑖 varies, depending on the region ℛ𝑖 and the

intensity of the pixel 𝑓(𝑘, 𝑙). It can be chosen this way:

𝑇𝑖 𝑘, 𝑙 = 1 −
𝜎𝑖
𝑚𝑖

𝑇.
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• If merging 𝑃(ℛ𝑖 ∪ {𝐱}) was allowed, the updated mean and

standard deviation of region ℛ𝑖 are given by:

𝑚𝑖
′ =

1

𝑛 + 1
𝑓 𝑘, 𝑙 + 𝑛𝑚𝑖 ,

𝜎𝑖
′ =

1

𝑛 + 1
(𝑛𝜎𝑖

2 +
𝑛

𝑛 + 1
𝑓 𝑘, 𝑙 − 𝑚𝑖

2).
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• The region statistics can be used to decide if the merging of two

regions ℛ1, ℛ2 is allowed.

• If arithmetic means 𝑚1, 𝑚2 are close to each other:

|𝑚1 −𝑚2|<𝑘𝜎𝑖 , 𝑖 = 1,2,

the two regions are merged.

• If no a priori information is available about the image, the image

can be scanned in a row-wise manner.
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Decision on merging two regions.

Region growing
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• The opposite approach to region merging is region

splitting:

• It is a top-down approach.

• It starts with the assumption that the entire image is

homogeneous.

• If this is not true, the image is split into four sub-images.

• This splitting procedure is repeated recursively until we

split the image into homogeneous regions.
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• If the original image is square 𝑁 × 𝑁, having dimensions that

are powers of 2 (𝑁 = 2𝑛):

• All regions produced by the splitting algorithm are squares

having dimensions 𝑀 ×𝑀, where 𝛭 is a power of 2 as well

(𝑀 = 2𝑚, 𝑚 ≤ 𝑛).

• Since the procedure is recursive, it produces an image

representation that can be described by a quadtree whose

nodes have four sons each.

• A quadtree is a very convenient region representation.
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Region Splitting/Merging

1

1

0

0 0

0

1

ℛ00 ℛ01 ℛ02 ℛ03

ℛ0

ℛ1

ℛ2 ℛ3

ℛ0 ℛ1

(b)(a)

a) Image segmentation by region splitting; b) Quadtree.



Disadvantages of region splitting techniques:

• Oversegmentation. Regions are created that may be

adjacent and homogeneous, but not merged.

• Oblique lines create many small regions of size 2 × 2 pixels.

• Solution: region split and merge algorithm.

• Sensitivity to geometrical transformations.

• As this is a recursive algorithm, stack overflow may occur.
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Region split and merge algorithm.

• It is an iterative algorithm that includes both splitting and

merging at each iteration:

• If a region ℛ is inhomogeneous 𝑃 ℛ = 𝐹𝐴𝐿𝑆𝐸 , it is split

into four subregions.

• Two adjacent regions ℛ𝑖 , ℛ𝑗 are merged if they are

homogeneous: 𝑃(ℛ𝑖 ∪ ℛ𝑗) = 𝑇𝑅𝑈𝐸.

• The algorithm stops when no further splitting or merging is

possible.
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• The split and merge algorithm produces more compact regions

than the pure splitting algorithm.

• Its major disadvantage is that it does not produce quadtree

region descriptions.

• Several modifications of the basic split and merge algorithm

have been proposed to solve this problem.

• The most straightforward procedure is to use the splitting

algorithm and to postpone merging until no further splitting is

possible.
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Output of: a) region thresholding; b) region growing; c) region splitting; d) 

region split and merge algorithm.
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(c) (d)
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• All previous region segmentation methods are deterministic:

• they assign each image pixel to just one region.

• Such a segmentation is desirable, but not always useful,

because they treat ambiguous cases in a rather inflexible

way.

Relaxation Labeling
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• It is more useful to produce confidence vectors 𝐩𝑘 for each

pixel 𝐱𝑘 that contain the probabilities 𝑝𝑘(𝑖) that a pixel 𝐱𝑘
belongs to a class ℛ𝑖, 𝑖 = 1, … , 𝑁:

𝐩𝑘 = 𝑝𝑘 1 ,… , 𝑝𝑘 𝑁 𝑇.

• Probabilities 𝑝𝜅 𝑙 , called confidence weights, must satisfy

the following relations:

0 ≤ 𝑝𝑘 𝑖 ≤ 1, ෍

𝑖=1

𝑁

𝑝𝑘 𝑖 = 1.

• Pixel 𝐱𝑘 is assigned to the region ℛ𝑙 having the maximal

probability 𝑝𝜅 𝑙 .
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• Let 𝑚𝑖, 𝑖 = 1, … , 𝑁, be the arithmetic means of the intensity of

each region that usually correspond to histogram peaks and

𝑓(𝐱𝑘) = 𝑓(𝑛, 𝑙) the pixel intensity at location 𝐱𝑘= 𝑛, 𝑙 𝑇 .

• The initial estimate of confidence weights is given by:

𝑝𝑘
0

𝑖 =

1
𝑓(𝑛, 𝑙) − 𝑚𝑖

σ𝑖=1
𝑁 1

𝑓(𝑛, , 𝑙) − 𝑚𝑖

, 𝑖 = 1, … , 𝑁.
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• It is inversely proportional to the distance:

𝑑𝑖 = |𝑓(𝑛, 𝑙) − 𝑚𝑖|

of the pixel intensity 𝑓(𝑛, 𝑙) from the region arithmetic

mean 𝑚𝑖 .
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• In many cases, it is highly probable that two adjacent pixels

belong to two specific compatible classes ℛ𝑖 , ℛ𝑗, e.g.,:

• Pixels of classes ‘Roa ’ and ‘ ave ent’.

• Incompatible regions are those that are not expected to be

found in adjacent image locations, e.g.,:

• Pixels of classes ‘Roa ’ and ‘Sea’.
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• The compatibility between two regions ℛ𝑖,ℛ𝑗, is described

in terms of a compatibility function 𝑟(𝑖, 𝑗), whose range

is:

−1 ≤ 𝑟(𝑖, 𝑗) ≤ 1. 

• Its values have the following meaning:

𝑟 𝑖, 𝑗 = ൞

< 0, Regions ℛ𝑖 , ℛ𝑗 are incompatible.

= 0, Regions ℛ𝑖 , ℛ𝑗 are independent.

> 0, Regions ℛ𝑖 , ℛ𝑗 are compatible.
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• Compatibility functions are known a priori or can be

estimated from an initial image segmentation.

• Incompatible regions tend to compete in adjacent image

pixels, whereas compatible regions tend to cooperate.

• Competition and cooperation can continue in an iterative

way until a steady state is reached.

• Each pixel 𝐱𝑘 receives confidence contributions from any

pixel 𝐱𝑙 lying in its 4- or 8-neighbourhood.
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The resulting change in confidence weight 𝑝𝑘(𝑖) of the pixel 𝐱𝑘
at step (𝑛) is the following:

∆𝑝𝑘
(𝑛)

=෍

𝑙

𝑑𝑘𝑙 ෍

𝑗=1

𝑁

𝑟𝑘𝑙(𝑖, 𝑗)𝑝𝑙
𝑛
(𝑗) .

• The sum of the parameters𝑑𝑘𝑙 is chosen to be equal to 1:

෍

𝑙

𝑑𝑘𝑙 = 1.
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• The updated probabilities for the pixel 𝐱𝑘 are given by:

𝑝𝑘
𝑛+1

𝑖 =
𝑝𝑘

𝑛
(𝑖) 1 + ∆𝑝𝑘

𝑛
(𝑖)

σ𝑖=1
𝑁 𝑝𝑘

𝑛
(𝑖) 1 + ∆𝑝𝑘

𝑛
(𝑖)

.

• The iterations stop when convergence is achieved.

• The iterative equations form relaxation labelling.

• It is expected to produce relatively large connected

homogeneous image regions, by removing small spurious

noisy regions within larger regions.
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NN region segmentation

Street scene segmentation [APOLLO]. 55



• In certain cases, the region boundary is desired.

• If the segmented image 𝑔(𝑥, 𝑦) is available, the boundary

obtained by finding region transition pixels 𝑏 𝑥, 𝑦 :

𝑏 𝑥, 𝑦 = ൞

1, if { 𝑔 𝑥, 𝑦 ∈ ℛ𝑖 and 𝑔 𝑥, 𝑦 − 1 ∈ ℛ𝑗 , 𝑖 ≠ 𝑗

or (𝑔(𝑥, 𝑦) ∈ ℛ𝑖 and 𝑔(𝑥 − 1, 𝑦) ∈ ℛ𝑗 . 𝑖 ≠ 𝑗)},

0, otherwise.

56

Region Boundary Following
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• Digital image segmentation produces either a binary or a

multivalued image output 𝑔(𝑘, 𝑙).

• Each image region is labelled by a region number.

• Typically, background has label 0.

• Each region may consist of several disconnected

subregions.

• Connected component labeling assigns a unique number

to each pixel blob of 1𝑠.
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• Connected component labeling algorithms can be divided

into two large classes:

• Local neighborhood algorithms (performing local

operations, typically in a recursive manner).

• Divide-and-conquer algorithms.

• If each blob corresponds to a single object, connected

component labeling performs object counting in a binary

image.

Connected Component Labeling
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Connected Component Labeling

Fire propagation algorithm:

• The image is scanned in a row-wise manner, until the first

pixel at an object boundary is hit.

• A ‘fire’ is set at this pixel that propagates to all pixels

belonging to the 8-neighbourhood of the current pixel.

• Then the curent pixel is burned out (e.g., takes value 0).

• This recursive operation continues, until all image pixels

of the image object are ‘burnt out’ and the fire is

extinguished.
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Connected Component Labeling

• When an object is burned out, all its pixels have value 0 and

cannot be distinguished from the background.

• This procedure is repeated until all objects in the image are

counted.

• A by-product of this algorithm is the area of each object

(number of its pixel).



a) Microscopy image; b) Negative image; c) Thresholded negative 

image; d) Labelled connected regions (some of them are not visible).
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Local CCL algorithm:

• Each pixel 𝑓(𝑛, 𝑙) having value 1 is labeled by the

concatenation of its (𝑛, 𝑙) coordinates.

• We scan the labeled image.

• We assign to each pixel the minimum of the labels in its

4-connected or 8-connected neighborhood.

• This process is repeated until no more label changes are

made.
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Blob coloring algorithm.

• It has two passes:

• In the first pass, colors are assigned to image pixels by using a

three-pixel L-shaped mask, while color equivalencies are

established and stored, when needed.

• In the second pass, the pixels of each connected region are labeled

with a unique color by using the color equivalences obtained in the

first pass.
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Shrinking algorithm.

• If a pixel 𝑓(𝑛, 𝑙) has value 1, it retains this value after local

shrinking, if and only if at least one of its East, South or

South-East neighbors has value 1.

• This local operation is described by the following recursive

relation:

𝑓 𝑛, 𝑙 = ℎ[ℎ 𝑓 𝑛, 𝑙 − 1 + 𝑓 𝑛, 1 + 𝑓 𝑛 + 1, 𝑙 − 1 +
ℎ 𝑓 𝑛, 𝑙 + 𝑓 𝑛 + 1, 𝑙 − 1 − 1] .
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• Function ℎ(𝑡) is given by:

ℎ 𝑡 = ቊ
0, for 𝑡 ≤ 0,
1, for 𝑡 > 0.

• After repeated binary image scanning by this shrinking

operation, each connected component shrinks to the North-

West corner of its bounding box, before it vanishes at the

next shrinking operation.
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Divide-and-conquer CCL algorithm.

• It uses the split and merge algorithm:

• Inhomogeneous regions consisting of 0s and 1s are split

recursively, until we reach homogeneous regions consisting only

of 1s.

• These regions are assigned a unique label (split step).

• Label equivalences can be established, by checking the borders

of all homogeneous regions.

• Those regions having equivalent labels are merged to a single

connected component.
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Region Segmentation

• Introduction

• Image Thresholding

• Region Growing

• Split/Merge Techniques

• Relaxation Algorithms in Region Analysis

• Connected Component Labeling

• Texture Description.

68



Image texture is a measure of image coarseness,

smoothness and regularity.

• Texture description methods:

• Statistical techniques:

• They are based on region histograms.

• They measure contrast, granularity, and coarseness.

69

Texture description



70I. Pitas Digital Image Processing Fundamentals

Digital Image Transform Algorithms

a) Coarse image texture;                          b) Fine image texture.
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Directional image texture [RES].
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• Spectral methods:

• They are based on:

• autocorrelation function of an image region or

• image periodogram (Fourier transform power

distribution),

• in order to exploit texture periodicity.

• Structural methods:

• They describe the texture by using pattern primitives

accompanied by certain geometrical placement rules.
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The simplest texture descriptors are based on image pixel

probability distribution (pdf) 𝑝𝑓(𝑓).

• Image histogram is an estimation of pixel pdf, when

assuming image signal stationarity.

• Let 𝑓𝑘, 𝑘 = 1,… , 𝑁 be the various image intensity levels.

• The first four histogram central moments are given by:

• Image Mean:

𝜇 = ෍

𝑘=1

𝑁

𝑓𝑘𝑝𝑓 𝑓𝑘 .
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• Image Skewness:

𝜇3 =
1

𝜎3
෍

𝑘=1

𝑁

𝑓𝑘 − 𝜇 3𝑝𝑓 𝑓𝑘 .

• Image Variance:

𝜎2 = ෍

𝑘=1

𝑛

𝑓𝑘 − 𝜇 2𝑝𝑓(𝑓𝑘) .
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• Image Kurtosis:

𝜇4 =
1

4
෍

𝑘=1

𝑛

𝑓𝑘 − 𝜇 4𝑝𝑓(𝑓𝑘) − 3 .

• Image entropy is defined in terms of the histogram as well:

𝐻 = −෍

𝑘=1

𝑁

𝑝𝑓 𝑓𝑘 ln 𝑝𝑓 𝑓𝑘

and can be used for feature description.
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Spatial information can be described by using the histogram

of grey-level differences:

• Let 𝐝 = 𝑑1, 𝑑2
𝑇 be the displacement vector between two

image pixels and 𝑔(𝐝) the grey-level difference at a

displacement 𝐝:

𝑔 𝐝 = 𝑓 𝑘, 𝑙 − 𝑓 𝑘 + 𝑑1, 𝑙 + 𝑑2 .

• 𝑝𝑔(𝑔, 𝐝) denotes the grey-level difference histogram at a

displacement 𝐝.
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• If an image region has coarse texture, the histogram

𝑝𝑔(𝑔, 𝐝) tends to concentrate around 𝑔 = 0 for small

displacements 𝐝.

• If the region has fine texture, it tends to spread, when is

larger than the texture grain size.
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Several texture measures can be extracted from the

histogram of grey-level differences:

• Mean:

𝜇𝐝 =෍
𝑘=1

𝑁

𝑔𝑘𝑝𝑔 𝑔𝑘 , 𝐝 .

• Variance:

𝜎𝐝
2 = ෍

𝑘=1

𝑁

𝑔𝑘 − 𝜇𝐝
2𝑝𝑔 𝑔𝑘 , 𝐝 .
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• Contrast:

𝑐𝐝 = ෍

𝑘=1

𝑁

𝑔𝑘
2𝑝𝑔 𝑔𝑘 , 𝐝 .

• Entropy:

𝐻𝐝 = −෍

𝑘=1

𝑁

𝑝𝑔 𝑔𝑘 , 𝐝 ln 𝑝𝑔 𝑔𝑘 , 𝐝 .

• Advantages: computational simplicity and capability to give

information about the spatial texture organization.
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• A run length 𝑙 of pixels having equal intensity 𝑓 in a

direction 𝜃 is an event denoted by (𝑙, 𝑓, 𝜃).

• Run lengths reveal both texture directionality and

texture coarseness.

• Coarse textures tend to produce long grey-level runs.

• Directional texture tends to produce long runs at specific

directions 𝜃.
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a) Original image; b) Run-length image.
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Let 𝑁(𝑙, 𝑓, 𝜃) denote the number of events (𝑙, 𝑓, 𝜃) in an image

having dimensions 𝑁1 × 𝑁2 and 𝑁𝑅 denote the total number of

existing runs:

𝑇𝑅 = ෍

𝑘=1

𝑁

෍

𝑙=1

𝑁𝑅

𝑁 𝑙, 𝑓𝑘 , 𝜃 .

• The ratio Τ𝑁(𝑙, 𝑓, 𝜃) 𝑇𝑅 is the grey-level run histogram at a

specific direction 𝜃.
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The following texture features can be calculated from the 

grey-level run lengths: 

• Short-run emphasis:

𝐴1 =
1

𝑇𝑅
෍

𝑘=1

𝑁

෍

𝑙=1

𝑁𝑅
1

𝑘2
𝑁 𝑙, 𝑓𝑘 , 𝜃 .

• Long-run emphasis:

𝐴2 =
1

𝑇𝑅
෍

𝑘=1

𝑁

෍

𝑙=1

𝑁𝑅

𝑘2𝑁 𝑙, 𝑓𝑘 , 𝜃 .
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• Grey-level distribution:

𝐴3 =
1

𝑇𝑅
෍

𝑘=1

𝑁

෍

𝑙=1

𝑁𝑅
1

𝑘2
𝑁 𝑙, 𝑓𝑘 , 𝜃

2

.

• Run-length distribution:

𝐴4 =
1

𝑇𝑅
෍

𝑙=1

𝑁𝑅

෍

𝑘=1

𝑁
1

𝑘2
𝑁 𝑙, 𝑓𝑘 , 𝜃

2

.
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• Run percentages:

𝐴5 =
1

𝑁1𝑁2
෍

𝑘=1

𝑁

෍

𝑙=1

𝑁𝑅

𝑁 𝑙, 𝑓𝑘 , 𝜃 .
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Grey-level co-occurrence matrix elements 𝑝 𝑓𝑘 , 𝑓𝑙 , 𝐝 denote

the joint probability of two pixels 𝑓𝑘 , 𝑓𝑙 that are displaced by 𝐝.

• It is estimated from an image by counting the number 𝑛𝑘𝑙 of

occurrences of the pixel values 𝑓𝑘 , 𝑓𝑙 distanced by

displacement 𝐝 in the image.

• If 𝑛 be the total number of any possible joint pairs, co-

occurrence matrix elements 𝐶𝐝(𝑘, 𝑙) are given by:

𝐶𝐝(𝑘, 𝑙) = Ƹ𝑝 𝑓𝑘 , 𝑓𝑙 , 𝐝 =
𝑛𝑘𝑙
𝑛
.
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• Co-occurrence matrix 𝐂𝐝 has dimension 𝑁 × 𝑁, where 𝑁 is

the number of grey levels in the image.

• Co-occurrence matrices carry very useful information about

spatial texture organization.

• If the texture is coarse, their mass tends to be

concentrated around the main diagonal of 𝐂𝐝.

• If the texture is fine, co-occurrence matrix values are

much more spread.

• If texture carries strong directional information along

direction 𝐝, co-occurrence matrix entries tends to have

their mass in the main diagonal of 𝐂𝐝. 87
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Several texture descriptors have been proposed to

characterize the cooccurrence matrix content:

• Maximum probability:

𝑝𝐝 = 𝑚𝑎𝑥𝑘,𝑙𝐶𝐝(𝑘, 𝑙).

• Entropy:

𝐻𝐝 = −෍

𝑘=1

𝑁

෍

𝑙=1

𝑁

𝐶𝐝(𝑘, 𝑙) ln 𝐶𝐝(𝑘, 𝑙) .

• Moment of order 𝑚:

𝐼𝐝 = ෍

𝑘=1

𝑁

෍

𝑙=1

𝑁

𝑘 − 𝑙 𝑚𝐶𝐝(𝑘, 𝑙).
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Spectral texture characterization is based on:

• image power spectrum, e.g., periodogram 𝐹 𝑢, 𝑣 2:

𝐹 𝑢, 𝑣 = ෍

𝑛=0

𝑁−1

෍

𝑚=0

𝑀−1

𝑓 𝑛,𝑚 𝑒𝑥𝑝 −𝑖
2𝜋𝑛𝑢

𝑁
+
2𝜋𝑚𝑣

𝑀
.

• autocorrelation function 𝑅𝑓𝑓(𝑘, 𝑙) of an image 𝑓(𝑖, 𝑗):

𝑅𝑓𝑓 𝑘, 𝑙 =
1

2𝑁1 + 1 2𝑁2 + 1
෍

𝑖=−𝑁1

𝑁1

෍

𝑖=−𝑁2

𝑁2

𝑓 𝑖, 𝑗 𝑓 𝑖 + 𝑘, 𝑗 + 𝑙 .

89

Texture description



• It can be calculated both for positive and negative lags (𝑘, 𝑙).

• It usually attains a maximum for zero lag 0,0 .

• It drops exponentially with (𝑘, 𝑙) (positive or negative).

• Direct definition-based computation of the autocorrelation

function is preferred for a small number of lags (𝑘, 𝑙).

• The calculation of 𝑅𝑓𝑓 𝑘, 𝑙 for a large number of lags is

performed using 2D FFT.
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• Autocorrelation function 𝑅𝑓𝑓 𝑘, 𝑙 is given by the inverse 2D

DFT:

𝑅𝑓𝑓 𝑘, 𝑙 =
1

𝑁𝑀
෍

𝑢=0

𝑁−1

෍

𝑢=0

𝑀−1

𝐹 𝑢, 𝑣 𝐹∗ 𝑢, 𝑣 𝑒𝑥𝑝 𝑖
2𝜋𝑘𝑢

𝑁
+
2𝜋𝑙𝜐

𝑀
.

• Autocorrelation function 𝑅𝑓𝑓 𝑘, 𝑙 is the inverse 2D DFT of

Periodogram:

𝐹 𝑢, 𝑣 2 = 𝐹 𝑢, 𝑣 𝐹∗ 𝑢, 𝑣 .
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• Pre-multiplication of the image 𝑓(𝑚, 𝑛) by a two-dimensional

window 𝑤 𝑚, 𝑛 produces a relatively smooth power

spectrum estimate.

• Both 2D DFT and inverse 2D DFT can be calculated via 2D

Fast Fourier Transform algorithms.
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• If polar coordinates are used for power spectrum

𝑅𝑓𝑓(𝑟, 𝜑) description:

𝑟 = 𝜔1
2 + 𝜔2

2.

𝜙 = 𝑎𝑟𝑐 tan
𝜔2

𝜔1
.

• Angular power spectrum distribution 𝑃𝜙 (𝜙 ) is a very

good descriptor of texture directionality:

𝑃𝜙 𝜙 = න
0

𝑟𝑚𝑎𝑥

𝑃𝑓𝑓 𝑟, 𝜙 𝑑𝑟 .

93

Texture description



• This integral can be approximated by a summation within a

wedge 𝜙1𝜙 < 𝜙2 in the spectral domain:

𝑃𝜙 𝜙 ≈ ෍

𝜔1
2+𝜔2

2<𝑟𝑚𝑎𝑥
2 , 𝜙1≤𝜙<𝜙2

𝐹 𝜔1, 𝜔2
2 .
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• Radial power spectrum distribution:

𝑃𝑟 𝑟 = න
0

2𝜋

𝑃𝑓𝑓 𝑟, 𝜙 𝑑𝜙

can describe texture coarseness.

• It can be approximated, by splitting the spectral domain into

concentric rings:

𝑃𝑟 𝑟 ≈ ෍

𝑟1
2≤ 𝜔1

2+𝜔2
2<𝑟2

2

𝐹 𝜔1, 𝜔2
2, 𝑟1 ≤ 𝑟 < 𝑟2 .
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Integration ring for the calculation of 𝑃𝑟 𝑟 .
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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