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Region Segmentation @ML

Object shape can be described in terms of:
* Its boundary:
* It requires image edge detection and following.
« The region (set of pixels) it occupies:
* It requires image segmentation in homogeneous regions.
 Image regions are expected to have homogeneous
characteristics (e.g. intensity, texture).
 These characteristics can form a feature vector that can be
used to discriminate region from one another.
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Region Segmentation @ML

 An Image domain X must be segmented in N different regions
Rl’ ,RN.

* The segmentation rule is a logical predicate of the form P(R).

|| Artificial Intelligen ,
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Region Segmentation @ML

* Image segmentation partitions the set X into the subsets R;, i =
1, ..., N, having the following properties:

N
X — U Ri!
=1

RlﬂRJZQ’ forl#:],
P(R;) =TRUE,  fori = 1,2,..,N,
P(R; UR;) = FALSE, fori = j.
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Region Segmentation C\ZML

* Region segmentation can employ a logical predicate of the
form P(R,x, t).
* x IS a feature vector associated with an image pixel or pixel
set.

« tis a parameter vector (usually thresholds).

« A simple segmentation rule has the form:

P(R): f(k,1) <T.
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Region Segmentation C\ZML

* |In RGB colour images, the feature vector x can be the three RGB
Image components:

x = [frk, D, fe(k, D, fa(k, D]

. A simple RGB image segmentation rule having t = [Ty, Ty, Tg]"
may have the form:

P(:R' X, t) (fR(kl l) < TR) && (fG(k; l) < TG) && (fB(ki l) < TB)

|| Artificial Intelligen ;
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Region Segmentation C\ZML

« Geometrical proximity plays an important role in image
segmentation.

« Segmentation algorithms must Incorporate both pixel
proximity and pixel homogeneity.

« A simple approach to geometrical proximity is through image
neighrborhood definition.

|| Artificial Infelligen .
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Region Segmentation C\ZML

We can define two types of image neighbourhoods on Z?:

e The 4-neighbourhood N, (x) of a pixelx = [x,y]" is the set that
Includes its horizontal and vertical neighbours:

No®) ={[x—Lyl", [x+1Ly]", [x,y — 1]", [x,y + 1]"}.

. The 8-neighbourhood N;(x) of pixel x = [x,y]'is a superset of the
4-neighbourhood and contains the horizontal, vertical and diagonal
neighbours:

Ng(x) =

NXU{x—1y—-11[x=1,y+ 1], [x+1,y—-1]",[x+ 1,y + 1]'}
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Region Segmentation C\ZML

* The paths defined by using the 4-neighbourhood consist of
horizontal and vertical streaks of length 4x = 4y = 1.

« The paths wusing the 8-neighbournood consist of
horizontal and vertical streaks of length 1 and of diagonal

streaks having length v/2.

Arfificial Intelligen
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Region Segmentation C\ZML

 Aregion R Is called connected region Iif:

« any two pixels x,, Xz belonging to R can be connected by
a path x,, ..., X;_1,X;, X;4+1,Xg, Whose pixels x; belong to R;

and

« any pixel x; iIs adjacent to both the previous pixel x;_; and
the next one x;,, in the path.

« A pixel x,, Is said to be adjacent to pixel x;, if it belongs to its
Immediate neighbourhood.

| | Artificial Infelligence & »
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Region Segmentation

Region segmentation technigues can be grouped in three different

classes:
 Local region segmentation techniques are based on the local

properties of the pixels and their neighbourhoods.

* Global region segmentation technigues segment an image on the
basis of information obtained globally (e.g., by using the image
histogram).

« Split, merge and growing technigues use both the notions of
homogeneity and geometrical proximity.

Artific IITllg
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Image Thresholding C\ZML

* The simplest image segmentation problem occurs when an
Image contains:

« an object having homogeneous Iintensity.
« a background with a different intensity level.

« Such an image can be segmented Iin two regions by simple
thresholding:

g(x,y)={ 1, if f(x,y) >T,

0, otherwise.

Arfificial Infelligen
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Image Thresholding C\ZML

« The choice of threshold T can be based on image
histogram measuring Intensity level frequencies In an
Image having N, X N, pixels:

Ni—1N,—1

N11N2 Z Z S(FUCD) — i),

k=0 1[=0

h(i) =

Artific IITllg
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Image Thresholding C\ZML

« If the Image contains one object and a background having
homogeneous Intensity, it usually possesses a bimodal
Image histogram.

me

A

>f
T
Bimodal image histogram and histogram choice.
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Image Thresholding

Image thresholding.
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Image Thresholding

* |f the histogram is noisy:.
* The calculation of the local histogram minimum is difficult.

« Histogram smoothing or image smoothing (e.g., by using
one-dimensional low-pass filtering) is recommended.

* |f the object and/or background intensity varies:

* Image histogram may not contain two clearly distinguished
lobes.

 Threshold can be calculated so that only a% of image
prixels belong to object.

QHD-M.CA@Q@Lia ly varying threshold can be applied.
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Image Thresholding C\ZML

Multiple thresholding can be used for segmenting images
containing N objects, provided that each object R; occupies a
distinct intensity range, defined by two thresholds T;_4, T;.

* The thresholding operation takes the following form:

glx,y) =R, ifT;_ < f(x,y) <T; i=1,..,N.

« Thresholds can be obtained from the image histogram.
 In many cases, the various histogram lobes are not clearly

distinguished.

Arfificial Infelligen
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Image Thresholding C\ZML

Multiple thresholding can be used for segmenting images
containing N objects, provided that each object R; occupies a
distinct intensity range, defined by two thresholds T;_4, T;.
* The thresholding operation takes the following form:

glx,y) =R, ifT;_ < f(x,y) <T; i=1,..,N.

« Thresholds can be obtained from the image histogram.
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Image Thresholding C\ZML

* In many cases, the various histogram lobes are not clearly
distinguished.

* Image thresholding in N different equirange regions:

(R; ifi[L/N] < f(k,1) < (i + D[L/N],i =0,1,..,N — 2,
9XY) = p (N = 1)L/N]< F(k,]) < L

Arfificial Infelligen
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Image Thresholding C\ZML

a) Original image; b) Image segmentation in four equirange regions.
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Image Thresholding C\ZML

 Histogram modification: Perform edge detection and
exclude all pixels belonging to edges, from histogram

calculation.
* Another approach is to define a modified histogram:

Ni—1N,—1

h(i) = Z Z te(k, D)8 (F Uk, D) = D).
k=0 1[=0

e(k, 1) is an edge detector output,
d(i) Is the delta function.

Arfificial Infelligen
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Image Thresholding C\ZML

A monotonically decreasing function t can be chosen for
histogram modification:

t(e(k,1)) =

1+ le(k, D]

Arfificial Intelligen
Q”lem’r AIy Lb 24



Image Thresholding C\ZML

* |f the image histogram is concentrated in a small intensity range:
« Uniform thresholding does not give good results.

* Non-uniform thresholding creates much better results in this
case.
 Non-uniform thresholding can be based on histogram
equalization described by G(f (k,1)):

f

R;,  ifi[L/N] < G(f(k, D)) < (i + D[L/N],
| Ry, (N - DIL/N] <G D) < L.

Arfificial Infelligen
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Region growing
* Image segmentation can start from some pixels (seeds)
representing distinct image regions.

 Pixel seeds can be chosen Iin a supervised or
unsupervised mode.

« At least one seeds;, i = 1,...,N Is chosen per image
region R;.

« Seeds are grown, until they cover the entire image.

* We need:
 arule describing a growth mechanism and

 a rule checking region homogeneity after each
__growth step.

| | Intelligence &
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. | @ML
egion growing

 Growth mechanism: at each stage (k) and for each region

ng),i =1,...,N,we check If there are unclassified pixels in
the 8-neighbourhood of each pixel of the region border.

« Before assigning such a pixel x to a region Rfk), we check If
the region homogeneity:

PR U (x}) = TRUE
IS still valid.

|| Artificial Infelligen
Informatio Aly Lb



Region growing

Region merging can be incorporated in the growing mechanism:
- |f we are currently at the pixel x = [k, []":
* First, we try to merge this pixel with one of its adjacent
regions R;.
* |f this merge falils, or If no adjacent region exists, this pixel is
assigned to a new region.

« The merging rule can be based on the region mean and
standard deviation described by m; and g;.

” Artificial Intelligenc
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Region growing

 The arithmetic mean m; and standard deviation o¢; of a class R;
having n pixels are given by:

mi=— FeeD).

= \/%Z(R,Z)ERi[f(k: [) —m;]*.

« Merging Is allowed, if the pixel intensity is close to the region
mean value:

Artific ||‘r||g
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Region growing

> f

Decision on merging a pixel with a region.
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Region growing

« If more than one merge are possible, the region with the closest
mean value is chosen.

« Threshold T; varies, depending on the region R; and the
intensity of the pixel f(k,1). It can be chosen this way:

Tl(k, l) = (1 —2) T.

m;

Arfificial Intelligen
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| | (vmL
Region growing

 |If merging P(R; U {x}) was allowed, the updated mean and
standard deviation of region R; are given by:

, 1
m; = n+1 [f(k; l) +nmi];

[f Ck, D) — m;]?).

n+1

Arfificial Infelligen
O”lemt  Andlyss c Lo 3



Region growing @ML

* The region statistics can be used to decide If the merging of two
regions R, R, Is allowed.

« |f arithmetic means m,, m, are close to each other:
Im; — my|<kao;, i =1,2,

the two regions are merged.

 |If no a priori information is available about the image, the image
can be scanned in a row-wise manner.

| | Artificial Infelligence & .
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Region growing

P(f)
A

Decision on merging two regions.
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Region Splitting/Merging @ML

« The opposite approach to region merging IS region
splitting:

* |t Is a top-down approach.

* |t starts with the assumption that the entire image Is
N0OmMOogeneous.

* |f this Is not true, the image Is split into four sub-images.

« This splitting procedure is repeated recursively until we
split the image into homogeneous regions.

| | Artificial Infelligence & .
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Region Splitting/Merging

* |f the original image Is square N x N, having dimensions that
are powers of 2 (N = 2™):
 All regions produced by the splitting algorithm are squares
having dimensions M X M, where M is a power of 2 as well
(M =2"m<n).
» Since the procedure is recursive, it produces an image

representation that can be described by a quadtree whose
nodes have four sons each.

« A quadtree is a very convenient region representation.

| | Artificial Infelligence &
Information Analysis Lab
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Region Splitting/Merging @ML

(@)

a) Image segmentation by region splitting; b) Quadtree.

Arfificial Infelligen
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Region Splitting/Merging @ML

Disadvantages of region splitting technigues:

Oversegmentation. Regions are created that may be
adjacent and homogeneous, but not merged.

Obligue lines create many small regions of size 2 x 2 pixels.
« Solution: region split and merge algorithm.

Sensitivity to geometrical transformations.

As this Is a recursive algorithm, stack overflow may occur.

| | Artificial Infelligence & "
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Region Splitting/Merging @ML

Region split and merge algorithm.

* It Is an iterative algorithm that includes both splitting and
merging at each iteration:
 If aregion R is inhomogeneous (P(R) = FALSE), it is split
Into four subregions.
« Two adjacent regions R;,R; are merged if they are
homogeneous: P(R; UR;) = TRUE.

* The algorithm stops when no further splitting or merging is
possible.

Arfificial Infelligen
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Region Splitting/Merging

* The split and merge algorithm produces more compact regions
than the pure splitting algorithm.

* |[ts major disadvantage is that it does not produce quadtree
region descriptions.

e Several modifications of the basic split and merge algorithm
have been proposed to solve this problem.

« The most straightforward procedure is to use the splitting

algorithm and to postpone merging until no further splitting is
possible.

” Artificial Infelligen
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Region Splitting/Merging @ML

(d)
Output of: a) region thresholding; b) region growing; c) region splitting; d)
region split and merge algorithm.
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Relaxation Labeling @ML

 All previous region segmentation methods are deterministic:
* they assign each image pixel to just one region.

 Such a segmentation Is desirable, but not always useful,

because they treat ambiguous cases In a rather inflexible
way.

| | Artificial Infelligence & e
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Relaxation Labeling C\ZMI-

* |t iIs more useful to produce confidence vectors p; for each
nixel x;, that contain the probabillities p, (i) that a pixel x;
pelongstoaclass R, i =1, ...,N:
Pr = [Pk (1), ..., D (N)]".
 Probabilities p,.(1), called confidence weights, must satisfy
the following relations:

N
0<p@<1, ) pd=1
=1

* Pixelx, I1s assighed to the region R; having the maximal
probability p,. (1).

| | Arfificial Infelligence & i
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Relaxation Labeling @ML

 Let m,i =1,..,N, be the arithmetic means of the intensity of
each region that usually correspond to histogram peaks and
f(x;,) = f(n, 1) the pixel intensity at location x,,= [n, []*.

* The Initial estimate of confidence weights Is given by:

: 1) —m,
pl(cO)(l)z le(n ) 1m| ’

=1Tf(n,, D — mi]
@ [@F " !




Relaxation Labeling @ML

* [t is inversely proportional to the distance:

di: |f(n,l)_ mil
of the pixel intensity f(n,l) from the region arithmetic

mean m,. i

i i > f

i cpe . . m1 m2 m3
| | Artificial Intelligence &
. . 49
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Relaxation Labeling @ML

* In many cases, it is highly probable that two adjacent pixels
belong to two specific compatible classes R;, R;, e.g.,:

 Pixels of classes ‘Road’ and ‘Pavement’.

* Incompatible regions are those that are not expected to be
found in adjacent image locations, e.g.,:

* Pixels of classes ‘Road’ and ‘Sea’.

| | Artificial Infelligence & .
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Relaxation Labeling @ML

* The compatibility between two regions R; R; Is described

In terms of a compatibility function r(i,j), whose range
IS:

-1 <r(i,j) < 1.

 Its values have the following meaning:
<0, Regions R;, R; are incompatible.
r(i,j) =4 =0, Regions R;, R; are independent.
> 0, Regions R;, R; are compatible.

| | Artificial Infelligence & -
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Relaxation Labeling

 Compatibility functions are known a priori or can be
estimated from an initial image segmentation.

* Incompatible regions tend to compete In adjacent image
pixels, whereas compatible regions tend to cooperate.

 Competition and cooperation can continue Iin an iterative
way until a steady state Is reached.

 Each pixel x; receives confidence contributions from any
pixel x; lying In its 4- or 8-neighbourhood.

| | Artificial Infelligence &
Information Analysis Lab
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Relaxation Labeling @ML

The resulting change in confidence weight p, (i) of the pixel x;

at step (n) Is the following:
N

(n) Edkl Erkl(i»]')l?l(n)(]') :

=1

* The sum of the parametersd,;is chosen to be equal to 1:

del =
l

Arfificial Intelligen
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Relaxation Labeling C\ZML

The updated probabilities for the pixel x; are given by:
() |1+ apP ()]

Vo) |1+ apY )]
The iterations stop when convergence is achieved.

* The iterative equations form relaxation labelling.

|t Is expected to produce relatively large connected
homogeneous image regions, by removing small spurious
noisy regions within larger regions.

| | Artificial Infelligence & 9
Information Analysis Lab
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Region Boundary Following C\ZML

* In certain cases, the region boundary is desired.

 |If the segmented image g(x,y) Is available, the boundary
obtained by finding region transition pixels b(x, y):

1, if{(g(x, y) ER;jand g(x,y — 1) ER;, i # j)
b(x,y) = or (g(x,y) ERyand g(x — 1,y) € R;.i # )},
0, otherwise.

Arfificial Infelligen
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Connected Component Labeling C\ZML

« Digital image segmentation produces either a binary or a
multivalued image output g(k, ).

 Each image region is labelled by a region number.
* Typically, background has label 0.

« Each region may consist of several disconnected
subregions.

« Connected component labeling assigns a unigue number
to each pixel blob of 1s.

Artific ||‘r||g
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Connected Component Labeling C\ZML

« Connected component labeling algorithms can be divided
Into two large classes:

 Local neighborhood algorithms (performing local
operations, typically in a recursive manner).

* Divide-and-conquer algorithms.

« |f each blob corresponds to a single object, connected
component labeling performs object counting in a binary
Image.

Arfificial Infelligen
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Connected Component Labeling C\ZML

Fire propagation algorithm:
 The image Is scanned in a row-wise manner, until the first
pixel at an object boundary is hit.

« A ‘fire’ Is set at this pixel that propagates to all pixels
belonging to the 8-neighbourhood of the current pixel.

* Then the curent pixel is burned out (e.g., takes value 0).

* This recursive operation continues, until all image pixels
of the image object are ‘burnt out' and the fire is
extinguished.

Arfificial Infelligen
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Connected Component Labeling C\ZML

 When an object is burned out, all its pixels have value 0 and
cannot be distinguished from the background.

* This procedure Is repeated until all objects In the image are
counted.

A by-product of this algorithm is the area of each object
(number of its pixel).

Arfificial Infelligen
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Connected Component Labeling C\ZML

a) Microscopy image; b) Negative image; c) Thresholded negative
Image; d) Labelled connected regions (some of them are not visible).

Artificial Intelligen
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Connected Component Labeling C\ZML

Local CCL algorithm:

 Each pixel f(n,l) having value 1 is labeled by the
concatenation of its (n, ) coordinates.

* We scan the labeled image.

* We assign to each pixel the minimum of the labels in its
4-connected or 8-connected neighborhood.

* This process is repeated until no more label changes are
made.

Arfificial Intelligen
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Connected Component Labeling C\ZML

Blob coloring algorithm.

* |t has two passes:

* In the first pass, colors are assigned to image pixels by using a
three-pixel L-shaped mask, while color equivalencies are

established and stored, when needed.

* In the second pass, the pixels of each connected region are labeled
with a unique color by using the color equivalences obtained in the

first pass.

| | Artificial Intelligence & .
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Connected Component Labeling C\ZML

Shrinking algorithm.

* If a pixel f(n, 1) has value 1, it retains this value after local
shrinking, If and only if at least one of its East, South or
South-East neighbors has value 1.

* This local operation is described by the following recursive
relation:

f(n,D)=hlhl[f(n,l-D+f(n, D+ f(n+1,) —1]+
hlfin,D+ f(n+1,1—1) — 1]].

Arfificial Infelligen
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Connected Component Labeling C\ZML

* Function h(t) Is given by:

0, fort <0,

A(t) = {1, fort > 0.
« After repeated binary image scanning by this shrinking
operation, each connected component shrinks to the North-

West corner of its bounding box, before it vanishes at the
next shrinking operation.

Artificial Intelligen
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Connected Component Labeling C\ZML

Divide-and-conquer CCL algorithm.

* |t uses the split and merge algorithm:

* Inhomogeneous regions consisting of 0s and 1s are split
recursively, until we reach homogeneous regions consisting only

of 1s.
 These regions are assigned a unigue label (split step).

« Label equivalences can be established, by checking the borders
of all homogeneous regions.

 Those regions having equivalent labels are merged to a single
connected component.

| | Artificial Infelligence & .
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Texture description C\ZML

Image texture Is a measure of Image coarseness,
smoothness and regularity.

« Texture description methods:
 Statistical techniques:

* They are based on region histograms.
» They measure contrast, granularity, and coarseness.

| | Artificial Intelligence & i
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Texture description

a) Coarse image texture, b) Fine image texture.
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Texture description

Directional image texture [RES].
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Texture description C\ZML

« Spectral methods:
* They are based on:
« autocorrelation function of an image region or

 Image periodogram (Fourier transform power
distribution),

* In order to exploit texture periodicity.
« Structural methods:

 They describe the texture by using pattern primitives
accompanied by certain geometrical placement rules.

| | Artificial Infelligence & .
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Texture description C\ZML

The simplest texture descriptors are based on image pixel
probability distribution (pdf) ps(f).

 Image histogram Iis an estimation of pixel pdf, when
assuming image signal stationarity.

 Letf,,k = 1,...,N be the various image intensity levels.

* The first four histogram central moments are given by:
* Image Mean:

N
0= 2 frpr (fr)-
k=1
QIO sz, g



Texture description

* Image Skewness:

N
1
H3 = FZ(fk — .U)3Pf(fk)-
k=1

* Image Variance:

02 = (fi— 0%p; (f).
k=1

(vmL



Texture description C\ZML

* Image Kurtosis:

1 n
12 — *py(fi) - 3.

* Image entropy is defined in terms of the histogram as well.
N

== z pr(fi) Inpe(fi)
k=1

and can be used for feature description.

Arfificial Infelligen
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Texture description C\ZML

Spatial information can be described by using the histogram
of grey-level differences:

- Let d = [d,d,]" be the displacement vector between two

Image pixels and g(d) the grey-level difference at a
displacement d:

g(d) = |f(k, ) = f(k +di, 1 + dy)l;

py(g,d) denotes the grey-level difference histogram at a
displacement d.

|| Artificial Infelligen
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Texture description C\ZML

 If an Image region has coarse texture, the histogram
py(g,d) tends to concentrate around g = 0 for small

displacements d.

« If the region has fine texture, It tends to spread, when Is
larger than the texture grain size.

| | Artificial Intelligence & .
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Texture description C\ZML

Several texture measures can be extracted from the
histogram of grey-level differences:

e Mean:

N
Ua = z 9iPg(gr,d).
k=1

e Variance:

N
08 = ) (Gr = )P (g1 ).
k=1

Artific IITllg
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Texture description C\ZML

 Contrast:
N
— Z gl%pg(gk' d)
k=1

* Entropy:

N

— z Pg(gk,d) Inp,(gy, d).
k=1

« Advantages: computational simplicity and capability to give
Information about the spatial texture organization.

Artificial Intelligen
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Texture description C\ZML

« A run length [ of pixels having equal intensity f Iin a
direction 6 is an event denoted by ([, f, 9).

 Run lengths reveal both texture directionality and
texture coarseness.

« Coarse textures tend to produce long grey-level runs.

 Directional texture tends to produce long runs at specific
directions 6.

| | Artificial Infelligence & ”
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Texture description

a) Original image; b) Run-length image.

|| Artificial Infelligen
Informatio AIy Lb



Texture description C\ZML

Let N(I, f, 8) denote the number of events ([, f,8) in an image
having dimensions N; X N, and N, denote the total number of

existing runs:

N Ng
— z z N(L fe. 6).
k=1 1=1

« The ratio N(I, f,0)/Ty is the grey-level run histogram at a
specific direction 6.
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Texture description C\ZML

The following texture features can be calculated from the
grey-level run lengths:

« Short-run emphasis:
N Npg

A1 = TREEMU fi:0).

 Long-run empha5|s
N Np

A, z z K2N(L, ., 0) .

k
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Texture description C\ZML

* Grey-level distribution:

N [Ng
1 (v 1
A== | SN0
Tr k
k=1|1=1 _
 Run-length distribution:
Np | N 12
1O 1
A4=—Z Z_ZN(l'fk’Q)
Tr k
=1 | k=1
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Texture description

- Run percentages:

N Ng

D D N fiu ).

k=11=1

A — 1
> N;N,
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Texture description

Grey-level co-occurrence matrix elements p(fy, f;,d) denote
the joint probability of two pixels fy, f; that are displaced by d.

|t Is estimated from an image by counting the number n,; of
occurrences of the pixel values f,f; distanced by
displacement d in the image.

 If n be the total number of any possible joint pairs, co-
occurrence matrix elements Cq4(k, 1) are given by:

Catk,l) = p(fic fur @) = =,
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Texture description

* Co-occurrence matrix Cq4 has dimension N X N, where N is
the number of grey levels in the image.

« Co-occurrence matrices carry very useful information about
spatial texture organization.

* |f the texture Is coarse, their mass tends to be
concentrated around the main diagonal of Cg.

e |f the texture Is fine, co-occurrence matrix values are
much more spread.

« |f texture carries strong directional Iinformation along
direction d, co-occurrence maitrix entries tends to have

OO theirmass in the main diagonal of Cg.



Texture description C\ZML

Several texture descriptors have been proposed to
characterize the cooccurrence matrix content:

« Maximum probability:
pq = maxy ;Cq(k,1).
 Entropy:
N N
ZZ CqCl, ) In Cy(k, 1)
k=1 1=1

 Moment of order m:

— ™Cy(k, D).

ﬂMZ

N
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Texture description C\ZML

Spectral texture characterization is based on:

* image power spectrum, e.g., periodogram |F(u,v)|*:
N-1M-1

F(u,v) = Z Z f(n,m)exp [—l (2711\7,u + an\tImJ)' .

« autocorrelation function Rff(k [ of an image f (i, j):

1 1
Ryp(k, 1) = (2N1+1)(2N2+1) 2 Z FaDFE+ ]+,

l——N1 l——NZ
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Texture description C\ZML

* |t can be calculated both for positive and negative lags (k, [).
* |t usually attains a maximum for zero lag (0,0).
* |t drops exponentially with (k, [) (positive or negative).

« Direct definition-based computation of the autocorrelation
function is preferred for a small number of lags (k, [).

The calculation of Re¢(k,1) for a large number of lags is
performed using 2D FFT.

Arfificial Infelligen
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Texture description C\ZML

* Autocorrelation function R¢¢(k, 1) is given by the inverse 2D
DFT:

N-— M—1
1 \ 2tku  2mlv
R = — F F* ] .

«_Autocorrelation function Rs¢(k,1) is the inverse 2D DFT of
Periodogram:

IF(u,v)|?> = F(u,v)F*(u,v).
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Texture description C\ZML

* Pre-multiplication of the image f(m,n) by a two-dimensional
window w(m,n) produces a relatively smooth power
spectrum estimate.

« Both 2D DFT and inverse 2D DFT can be calculated via 2D
Fast Fourier Transform algorithms.
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O”Dwmt  Andlyss c Lo 2



Texture description C\ZML

 If polar coordinates are used for power spectrum
R¢¢(r, ) description:

_ 2 2
r—\/wl T W5,

W2
¢ =arctan|—}.
W1

» Angular power spectrum distribution Py(¢) Is a very
good descriptor of texture directionality:

Tmax

Py (@) = f Per(r, ¢)dr.

0
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Texture description C\ZML

* This integral can be approximated by a summation within a
wedge ¢, <¢p < ¢, In the spectral domain:

qu(Qb) ~ z |F (0, wz)]?.

2., 2 .2
Jw1+w2 <rmax P15P<¢P>
A

Y

Y
Integration wedge for the calculation of P (¢).
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Texture description C\ZML

« Radial power spectrum distribution:

2T

P.(r) =f Prr(r, p)dep
0

can describe texture coarseness.

* |t can be approximated, by splitting the spectral domain into
concentric rings:

P.(r) ~ z IF(w;, 0,)|2, r < sl

2 24 12 0.2
(= s\/a)1+a)2<‘r2
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Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmlsweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr
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