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Computer vision 

overview
• Image and video acquisition

• Camera geometry

• Stereo and Multiview imaging

• Shape from X 

• 3D Robot Localization and Mapping

• Semantic 3D world mapping

• Object detection and tracking

• 3D object localization 

• Object pose estimation

• Computational cinematography



Images 𝒇(𝒙, 𝒚) and videos 
signal 𝒇(𝒙, 𝒚, 𝒕)
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Image sampling

Rectangular sampling grid
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Video sampling
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Sampling grids for: a) progressive and b) 2:1 interlaced video
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Pinhole Camera and 
Perspective Projection
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Pinhole camera geometry.



Mathematical camera description:

• Ƥ = 𝐏𝐼 𝐏𝐸 is the 3 × 4 camera projection matrix:

Ƥ=
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Camera Parameters and 
Projection Matrix
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Camera Calibration
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Calibration patterns.

Determining the extrinsic and intrinsic camera parameters:
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Stereopsis

• The horizontal separation of the eyes leads
to a difference, stereo parallax, in image
location and appearance of an object
between the two eyes, called stereo
disparity.

• Stereo parallax is utilized by the brain in
order to extract depth information.



Stereo vision

Parallel Stereo vision 
Geometry

𝑇: baseline
𝑓: focal length 



Basics of Stereopsis
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Left image

Dense disparity map

Right image



Stereo vision

Segmented dense disparity
map.



Feature Correspondence



3D perception (at least two 
views)

In an ideal world ...

• Two cameras in known locations.
• Calibrated cameras.
• Known matches.

In this real world …

1d

2d



3D geometry 
reconstruction
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Structure from Motion

• Feature point correspondence
• Feature point matching
• Bundle adjustment and triangulation

Copyright Hellenic Ministry of Culture and Sports (L. 
3028/2002)
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3D building reconstruction  

• Vladaton monastery

Copyright Hellenic Ministry of Culture and Sports (L. 3028/2002)



3D building reconstruction  

Copyright Hellenic Ministry of Culture and Sports (L. 3028/2002)



3D building reconstruction  

Copyright Hellenic Ministry of Culture and Sports (L. 3028/2002)



SfM in 3D landscape 

reconstruction

232/2/2022

• Cliff images



242/2/2022

SfM in 3D landscape 

reconstruction

3D Cliff surface reconstruction.



252/2/2022

3D painting 

reconstruction

3D painting reconstruction and flattening.



3D landscape modeling

RGB-Depth image acquired from monocular video [APOLLO]. 26



Shape from X

• Shape from shade.
• Shape from focus.
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3D Localization and 
Mapping

3D scene mapping and vehicle/sensor (primarily

camera) localization:

• Mapping: create or get 2D and/or 3D maps.

• Localization: find the 3D location based on sensors.

• Simultaneous Localization and Mapping (SLAM).

• Information fusion in localization and mapping.



3D Robot Localization and 
Mapping

Images obtained from Google Earth

3D models reconstructed in 3DF Zephyr Free using 50 images from Google Earth

• 3D scene point mapping+Camera calibration



Visual SLAM

• From the sole input of the video stream:

• Simultaneous estimation of the camera motion and the 3D scene.

• Real-time at frame rate.

• Sequential processing.

• The field of view of the camera ≪ than the map size.

• Pivotal piece of information in automated scene interaction:

• Sensor/robot pose with respect to the scene.

• Localization for robots, cars, drones, autonomous navigation.

• AR/VR user/sensor positional tracking.



Visual SLAM

https://youtu.be/sr9H3ZsZCzc 



NO



TRUE NEGATIVE

☺

Likely algorithm answer:
NO

NO YES

✓

FALSE POSITIVE



Why is place recognition 
difficult
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Semantic 3D World Mapping

• Semantic mapping overlays semantic information on 2D or 3D 

scene maps.

• These semantic entities are assigned specific spatial coordinates in a 

consistent manner and overlay a geometric 3D scene map.

• The goal is cognitive comprehension of the outdoors environment where 

a robot moves and operates.

35



Semantic 3D Map Annotation
for crowd localization



Semantic 3D Map Annotation
for crowd localization
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• Pedestrian, cars/vans/cyclist, road sign detection 
• Current neural detectors are very capable of accurately detecting objects
• SSD, YOLO

Object detection



• But require domain-specific training or fine-tuning

Object detection



• Both can be trained when suitable annotations are available,

• e.g., YOLO for face and human detection, trained on WIDER dataset

Object detection



Object detection acceleration

• Examples of acceleration techniques:
○ Input size reduction.
○ Specific object detection instead of multi-object detection.
○ Parameter reduction.
○ Post-training optimizations with TensorRT, including FP16 computations.



Input 
Size

FPS mAP Forward time (ms)
No TensorRT

Forward time (ms)
TensorRT

Forward time (ms)
FP16

608 2.9 71.26 241.5 128.8 69.3

544 3.2 73.64 214.4 121.2 64.3

480 5.4 74.50 155.4 62.3 35.7

416 6.4 73.38 155.3 56.5 32.5

352 7.8 71.33 111.0 45.0 24.3

320 8.5 70.02 103.0 40.4 22.8

Object detection 

acceleration
• YOLO: good precision in general, but too heavyweight

○ small objects are more challenging to detect.

• Evaluation on VOC (Mean average precision, time):



UAV Object detection & 
tracking



• 2D visual tracking will be employed for target following.
• Satisfactory performance in road footage is required.
• Target tracking should be performed in real-time, i.e., > 25 𝑓𝑝𝑠.
• Embedded implementation is required and low computational complexity is

preferred.
• Parallel or parallelizable methods (e.g., with CUDA implementations) should

be preferred as well.
• Assuming 2D target tracking methods operate faster than combining

target detection and recognition methods, long-term object tracking is also
preferred.

Object Tracking specs for car 
vision



Joint Detection & Tracking
• Tracker: Given the initialized position of a target, the tracker 𝑇 is responsible for estimating the

bounding box of the target in the subsequent frames.

• Detector/Verifier: Given a bounding box defining the target in a specific frame produced by the
tracker, the detector 𝐷 is responsible for verifying this result, and then provide the appropriate
feedback to the system. If the verification fails this module is responsible for detecting the target in
a local search area and provide the correct bounding box to the master node 𝑀

• Master: 𝑀 is responsible for the coordination of the two aforementioned modules. The node
provides the necessary services to control the verification, the detection and the tracking tasks and
controls the communication between the different parts of the system.



● Target re-initialization by the detector in hard tracking cases when
tracking algorithms fail

Joint Detection & Tracking 



● Target re-initialization by the detector in hard tracking cases when tracking algorithms fail

Joint Detection & Tracking 



• The implementation is extended to support the tracking of multiple targets while
maintaining real-time performance

Multi-Target Tracking



Multiview Object 

Detection and Tracking
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Multiview 3-UAV ORBIT
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3D object localization using

3D maps



Multiview 3D Object localization



Sensor fusion

• On vehicle Sensors:

• Lidar

• Monocular camera 

• IMU

• laser altimeter 

• RTK D-GPS

• Embedded processing:

• Intel NUC NUC6i7KYK2 i7-6770HQ

• Jetson TX2

54
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6D object pose estimation



• Computer Vision Approach

• Relies on detecting a set of predefined points (e.g., facial landmarks) and then

using a method for solving the respective Perspective-n-Point (PnP) problem,

i.e., estimation of the camera position with respect to the object.

• Limitations:

• The 3-D coordinates for the landmark points must be known, i.e., a 3-D model of

the object is needed

• The landmarks points must be precisely tracked, i.e., the texture of the object

must allow for setting enough discriminative landmarks

Target Pose Estimation



• Machine Learning Approach

• A neural network receives the object and directly regresses its pose

• Only a set of pose-annotated object pictures are needed

• There is no need to manually develop 3-D models

• The models are more robust to variations of the object for which we want to

estimate its pose

• The pose estimation can run entirely on GPU and (possibly) incorporated

into a unified detection+pose estimation neural network

• Very few pre-trained models are available

• Models must be trained for the objects of interest (faces, bicycles, boats,

etc.)

Target Pose Estimation



• Machine Learning Approach
• We integrated a pre-trained yaw estimation model of facial pose (DeepGaze library) into 

the SSD-300 object detector (trained to detect human faces)

• Varying illumination conditions seem to affect the estimation.

Target Pose Estimation
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6D object pose estimation 
using Deep Learning

6D object pose estimation with 2D keypoint detection.



Posture  estimation
(Openpose)
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Posture estimation
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• Example UAV shot types when shooting boat targets from the side.

Extreme Long Shot   Long Shot

Medium Close Up Two Shot

Framing Shot Types



Motion type min𝒇𝒎𝒂𝒙 𝒇𝒔 when 𝒄𝒔 = 𝟓𝟎%
(medium shot)

𝒇𝒔 when 𝒄𝒔 = 𝟖𝟎%
(closeup)

LTS 77.8 𝑚𝑚 103.4 𝑚𝑚, not feasible 150.7 𝑚𝑚, not feasible

CHASE 162.9 𝑚𝑚 103.4 𝑚𝑚, feasible 150.7 𝑚𝑚, feasible

ORBIT 128.8 𝑚𝑚 103.4 𝑚𝑚, feasible 150.7 𝑚𝑚, not feasible

Determining the desired focal length to achieve specific shot types (constant distance between UAV 
and target)

A shot type is feasible if the fmax > fs

Shot type constraints for 

intelligent UAV AV shooting
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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