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Image features

• SIFT, ORB, SURF, LSK, HOG, LBP, etc

• Gabor features

• Convolutional (CNN) features

• Bag of Features

• Feature point matching

• Image Feature Applications
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Image Features

Image Landmarks.



• Applications:

• Object description and recognition

• Feature correspondence

• Image registration

• Object tracking

• Motion estimation

• Disparity estimation

• 3D object shape reconstruction.

Image Features



• Local feature: a small image region having interesting

spatial characteristics (e.g., image corner).

• It can be described by a feature descriptor (𝑁 -

dimensional vector).

• A feature descriptor is a useful local image representation.

• Typically (not always), a feature detector/descriptor produce

description vectors that are invariant to several image

transformations (e.g., geometrical ones).

Feature Extraction



• Feature detectors:

• SIFT, AGAST, SURF, Hessian Affine, CeNSuRe, BRISK,

ORB, AKAZE, or simply dense sampling.

• Feature descriptors:

• SIFT, SURF, DAISY, HOG, LIOP, LUCID, BRIEF, BRISK,

FREAK, ORB, AKAZE, LATCH, CENTRIST, BinBoost,

LMoD.

Feature Extraction



Image Features 

• Trivial local image features:

• Local greyscales values or RGB vectors.

• Local greyscale, RGB, or other color histograms. 
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• Many image features are based on image edge

magnitude and orientation.

• Local image differentiation techniques can produce

local image gradients:

∇𝑓(𝑥, 𝑦) = [
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
]𝑇 =

Δ
[𝑓𝑥 𝑓𝑦]

𝑇 .

• Gradient magnitude:

𝑒(𝑥, 𝑦) = 𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦).

• Gradient direction:

𝜑(𝑥, 𝑦) = arctan(
𝑓𝑦

𝑓𝑥
).

Image Features 
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Gradient estimates can be obtained by using gradient

operators of the form that perform local image differentiation:

𝑓𝑥 = 𝐰1
𝑇𝐱,

𝑓𝑦 = 𝐰2
𝑇𝐱.

𝐱: local image pixel vector, 

𝐰1 , 𝐰2: weight vectors (gradient masks). 

Image Features 
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Gradient mask examples:

Image Features 
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11Color representation of local image edge directions.

Image Features 
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Scale-Invariant Feature 

Transform (SIFT)
Scale-Invariant Feature Transform (SIFT)

• It finds image landmarks (key points) and outfits them

with an appropriate feature descriptor.

• The descriptors should be have certain invariance

properties against image transformations that do not alter

significantly object visual appearance:

• Geometrical invariance.

• Illumination change invariance.



Scale-Invariant Feature 

Transform (SIFT)
Five steps involved in SIFT algorithm. 

1. Scale-space Extrema Detection

2. Keypoint Localization

3. Orientation Assignment

4. Keypoint Descriptor

5. Keypoint Matching
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Scale-Invariant Feature 

Transform (SIFT)
Scale-space extrema detection

• All image scales and locations are searched.

• It is implemented efficiently by using a difference-of-Gaussian function

to identify potential interest points that are invariant to scale and

orientation changes.

Keypoint localization

• At each candidate location, a detailed local model is fit to determine

location and scale.

• Keypoints are selected based on stability measures.
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Scale-Invariant Feature 

Transform (SIFT)
Orientation assignment

• One or more orientations are assigned to each keypoint location,

based on local image gradient direction.

• All future operations are performed on image data that has been

transformed relative to the assigned orientation, scale and location.

• This provides geometrical transformation invariance.

Keypoint descriptor

• Local image gradients are calculated at the selected scale in each

keypoint neighborhood.

• They are transformed into a representation that is insensitive to

significant local shape distortion and intensity changes.
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Scale-Invariant Feature 

Transform (SIFT)
Orientation Assignment

• An orientation is assigned to each keypoint to achieve invariance

to image rotation.

• A keypoint neigborhood is taken around the keypoint location

depending on the image scale.

• For an image sample 𝑓(𝑥, 𝑦) at scale 𝜎, the gradient magnitude

𝑒(𝑥, 𝑦) and orientation 𝜑(𝑥, 𝑦) are calculated using numerical

image differentiation.
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Scale-Invariant Feature 

Transform (SIFT)
• An orientation histogram with 36 bins covering 360 degrees is

created and is weighted by gradient magnitude and Gaussian-

weighted circular window with radius equal to 1.5 times the scale

of keypoint.

• The highest peak in the histogram and any of its peak above 80%

of the highest peak is also considered to calculate the orientation.

Keypoints with same location and scale, but different directions are

created to feature point matching stability.
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Scale-Invariant Feature 

Transform (SIFT)
Keypoint Descriptor

• A 16 × 16 pixel keypoint neighborhood is divided into 16 4 × 4
pixel sub-blocks.

• For each sub-block, an 8 bin orientation histogram is created,

totaling 128 bin values to form the keypoint descriptor.

• Several measures are taken to achieve robustness against

illumination changes, rotation etc.
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Scale-Invariant Feature 

Transform (SIFT)
Keypoint Matching

• Keypoints between two images are matched by identifying their

nearest neighbors.

• In some cases, the second closest-match may be very near to the first

one, e.g., due to noise.

• In this case, if the ratio of closest-distance to second-closest distance

is taken is greater than 0.8, they are rejected.

• This eliminates around 90% of false matches, while discards only 5%

correct matches.
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Histogram of Oriented Gradients 

(HOG)
The HOG descriptor technique counts occurrences of gradient

orientation in localized portions of an image - detection window, or

region of interest. Essentially represents a distribution of intensity

fluctuations along different orientations (directions).

Steps to calculate HOG:

1. Preprocessing (resizing).

2. Calculate gradient Images.

3. Calculate the gradient histogram in 8 × 8 cells.

4. Block Normalization.

5. Form HOG feature vector.
20



Histogram of Oriented Gradients (HOG)

• Its feature vector is the (local) image gradient direction

histogram.

• Small image patches can be used (e.g., 4 × 4, 8 × 8 pixels).

• Typically, HOG histogram has 9 orientation bins:

• 8 local neighborhood directions, ‘no direction’.
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Histogram of Oriented Gradients 

(HOG)



Histogram of Oriented Gradients

• Image is divided into small 4 × 4, 8 ×

8 pixel patches.

• In each patch, gradient magnitude

and direction are calculated.

• For each patch, a 9 entry feature

vector (image gradient direction

histogram) is calculated.
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Histogram of Oriented Gradients
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Histogram of Oriented Gradients



• HOG histograms are normalized over larger

regions:

• e.g., if HOGs are calculated in 4 × 4 pixel paches,

they are normalized over 8 × 8 pixel regions.

• Thus, a 36-entry vector normalization is

performed.

• Normalization helps rendering HOG features

more invariant to image intensity variations.
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Speeded Up Robust 

Features (SURF)
Speeded Up Robust Features (SURF)

• It is a fast and robust algorithm for local, similarity invariant

representation and for image comparison.

• The main interest of the SURF approach lies in its fast

computation of operators using box filters, thus enabling

real-time applications, such as object tracking and

recognition.
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Speeded Up Robust 

Features (SURF)
SURF Feature Extraction

• Integral image 𝑓Σ(𝐱) at a location 𝐱 = 𝑥, 𝑦 𝑇 represents the sum of all

pixels in the input image 𝑓 within a rectangular region formed by the

origin and 𝐱:

𝑓Σ 𝐱 =

𝑖=0

𝑥



𝑗=0

𝑦

𝑓(𝑖, 𝑗)

• With 𝑓Σ(𝐱) calculated, it only takes four additions to calculate the sum

of the intensities over any upright, rectangular area, independent of its

size.
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Speeded Up Robust 

Features (SURF)
• It is used as a quick way of calculating the sum of pixel values in a

rectangular image ROI, e.g., for calculating the average intensity

within a given image ROI.

• It allows fast computation of box type convolution filters.

• Interest point location and the scale detection uses the determinant

of a very basic Hessian matrix approximation, because of its speed

and accuracy:

𝐇 𝑓(𝑥, 𝑦) =
𝜕2𝑓/𝜕𝑥2 𝜕2𝑓/𝜕𝑥𝜕𝑦

𝜕2𝑓/𝜕𝑥𝜕𝑦 𝜕2𝑓/𝜕𝑦2
.
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Speeded Up Robust 

Features (SURF)
• Image scale adaptation is performed by image filtering using a

Gaussian kernel before differentiation.

• It leads to the use of an LoG kernel at scale 𝜎:

𝐇′ 𝑓(𝑥, 𝑦) =
𝜕2(𝑓 ∗∗ 𝐺)/𝜕𝑥2 𝜕2(𝑓 ∗∗ 𝐺)/𝜕𝑥𝜕𝑦

𝜕2(𝑓 ∗∗ 𝐺)/𝜕𝑥𝜕𝑦 𝜕2(𝑓 ∗∗ 𝐺)/𝜕𝑦2
.
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Speeded Up Robust 

Features (SURF)
SURF Feature Description

• The creation of SURF descriptor takes place in two steps.

• The first step consists of fixing a reproducible orientation based on

information from a circular region around the keypoint.

• Then, a square region is constructed that is aligned to the selected

orientation and is used to extract the SURF descriptor.

• Orientation Assignment. In order to be invariant to rotation, SURF

tries to identify a reproducible orientation for the interest points.
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Speeded Up

Robust Features (SURF)

SURF descriptor components
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Oriented FAST and Rotated 

BRIEF (ORB)
Oriented FAST and Rotated BRIEF (ORB)

• ORB performs as well as SIFT on feature detection (and is better

than SURF).

• It is almost two orders of magnitude faster.

• ORB builds on the well-known FAST keypoint detector and the

BRIEF descriptor.

• Both of these techniques are attractive because of their good

performance and low computation cost.
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Oriented FAST and Rotated 

BRIEF (ORB)
ORB main characteristics:

• The addition of a fast and accurate orientation component to FAST.

• The efficient computation of oriented BRIEF features.

• Analysis of variance and correlation of oriented BRIEF features.

• A learning method for decorrelating BRIEF features under

rotational invariance, leading to better performance in nearest-

neighbor applications.
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Oriented FAST and Rotated 
BRIEF (ORB)
• ORB has a 256-bit binary descriptor.

• It is extracted and matched very fast.

• Hamming distance is used for ORB descriptor matching.

• Good for SLAM (tracking, relocation and loop detection).

• Multi-scale detection at same point appears at several

scales.



Oriented FAST and Rotated 
BRIEF (ORB)

FAST corner detector

• Pixel 𝐩 surrounded by consecutive pixels all brighter/darker

than 𝐩.

• Much faster than other feature point detectors.



Oriented FAST and Rotated 
BRIEF (ORB)
rBRIEF binary descriptor

• It is computed around a FAST corner.

• It has orientation.

Hamming 

distance 5

Hamming 

distance 51



Local Steering Kernels

Local Steering Kernels (LSKs)
• They are a non-linear combination of 

weighted distances between a pixel and its 
surrounding pixels.

• They exploit both spatial and edge detection 
information.

• One LSK vector per pixel is derived.

• LSKs are invariant to brightness & contrast 
variations and noise.

[SEO2010]



Local Steering Kernels

• Local Steering Kernels:

𝐾 𝐱𝑙 − 𝐱 =
det(𝐂𝑙)

ℎ2
exp −

𝐱𝑙 − 𝐱 𝑇𝐂𝑙 𝐱𝑙 − 𝐱

2ℎ2
.

• 𝐂𝑙 : Covariance matrix of 𝑘 × 𝑘 neighboring pixel gradient matrix. 

• It rotates, elongates, and scales the Gaussian kernel along the 
local edge.



Gabor features

Simple-cells in V1 visual cortex area are orientation-

selective, responding to spatial intensity changes only along

a certain orientation (and scale).

• Simple-cells can be modeled by Gabor functions:

ℎ 𝑥, 𝑦 =
1

2𝜋𝜎
exp −

1

2𝜎2
𝑥𝑟
2 + 𝑟2𝑦𝑟

2 exp 𝑖
2𝜋𝑥𝑟
𝜆

+ 𝜑 ,

𝑥𝑟 = 𝑥cos𝜃 + 𝑦sin𝜃,
𝑦𝑟 = −𝑥cos𝜃 + 𝑦sin𝜃.

• Gabor kernels can be convolved with an image to produce

Gabor image features.
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Human Vision Model

40

Gabor function parameters:

• 𝜃: Gabor filter normal orientation.  

• 𝜑: phase offset.

• 𝜎: Gaussian standard deviation 

(scale). 

• 𝑟: spatial aspect ratio defining the 

Gabor function ellipticity. 

• 𝜆: sinusoidal wavelength.

• 𝜑: sinusoidal phase.



Image Features 

Convolutional image features:

• Output of CNN convolutional layers.

• They encode local directional and color information.
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a) Multilayer CNN architecture; b) Convolution kernels.



Bag-of-features

42

• Origin: texture recognition

-Texture is characterized by the repetition of basic elements or

textons.

• Origin: bag-of-words

-Orderless document representation: word frequencies in a

dictionary.

- It can be used for document classification.



Bag-of-features
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Use of bag-of-words for image description and classification.



Bag-of-features
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Step1: Feature detection and description.

• Any feature descriptor can be used.

• Invariant descriptors are preferred.

• Dense descriptors

• Interest points do not necessarily capture “all”

features.

• Color-based descriptors

• Shape-based descriptors



Bag-of-features
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Step 2: Quantization

• Feature descriptor clustering by:

• K-means,

• Gaussian mixture models.

• Assign a ‘visual word’ to each cluster.

• Typically, the cluster centroid can be used.

• Hard/soft assignment of feature descriptors to a cluster.

• Build visual word  frequency histogram.



Bag-of-features
K-means clustering

• It minimizes the sum of squared Euclidean distances between points 

xi and their nearest cluster centers m k

Gaussian mixture model (GMM)

• Mixture of Gaussians is weighted sum of Gaussians:

𝑓𝐗 𝐱 =

𝑖

𝜋𝑖
1

2𝜋
𝑛
2det(𝐂𝑖)

1
2

exp −
1

2
𝐱 −𝐦𝑖

𝑇𝐂𝑖
−𝟏 𝐱 −𝐦𝐢 .
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Bag-of-features

Hard or soft assignment

• K-means corresponds to hard assignment

• Assign to the closest cluster center

• Count number of descriptors assigned to a cluster.

• Gaussian mixture model for soft assignment

• Estimate distance to all centers

• Sum over number of descriptors.
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Bag-of-features

Step 3: Classification

• Train/test a classifier assigning bag-of features representations of

images to different image classes.
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• 2D point correspondence

• Pixel correspondence

• Feature point correspondence.

• Point correspondences can be estimated between different

views of the same object.

Feature Correspondence



Feature Correspondence



• 2D point correspondence:

• Pixel correspondence

• Feature correspondence.

• Local feature: a small image region having interesting spatial

characteristics (e.g., corner).

• It can be described by a 𝑁-dimensional vector.

• Typically (not always), a feature detector/descriptor tries to

produce description vectors invariant to several image

transformations.

Feature Extraction



• Uniqueness constraint: a point in one view has at most one

corresponding match in the other view.

• Continuity constraint: adjacent feature points in one view should

correspond to adjacent features in the other view.

• Topological constraint: the relative position of 3D points remains

unaltered in their projections to all views.

Feature Matching Algorithms



• Area-based matching algorithms are the oldest matching

methods, used mainly for low-level feature matching.

• Matching of two feature points is based on the minimization

of some distance measure of the respective local image

windows.

Feature Matching Algorithms



• Assuming feature points 𝐩𝑙 = 𝑥𝑙 , 𝑦𝑙
𝑇 and 𝐩𝑟 = 𝑥𝑟 , 𝑦𝑟

𝑇 to

be matched, the grayscale intensity images 𝑓𝑙 𝑥, 𝑦 and

𝑓𝑟 𝑥, 𝑦 in a 𝐿 = 2𝑁 + 1 × 2𝑀 + 1 local neighborhood

window centered around these points are going to be

compared.

Feature Matching Algorithms



Distance-based matching measures which can be used:

• Mean Absolute Error (MAE) or 𝐿1 norm:

𝑀𝐴𝐸 𝐩𝑙 , 𝐩𝑟

= 

𝑖=−𝑁

𝑁



𝑗=−𝑀

𝑀

𝑓𝑙 𝑥𝑙 + 𝑖, 𝑦𝑙 + 𝑗 − 𝑓𝑟 𝑥𝑟 + 𝑖, 𝑦𝑟 + 𝑗 .

• Mean Square Error (MSE) or 𝐿2 norm:

𝑀𝑆𝐸 𝐩𝑙 , 𝐩𝑟 = 

𝑖=−𝑁

𝑁



𝑗=−𝑀

𝑀

𝑓𝑙 𝑥𝑙 + 𝑖, 𝑦𝑙 + 𝑗 − 𝑓𝑟 𝑥𝑟 + 𝑖, 𝑦𝑟 + 𝑗
2
.

Feature Matching Algorithms



• Correlation-based similarity measures which can be used:

• Normalized cross-correlation (NCC):

𝑁𝐶𝐶 𝐩𝑙 , 𝐩𝑟 =
𝜎𝑙𝑟
2 𝑝𝑙 , 𝑝𝑟

𝜎𝑙
2 𝑝𝑙 𝜎𝑟

2 𝑝𝑟

.

where:

𝜎𝑙𝑟
2 𝐩𝑙 , 𝐩𝑟 =

1

2𝑁 + 1 2𝑀 + 1


𝑖=−𝑁

𝑁



𝑗=−𝑀

𝑀

𝑓𝑙 𝑥𝑙 + 𝑖, 𝑦𝑙 + 𝑗 − ഥ𝑓𝑙 ∙ 𝑓𝑟 𝑥𝑟 + 𝑖, 𝑦𝑟 + 𝑗 − ഥ𝑓𝑟 .

Feature Matching Algorithms



𝜎𝑙
2 𝐩𝑙 =

1

2𝑁 + 1 2𝑀 + 1


𝑖=−𝑁

𝑁



𝑗=−𝑀

𝑀

𝑓𝑙 𝑥𝑙 + 𝑖, 𝑦𝑙 + 𝑗 − ഥ𝑓𝑙
2
.

𝜎𝑟
2 𝐩𝑟 =

1

2𝑁 + 1 2𝑀 + 1


𝑖=−𝑁

𝑁



𝑗=−𝑀

𝑀

𝑓𝑟 𝑥𝑟 + 𝑖, 𝑦𝑟 + 𝑗 − ഥ𝑓𝑟
2
.

Feature Matching Algorithms



• The somewhat more stable than NCC is the Modified Normalized

Cross-Correlation (MNCC):

𝑀𝑁𝐶𝐶 𝐩𝑙 , 𝐩𝑟 =
2𝜎𝑙𝑟

2 𝑝𝑙 , 𝑝𝑟

𝜎𝑙
2 𝑝𝑙 + 𝜎𝑟

2 𝑝𝑟
.

Feature Matching Algorithms



• Other image feature characteristics which can be used for

feature matching:

• Edge attributes (e.g., edge orientation, location, intensity difference

between the two sides of the edges).

• They may suffer from occlusion problems.

• Corner attributes (e.g., coordinates):

• Harris detector.

• Orientation of line segments and coordinates of the end or/and mid

points.

• Detection methods not robust against noise.

Feature Matching Algorithms



• Curve segments.

• Not frequently used because of high computational complexity

and matching ambiguities.

• Curve attributes (e.g., turning points).

• Circles.

• Ellipses.

• Polygonal regions.

Feature Matching Algorithms



• Most of the feature-based stereo or multiview matching

systems use a combination of features and compare the

descriptor token vectors containing the attributes of each

feature point.

• Edges, curves, surface and region patches.

Feature Matching Algorithms



• General matching approach based on a similarity metric

between a token vector pair – nearest neighbor search:

• If 𝐱, 𝐲 feature descriptor vectors and 𝐰 the weight vector of the

feature token type, then the similarity is given by:

𝑆 =
1

𝐰𝑇 𝐱 − 𝐲
.

• ∙ can be the Euclidean distance metric and 𝐰 can be omitted if

every feature characteristic is equally important.

• We search for a pair of feature descriptors maximizing the similarity.

Feature Matching Algorithms



• Naïve nearest neighbor search: a brute force approach.

• Calculate the similarity of each feature point on one image with

every other feature point on the other image and match the pair with

maximum similarity.

• Best-bin-first search: a faster but approximate method -

modification of kd-tree search.

Feature Matching Algorithms



• Applications:

• Object description and recognition

• Feature correspondence

• Image registration

• Object tracking

• Motion estimation

• Disparity estimation

• 3D object shape reconstruction.

Image Feature Applications



Stereo



• Image feature matching can be used in 3D shape

reconstruction, given multiple 2D scene views.

• The multiple views may come from different view points /

cameras:

• stereoscopic / binocular view, trinocular view, Multiview

imaging .

• The may come from a moving camera, if the scene is static:

Structure-from-Motion (SfM).

3D shape reconstruction



• Homologous image features: projections of the same

natural 3D point on each camera view, after feature

matching.

• Commonly used constraints for reduction of the search

space for feature correspondences:

• Epipolar constraint: when the projection geometry is known,

search for a corresponding feature point can be restricted to the

epipolar line on the other image of the stereo pair.

Feature Matching Algorithms



3D shape reconstruction



Object tracking
Image features in object tracking:

• During tracking, input is the current object ROI.

• Visual tracker learns a tracking model.

• It can be the grayscale or RGB values of each ROI pixel or

calculated ROI features.

• Histogram of oriented gradients (HOG) is a very useful

feature descriptor.
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Image registration

• Image feature matching.

• It can be used for 2D image registration.

Subtractive radiography.



Image registration

• Image feature matching for image mosaicking.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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