

F. Fotopoulos, Prof. Ioannis Pitas Aristotle University of Thessaloniki fototheo@csd.auth.gr Version 5.2

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

- Cameras capture objects that reflect or emit light.
- In general, reflection can me decomposed in two components:
 - **Diffuse reflection**: Distributes light energy equally along any spatial direction.
 - Specular reflection: Light energy is strongest along the direction of the incident light.
- Surfaces performing diffuse reflection, aka Lambertian surfaces, are described as dull or matte; while specular reflection can be observed on glass surfaces and mirrors.

- **Ambient illumination** sources emit the same light energy in all directions and thus, the position of the source is not that important for the reflecting surface (e.g., cloudy sky).
- Point illumination sources emit light energy isotropically (e.g., sun) or anisotropically (e.g., light bulb) along various directions making the position of the light source important.

- The reflected irradiance when object surface produces diffuse reflectance is given
- for *ambient illumination* by:

 $f_r(X,Y,Z,t,\lambda) = r(X,Y,Z,t,\lambda)E_a(t,\lambda)$

for *point light source* by:

 $f_r(X, Y, Z, t, \lambda) = r(X, Y, Z, t, \lambda)E_p(t, \lambda)cos\theta.$

Distant point source and ambient illumination:

 $E(t,\lambda) = E_a(t,\lambda) + E_p(t,\lambda)\cos\theta.$

Artificial Intelligence & Information Analysis Lab

- We define an image as a **2D** function f(x,y), where (x,y) corresponds to a co-ordinate in two-dimensional space and f(x,y) represents the light intensity at this co-ordinate.
- In a discrete image, the (*i*, *j*) point is called a *pixel* (or picture element).
- Our main goal is to project a 3D scene into a 2D plane in which every point can be represented as a pixel.
- To achieve that we need an optical system that attracts the energy reflected from the object, as well as a *sensor* which computes the energy absorbed.

VML

- The basic idea is that incoming illumination energy is converted into voltage and which can be subsequently sampled to obtain a digital image.
- CCD/CMOS sensor output varies according to the input electric energy.

VML

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

Camera Structure

Camera Exposure

- When it comes to exposure, the 3 basic camera terms are: aperture, shutter and ISO.
- Aperture refers to how "open" or "closed" the iris of a lens is, which affects the amount of light we let in.
- We measure aperture in *f-stops* and for larger f-stop numbers we get more closed iris which means that less light passes through.
- Also, by changing the f-stop we can control the depth of field.
- Shutter defines the time period that we are going to allow light rays to pass through and hit the camera's sensor.

Camera Exposure

- High *shutter speed* is used when we want to capture fast moving scenes or get pictures without motion blur.
- ISO refers to sensor sensitivity to light.

VML

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

Camera Lens

Artificial Intelligence & Information Analysis Lab

- Camera lens are responsible for directing the light rays in order to recreate the scene as accurately as possible on the digital sensor.
- **Focal length** of a lens characterizes its angle of view and thus how much magnified will an object look for a given position.
- Wide angle lenses have short focal lengths, while telephoto lenses have longer focal lengths.
- **Zoom** lens gives you the ability to vary the focal length within a pre-defined range.

A prime or fixed focal length lens cannot zoom.

Camera Lens

28mm wide-angle lens

300mm telephoto lens

Wide-angle and telephoto lenses [PHO2013].

Artificial Intelligence & Information Analysis Lab

Optical Lens

- A lens is a transparent medium (usually glass) bounded by two curved surfaces.
- The two major kinds of lenses are converging and diverging.
- A converging lens brings all light-rays parallel to optical axis together at the so-called focal point F.
- A diverging lens spreads out all light-rays parallel to optical axis in such a way that they appear to diverge from a virtual focal point F in front of the lens.

Optical Lens

(VML

Optical Lens

• Lensmaker's equation gives us the focal length (f):

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

- n: index of refraction
- R_1 , R_2 : radii of curvature of the two surfaces
- Thin lens equation:

$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f}$$

- d: object distance
- d': image distance

Artificial Intelligence & Information Analysis Lab

- A common problem that occurs when trying to produce a digital image via a camera is lens distortion.
- This causes physical straight lines to appear as curves in the output image.
- The two main categories of lens distortions are:

Radial distortion.

Tangential distortion.

Radial distortion

- It is caused by the geometric shape of the lens and affects the imaging of straight lines.
- Most often, radial distortion affects to a much greater degree, the geometry of the image than tangential distortion.
- The types of radial distortions are:
 - Barrel Distortion.
 - Pincushion distortion.
 - Mustache Distortion.

Artificial Intelligence & Information Analysis Lab

no distortion

barrel distortion

pincushion distortion

mustache distortion

- We can observe that radial distortions are symmetric about the image center.
- Barrel distortion is found in wide-angle/panoramic images, while pincushion distortion is associated with telephoto lenses to eliminate globe effects.

• To correct radial distortion, we use:

$$\begin{aligned} x_{ud} &= x_d (1 + k_1 r^2 + k_2 r^4 + k_3 r^6), \\ y_{ud} &= y_d (1 + k_1 r^2 + k_2 r^4 + k_3 r^6), \\ r^2 &= x_d^2 + y_d^2. \end{aligned}$$

where $x_d = \frac{x^c}{z^c} = \frac{u - u_0}{f_x}$ and $y_d = \frac{y^c}{z^c} = \frac{v - v_0}{f_y}$ are obtained from the distorted image.

• k_1 , k_2 and k_3 are three parameters used for radial distortion correction.

Tangential distortion:

• It occurs when the lens installed is not perfectly parallel to the image plane.

Artificial Intelligence & Information Analysis Lab (3.1) Source: Mathworks

• The correction formula for tangential distortion is:

$$x_{ud} = x_d + [2p_1x_dy_d + p_2(r^2 + 2x_d^2)],$$

$$y_{ud} = y_d + [p_1(r^2 + 2y_d^2) + 2p_2x_dy_d].$$

• where p_1 and p_2 are two intrinsic parameters that can be estimated using the appropriate collection of images.

VML

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

- CCD and CMOS are the two most common sensor technologies that digital cameras use are.
- Both convert light energy into electrons.

Light sensing [LIT2001].

Charge-Coupled Device (CCD)

- A silicon chip that holds an array of photosensitive areas.
- Charged packets are transferred from these areas into a shift register.
- Ultimately, electron energy passes into an analog-to-digital (A/D) converter which outputs the pixel value.
- Efficiency in speed relies on the advance of charged packets across the chip. Thus, it is limited.
- Yet, this phenomenon contributes to the high sensitivity and pixel-topixel consistency of the CCD (uniformity).

CCD architecture [EDM2021].

Complementary Metal Oxide Semiconductor (CMOS)

- The charge from the photosensitive pixel is converted to a voltage at the pixel site and gets amplified
- The signal is multiplexed by row and column with the rest of the chip.
- Each pixel has its own charge-to-voltage conversion, and often also contains amplifiers, noise-correction, and digitization circuits
- This parallel process allows for high bandwith/speed but decreases its uniformity.

CMOS architecture [EDM2021].

CCD VS CMOS

- **Responsivity** is the amount of signal the sensor delivers per unit of input energy. CMOS are slightly superior to CCD.
- **Dynamic range** is the ratio of a pixel saturation level to its signal threshold. CCDs gives better results.
- **Uniformity** is the consistency for different pixels under the same illumination circumstances.
 - CMOS sensors are traditionally worse in that area, but latest CMOS technologies come close to the CCD.
- Speed. CMOS has bigger speed than CCD.

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

Image Types

• The image acquired depends on the type of camera (and film) that we use.

a) X-ray image

b) Infrared image

c) Visible light image

Image Types

The three basic types of images are:

- **Binary images**: Each pixel can take a value of 0 or 1: $g(x, y) \in \{0, 1\}$.
- *Gray-scale images*: Each pixel can take a value from 0 to 255:

 $f(x,y)\in\{0,\ldots,255\}$

• **Color images**: Each pixel consists of three channels (RGB). Each of them is assigned with a value from 0 to 255: $[f_R(x,y), f_G(x,y), f_B(x,y)]^T \in \{0, ..., 255\}^3$.

Image Digitization

- As we previously seen the sensor produces an internal 2D plane which is basically a projection of the 3D scene that has been captured.
- In order to represent that 2D plane digitally in a computer we need to go through the process of digitization.
- Specifically, this consists of two basic subprocess:
 - 1. Spatial sampling of the 2D plane.
 - 2. Quantization of the light intensity values that has been taken via the sensor.

Quantization

- Each point in the 2D plane has a light intensity value that ranges from 0 to ∞, so it must be quantized.
- Usually we produce 8-bit images, so for example in a gray-scale image we can use up to $256 = 2^8$ gray levels.

a) 256 gray levels

b) 64 gray levels

c) 16 gray levels

d) 2 gray levels

Correspondingly, in RGB values should be quantized for each channel.

Artificial Intelligence & Information Analysis Lab

Quantization

• For uniform distribution, we define *q* as the quantization step:

$$q=\frac{1}{2^b}.$$

- for 8-bit images we have b = 8.
- And to quantize the light intensity levels:

$$k = 0, 1, 2, \dots, 2^b - 1.$$

Quantization

• *Mean square Error* (*MSE*) of quantization:

$$e_q = E\left[\left(x - Q(x)\right)^2\right] = \int_{-\infty}^{\infty} \left(x - Q(x)\right)^2 p(x) dx.$$

- p(x) is distribution of input x.
- Signal-to-Noise Ratio (SNR) is given by:

 $SNR = 20 \log_{10}(2^b) \approx 6.02b \ dB.$

Non-uniform Quantization

 Using Weber's law, we can quantize regarding visual sensitivity:

Image Acquisition

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

Gamma (γ) Correction

- Gamma defines the relation between the given pixel value and its actual luminance.
- Cameras do not capture luminance in a linear fashion so in order to correct that we use the gamma correction:

$$v_{out} = v_{in}^{\gamma}.$$

- Image displays also suffer from non-linear light intensity depiction.
- Most common Gamma used are 2.2, 2.4, 2.6.

Gamma (γ) Correction

Gamma Correction [ROS2021].

Contrast equalization

- Just Noticeable Difference (JND) is the minimum amount something must be changed for the difference to be apparent.
- Perceived contrast is a function of the intensity, specifically via Weber's law we get:

$$\frac{\Delta f}{f} = k.$$

where f is the intensity and Δf is the intensity difference (contrast).

 This implies that sometimes human eye can not perceive the contrast between different intensities on an object and its background.

Contrast equalization

- For example, a high contrast $\Delta f = 200 100$ at a background intensity f = 100 is observed the same way as lower contrast $\Delta f = 20 10$ with f = 10 (because they both equal 1).
- This basically means that we are less sensitive when the intensity level is high.
- Perceived contrast equation:

White balance is the process of removing unrealistic colors that are cast into the image, in order to achieve natural ones.

• To achieve that we must consider the color temperature of the light source.

- We measure *color temperature* in Kelvin (K) and is a physical feature of light.
- As the color temperature rises, we move from warm colors to cooler ones.

White balance in photography [WIL2021].

 To balance the colors in a picture we need to scale the relative luminances, by using as reference a white/neutral object in the image.

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 255/R'_{w} & 0 & 0 \\ 0 & 255/G'_{w} & 0 \\ 0 & 0 & 255/B'_{w} \end{bmatrix} \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix}.$$

 where R, G and B are the color balanced RGB values of a pixel in the image; R', G' and B' are the RGB components before color balancing and R'_w, G'_w, B'_w corresponds to the RGB values of a pixel that is believed to be a white surface.

> Artificial Intelligence & Information Analysis Lab

Spatial Sampling

- The continuous 2D plane needs to be spatially sampled in order to be rasterized.
- The more pixels a rasterization unit has the best of a resolution we can achieve.

Image Resolution

- Two frequently misunderstood terms are *image size* and *image resolution*.
- Image size refers to pixel dimensions of the image while image resolution refers to pixel density (PPI). (Note: DPI≠PPI)

- Pixel Dimensions = 10x10 px Resolution (Pixel Density) = 10 Pixels/Inch
- If we increase the physical size (inches) and keep the same dimensions (pixels) we have lower resolution.

2 Inches

Resolution (Pixel Density) = 5 Pixels/Inch

Pixel Dimensions = 10x10 px Resolution (Pixel Density) = 10 Pixels/Inch

We need to increase the pixel dimensions when physical size gets bigger in order to preserve the resolution.

Pixel Dimensions = 20x20 px Resolution (Pixel Density) = 10 Pixels/Inch

Sampling Rate

- Aliasing occurs when sampling a continuous signal/image the sampling rate isn't high enough and results to faulty capture of the image.
- From Nyquist rule, the image sampling rate should be greater than double the maximal spatial image frequency in the image to avoid aliasing:

$$f_{sx} > 2f_{xmax}, \qquad f_{sy} > 2f_{ymax}.$$

 Problematic sampling process can lead to picture artefacts, like Moire patterns.

Sampling Rate

• Examples of Moire patterns:

- Color filter array or color filter mosaic is an array consisting of tiny color filters that are placed in front of the camera sensor.
- They are essential for capturing RGB images because sensor by themselves can only produce gray-scale images.
- Each color filter allows different wavelength range of light to pass in order to obtain information about the color of light.

Artificial Intelligence & Information Analysis Lab

- The most common type of Color filter array is the **Bayer filter**.
- The filter patterns consists of 50% green, 25% red and 25% blue.
- This happens because human eyes are more sensitive to green and distinguish luminance intensity better in green channel than in red or blue.

Bayer Filter [BAY2021].

- To construct the full RGB image an algorithm is implemented which interpolates the missing color values for all the pixels.
- Simple algorithms that implement demosaicing interpolation are:
 - Nearest neighbor interpolation: simply copies the closest pixel of the same color channel (low quality method)
 - **Bilinear interpolation**: where for example a blue value is computed for a non-blue pixel as an average of the four nearest blue color pixels (or two nearest if it's linear interpolation)
- Better quality methods include bicubic interpolation, spline interpolation.

1) Original scene

2) Gray-scale output of sensor array

3) Output array via Bayer filter

Artificial Intelligence &

Information Analysis Lab

Demosaicing interpolation [BAY2021].

Image Acquisition

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

Image File Formats

- The types of formats that an image data can be stored are:
 - Uncompressed format: Contains all the data without any compression applied. This results in very big image sizes. (TIFF, RAW, BMP)
 - **Compressed format**: Compression algorithms are applied, 2 subcategories:
 - Lossless: File size is reduced without losing any of the uncompressed image data. (PNG, GIF, FLIF)
 - Lossy: File size is reduced but data from the uncompressed image are thrown away which can lead to noise/artifacts appearing in the image. (JPEG)

Image File Formats

 Vector format: Unlike the previous ones, vector format (SVG, CGM) does not apply rasterization, instead it contains a geometric description of the image. Therefore, it can be displayed smoothly at any desired size.

Image Acquisition

ML

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

- Most common types of scanners are:
 - Flatbed scanners: Most versatile and commonly used scanners.
 - Sheet-fed scanners: Similar to flatbed scanners except that the document is moving and the scan head is fixed.
 - Handheld scanners: Same basic technology as flatbed scanner but rely on the user to move them. Typically, mediocre quality but is a quick-scan method.
 - Drum scanners: Mostly used by publishing industry to obtain incredibly detailed images.

63

a) Flatbed scanner b) Sh

b) Sheet-fed scanner

c) Handheld scanner

Scanners

Original

Scanners

Scanning process:

- Document is placed on the glass plate and the scan head (mirrors, lens, CCD) is placed in the starting position.
- Lamp illuminate the sheet of paper and reflects back to the mirror while the scan head is moving slowly across the document.
- The image of the document is reflected from the first angled mirror to another mirror and then finally onto a lens.
- The lens focuses the image through a filter on the CCD.
- Finally, A/D converter is used to get the digital output of CCD.

Image Acquisition

VML

- Light Reflection
- Camera Structure
- Camera Lens
- Sensor Technologies
- Image Digitization
- Image Corrections
- Image File Formats
- Scanners

- Image noise can be mainly of two kinds:
 - **Photoelectronic noise:** Generated by the image sensor and the circuits inside the digital camera.
 - Film-Grain noise: Optical texture that appears mainly in processed photographic film. It can be added on deliberately for stylistic purposes or to make a digital image look less "flat".
- Most common noise types observed in digital images are Gaussian noise, Poisson noise, Speckle noise and Salt-and-Pepper noise.

Gaussian noise:

- Arises in amplifiers or detectors and is caused by natural sources (e.g. thermal vibration of atoms).
- Gaussian noise mainly distorts gray values in the image.

PDF of gaussian noise is given by:

$$p(f) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(f-\mu)^2}{2\sigma^2}}$$

• f represents the gray level, μ the mean and σ the standard deviation

Artificial Intelligence & Information Analysis Lab

Salt-and-Pepper noise:

- Usually caused by sharp and irregular disturbances in the image signal.
- Also called impulse noise because it consists of black and/or white impulses which alter random pixels in the image.
- Model:

 $g(i,j) = \begin{cases} z(i,j), & \text{with probability } p \\ f(i,j), & \text{with probability } 1-p. \end{cases}$

VML

Speckle noise:

- Multiplicative type of noise that inherently exists in systems such as active radar and ultrasound.
- It's caused by the interference of the returning wave collected by the transducer.
- It can be expressed by:

 $g(n,m) = f(n,m) * u(n,m) + \xi(n,m)$

• where g(n,m) is the observed image, u(n,m) multiplicative component and $\xi(n,m)$ additive component of the speckle noise.
Image noise

Poisson noise (or Shot noise):

- Mainly appears in the brighter parts of the image and is caused by fluctuations of the number of photons detected.
- Probability distribution function for each pixel is given by:

$$p(f=k) = \frac{k^{\lambda}e^{-\lambda}}{k!}$$

• $\lambda > 0$ is a Poisson distribution parameter.

Image noise

(Original)

a. Salt & pepper noise

b. Gaussian noise

c. Speckle noise

d. Poisson noise

Various image noise types [SAR2016].

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

[MIS2017] Mishra VK, Kumar S, Shukla N. Image acquisition and techniques to perform image acquisition. SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology. 2017 Jun 25;9(01):21-4.

[LIT2001] Litwiller D. Ccd vs. cmos. Photonics spectra. 2001 Jan;35(1):154-8. [EDM2021] Edmund Optics, "Understanding Camera Sensors for Machine Vision Applications", https://www.edmundoptics.eu/knowledge-center/applicationnotes/imaging/understanding-camera-sensors-for-machine-vision-applications/

Bibliography

[COP2021] CopyFaxes, "The Scanning Process", https://copyfaxes.com/blog/scanning-process/

[REA2021] ReadyArtwork , "Scalable Vector Graphic Examples", https://www.readyartwork.com/category/design/page/3/

[BAY2021] "Bayer Filter", https://en.wikipedia.org/wiki/Bayer_filter

[RAH2021] S. F. Rahman, "CSS Techniques for Retina Displays", https://www.sitepoint.com/css-techniques-for-retina-displays/

[WIL2021] B. Williams, "How To Use White Balance In Photography", https://bwillcreative.com/how-to-use-white-balance-in-photography/

[ROS2021] A. Rosebrock, "OpenCV Gamma Correction", https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/

[WOO2007] Woodman, R., 2007. A photometric stereo approach to face recognition.

[PHO2013] Photo Review Issue 57, 2013

[SAR2016] Sarker O, Akter S, Mishu AA. Review on the performance of different types of filter in the presence of various noises. Engineering International. 2016 Dec 31;4(2):49-56.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

