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• Generative learning models are employed for

approximating the data generating probability density

function (pdf) from which a dataset has been sampled.

• This is meaningful both for supervised and unsupervised

learning problems.

• They are contrasted against discriminative learning

models, used in classification, which are only meaningful

for supervised problems.
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• Each generative model is defined by a set of parameters, which

are optimized by training on a given dataset.

• A trained generative model approximates the data generating

probability density function (data distribution).

• Generative Adversarial Networks (GANs) are Deep Neural

Network (DNN)-based generative models. They capture the

data distribution implicitly, thus facilitating sampling from data

distribution approximation, after training.

• They are typically used for generating realistic novel data

samples (“fakes”) that meaningfully resemble the training data.
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• GAN are a class of generative models that produce promising

results in several application domains, ranging from image

generation to video captioning.

• Since it is a DNN-based architecture, it bears all the advantages

of DNNs (e.g., automatic feature learning), through proper

training.

• Various neural building blocks may be internally employed,

depending on the employed data and the target task (e.g., 2D

convolutional layers for synthesizing images).
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• A trained GAN may be employed to create huge amounts of

realistic data for any digital media genre.

• GANs can be used for data augmentation, which can be very

useful for:

• Training/testing other DNNs.

• DNN domain adaptation.

6

Introduction



10

• A generative model encodes a distribution Ƹ𝑝𝛉(𝐱) defined by

parameter vector 𝛉 ∈ ℝ𝑐, so that Ƹ𝑝𝛉(𝐱) ≈ 𝑝𝐱(𝐱).

• Ƹ𝑝𝛉(𝐱) is a function of random vector 𝐱.

• After the generative model has been trained, Ƹ𝑝𝛉(𝐱) is a good

approximation of 𝑝𝐱(𝐱).

• Model complexity is directly related to number of model

parameters 𝑐.

Background
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Typically, in a Maximum Likelihood Estimation (MLE) setting,

training the model on 𝒟, in order to find a “good” 𝛉 implies

maximizing the likelihood of 𝛉, i.e., defined by:

𝛉∗ = argmax𝛉ς𝑖=1
𝑁 Ƹ𝑝𝛉(𝐱𝑖).

• Due to practical considerations (e.g., numerical stability), we

obtain an equivalent optimization problem, by computing the

logarithm of the likelihood:

𝛉∗ = argmax𝛉σ𝑖=1
𝑁 log Ƹ𝑝𝛉(𝐱𝑖).

Background
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• The term log 𝑝𝐱(𝐱)does not affect the optimization process,

since it is not a function of 𝛉.

• Thus, the minimization problem may be reformulated

equivalently as:

𝛉∗ = argmin𝛉 − 𝐸𝐱{log Ƹ𝑝𝛉 𝐱 }.

• This is called negative log-likelihood minimization.

Background
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Proposition: Finding 𝛉∗under this formulation is equivalent to

minimizing cross-entropy 𝐻(𝑝𝐱, Ƹ𝑝𝛉 ) between distributions 𝑝𝐱(𝐱)
and Ƹ𝑝𝛉 𝐱 .

Proof: As the entropy of 𝑝𝐱(𝐱) is given by:

𝐻 𝑝𝐱 = −𝛦𝐱{log 𝑝𝐱(𝐱)},

cross-entropy 𝐻( 𝑝𝐱, Ƹ𝑝𝛉) takes the form:

𝐻( 𝑝𝐱, Ƹ𝑝𝛉) = 𝐻 𝑝𝐱 + 𝐷𝐾𝐿( 𝑝𝐱| Ƹ𝑝𝛉 = −𝛦𝐱{log Ƹ𝑝𝛉 𝐱 }.

Q.E.D.

Background
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• The cross-entropy training objective can be easily extended to

discriminative model learning, where a label 𝐲𝑖 is available
for each 𝐱𝑖 in 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… , 𝑁} , using conditional

probabilities 𝑝𝐲(𝐲|𝐱).

• In classification, the model output ො𝐲𝑖 ∈ ℝ𝑚 (where 𝑚 is the

number of classes) given input 𝐱𝑖 encodes the class assigned

to 𝐱𝑖 by the model.

• Typically, the ground-truth label 𝐲𝑖 ∈ 0,1 𝑚 is a one-hot

encoded vector in residing in the label-space (|𝐲𝑖|1 = 1).

Background
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• Let us employ a generative model to derive a pdf model Ƹ𝑝𝛉(𝐱)
defined by parameter vector 𝛉 ∈ ℝ𝑐, so that Ƹ𝑝𝛉(𝐲|𝐱) ≈ 𝑝𝐲 (𝐲|𝐱).

• The training objective is to find the “best” 𝛉 that maximizes the

likelihood of 𝐘 given 𝐗:

𝛉∗ = argmax𝛉ෑ

1

𝑁

Ƹ𝑝𝛉(𝐲𝑖|𝐱𝑖) .

• We can obtain the equivalent negative log-likelihood reformulation:

𝛉∗ = argmin𝛉− 𝛦𝐲{log Ƹ𝑝𝛉 𝐲|𝐱 }.

Background
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• By reformulating the optimization problem into an equivalent

negative log-likelihood one, we obtain:

𝛉∗ = argmin𝛉− 𝛦𝐲 {σ𝑘=1
𝑚 𝑦𝑘 log ො𝑦𝑘}, 

where 𝐲~ Ƹ𝑝(𝐲|𝐱).

• This is the multi-class version of the training objective, for

𝑚 > 2.

• In the special binary version (𝑚 = 2), we typically assume

that we have a positive and a negative class.

Background
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A GAN is composed of two

interacting DNNs:

• A Generator function ො𝐲 = 𝐺 𝐳; 𝛉𝐺 ,

parameterized by vector 𝛉𝐺.

• A Discriminator function ො𝑦 =
𝐷 𝐪; 𝛉𝐷 parameterized by vector

𝛉𝐷.

• Optimal 𝛉𝐷 and 𝛉𝐺 are typically

found using iterative gradient

descent and error back-

propagation.

GAN theory
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• 𝐺 and 𝐷 are trained independently

in an alternating fashion, but the

individual loss of each one at

each training iteration is a

function of the output of the

other one.

• During training, only 𝐷 directly

accesses the training dataset 𝒟.

GAN theory
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• Serendipitously, this acts as a built-

in safeguard mechanism of 𝐺
against overfitting to 𝑝𝐱(𝐱).

• After training is complete, 𝐷 is

typically discarded and 𝐺 can be

employed for sampling fake data

points from an approximation

of 𝑝𝐱(𝐱).

GAN theory
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• The training optimization problem for 𝐷 can be formulated using

the cross-entropy loss for binary classification problems,

assuming that positive (real) examples are drawn from the

training dataset and negative ones (fakes) from the output of 𝐺:

𝛉𝐷
∗𝑚 = argmin

𝛉𝐷
− 𝛦𝐱 {log 𝐷 𝐱 } −𝛦𝐳{log 1 − 𝐷 𝐺 𝐳 } =

argmax
𝛉𝐷
𝛦𝐱{log 𝐷 𝐱 } + 𝛦𝐳{log 1 − 𝐷 𝐺 𝐳 },

where 𝐱~ Ƹ𝑝 𝐱 , 𝐳~𝑝𝐳 𝐳 .

GAN theory
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• This is slightly simplified relatively to the typical binary cross-

entropy loss, because we know that:

• 𝑦 = 1, for the first expectation (when 𝐪 is drawn from 𝐗), and

• 𝑦 = 0, for the second expectation (when 𝐪 is drawn from the 

output of 𝐺).

GAN theory



32

The training optimization for 𝐺 may be formulated in different ways.

• Minimax optimization directly penalizes the ability of 𝐷 to

successfully detect fake data points generated by 𝐺:

𝛉𝐺
∗𝑚 = argmin

𝛉𝐺
− [−𝛦𝐱 {log 𝐷 𝐱 } −𝛦𝐳 {log (1 − 𝐷 𝐺 𝐳 )}] =

argmin
𝛉𝐺
𝛦𝐳 {log (1 − 𝐷 𝐺 𝐳 )},

where 𝐳~𝑝𝐳 𝐳 .

• It allows us to theoretically summarize overall GAN training as a

minimax game, at a high level of abstraction:

{𝛉𝐺
∗𝑚, 𝛉𝐷

∗𝑚} = arg min
𝛉𝐺
max

𝛉𝐷
𝛦𝐱 {log 𝐷 𝐱 } +𝛦𝐳 {log 1 − 𝐷 𝐺 𝐳 },

GAN theory
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• Minimax optimization function takes the following numerical

form:

𝛉𝐺
∗𝑚, 𝛉𝐷

∗𝑚 = arg min
𝛉𝐺
max

𝛉𝐷

1

𝑁
σ𝑖=1
𝑁 (𝐽𝑖𝐷 + 𝐽𝑖𝐺) =

arg min
𝛉𝐺
max

𝛉𝐷

1

𝑁
σ𝑖=1
𝑁 log 𝐷 𝐱𝑖 +

1

𝑁
σ𝑖=1
𝑁 log 1 − 𝐷 𝐺 𝐳𝑖 ,

GAN theory
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• An alternative training optimization objective for 𝐺 that does not

suffer from this low loss signal problem is the heuristic

optimization:

𝛉𝐺
∗ℎ = argmin

𝛉𝐺
− 𝛦𝐳 {log 𝐷 𝐺 𝐳 }, 

where 𝐳~𝑝𝐳 𝐳 .

• Discriminator optimization function remains unaltered:

𝛉𝐷
∗ℎ = argmin

𝛉𝐷
− 𝛦𝐱 {log 𝐷 𝐱 } − 𝛦𝐳{log 1 − 𝐷 𝐺 𝐳 }

= argmax
𝛉𝐷
𝛦𝐱{log 𝐷 𝐱 } + 𝛦𝐳{log 1 − 𝐷 𝐺 𝐳 },

GAN theory
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• GANs appeared in 2014 [GOO2014].

• Their use exploded since 2016.

GANs in Multimedia Creation



⚫ Over 600 variations exist as of today applied in various

domains [HIN].
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GANs in Multimedia Creation



⚫ Nowadays, main focus of generative models is generating 

artificially realistic data or transforming existing [MED].
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GANs in Multimedia Creation
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Conditional GAN (cGAN) is one of the most important GAN

variants.

• It allows a greater degree of control over the generated images.

• For instance, when training with multi-class datasets, a vector

encoding the class label is given as input both to 𝐷 (along with

each ො𝐲𝑖 or 𝐱𝑖) and to 𝐺 (along with 𝐳).

• Thus,𝐺 learns to conditionally map the noise vector to a

synthetic image, given a class label, while 𝐷 is trained more

effectively since it knows the class label of the image that it must

recognize as either “fake” or “real”.

Conditional GAN
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Conditional GAN
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GAN for Text-to-Image Synthesis
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GAN for Video-to-Text Synthesis
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• GAN network can generate future video frames, given an input video 
sequence [MAT2015].

• It is very useful for video compression and video frame interpolation. 

GAN for Video Frame Prediction
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*Image Gradient Difference Loss (GDL).

GAN for Video Frame Prediction
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• TP-GAN synthesises different views of an input facial image.

• Example: given a profile image, synthesize a frontal view.

• It can be employed for better face recognition performance [HUA2017].

• The Generator contains two neural pathways: one for global face

appearance and one for local details. Their results are combined.

GAN for Face Synthesis
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GAN for Face Synthesis
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GAN for Image-to-Image Translation
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GAN for Image-to-Image Translation



73

GAN for Image-to-Image Translation
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• StarGAN [CHOI2016] is a

CycleGAN variant that

achieves multi-domain

Image-to-Image translation

with a single Generator.

• Instead of learning a fixed

translation (e.g., black-to-

blond hair), its input is a pair

{image, label}.

• It learns to flexibly translate

the image into the label

domain (e.g., “happy” or

“sad”).

GAN for Image-to-Image Translation
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GAN for Image-to-Image Translation
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GAN for Cross-Domain Image 

Generation
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• Invertible cGAN (IcGAN) reconstructs or edits images with

specific attributes [PER2016].

GAN for Image Editing
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Input

GAN

Photoshop

GAN for Image Inpainting
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GAN for Image Super-resolution
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GAN for Image Deblurring
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GAN for Object Detection
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• Conditional Video Generation. GAN produces static image

animations by prediction training [VON2016].

GAN for Video Generation
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GAN for Video Generation
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GAN for 3D Object Creation
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GAN for Music Generation

• During training, the Discriminator learns to differentiate between synthesized

and real melodies.

• This architecture is an alternative to RNNs/LSTMs that are typically used in

similar problems.

Melodies (of 8 bars) generated by MidiNet models.
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• Style-based GAN (StyleGAN) produces good

results in data-driven unconditional generative

image modelling [KAR2019a][KAR2019b].

• In GAN, the feature entanglement problem

is present:

• small changes to the input latent vector

makes the output image/face look drastically

different.

• StyleGAN attempts to solve this problem,

using a NN that maps an input vector to a

second, intermediate latent vector to be

used by GAN.

GAN for Image Synthesis
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Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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