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Introduction

« Generative learning models are employed for
approximating the data generating probability density
function (pdf) from which a dataset has been sampled.

 This is meaningful both for supervised and unsupervised
learning problems.

« They are contrasted against discriminative learning
models, used In classification, which are only meaningful
for supervised problems.
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Introduction @ML
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Introduction

 Each generative model is defined by a set of parameters, which
are optimized by training on a given dataset.

* A trained generative model approximates the data generating
probability density function (data distribution).

 Generative Adversarial Networks (GANs) are Deep Neural
Network (DNN)-based generative models. They capture the
data distribution implicitly, thus facilitating sampling from data
distribution approximation, after training.

« They are typically used for generating realistic novel data
samples (“fakes”) that meaningfully resemble the training data.
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Introduction

« GAN are a class of generative models that produce promising
results in several application domains, ranging from image
generation to video captioning.

« Since it Is a DNN-based architecture, it bears all the advantages
of DNNs (e.g., automatic feature learning), through proper
training.

« Various neural building blocks may be internally employed,
depending on the employed data and the target task (e.g., 2D
convolutional layers for synthesizing images).
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Introduction @ML

« A trained GAN may be employed to create huge amounts of
realistic data for any digital media genre.

 GANSs can be used for data augmentation, which can be very
useful for:

* Training/testing other DNNSs.
« DNN domain adaptation.
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Background @ML

A generative model encodes a distribution pg(x) defined by
parameter vector 0 € R¢, so that pg(X) = ps(X).

* pPe(x)Is a function of random vector x.

« After the generative model has been trained, pg(x) IS a good
approximation of p, (x).

« Model complexity Is directly related to number of model
parameters c.
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Background

Typically, in a Maximum Likelihood Estimation (MLE) setting,
training the model on D, Iin order to find a “good” @ implies
maximizing the likelihood of 0, I.e., defined by:

0" = argmax, [[;L; Do (X,).

« Due to practical considerations (e.g., numerical stability), we

obtain an equivalent optimization problem, by computing the
logarithm of the likelihood:

8" = argmax, X1, log f(X,).
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Background @ML

 The term logpy(x)does not affect the optimization process,
since it is not a function of 0.

« Thus, the minimization problem may be reformulated
equivalently as:

0" = argming — E {log py(x)}.

* This is called negative log-likelihood minimization.
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Background @ML

Proposition: Finding 0*under this formulation is equivalent to
minimizing cross-entropy H(py, Pg) between distributions p,(x)

and pg(x).

Proof: As the entropy of p,(x) IS given by:

H(px) = —E{log px(X)},
cross-entropy H( py, Pg) takes the form:

H(px, Do) = H(px) + Dy (pxll Do) = —E,{log pe(x)}.
Q.E.D.
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Background

* The cross-entropy training objective can be easily extended to
discriminative model learning, where a label y; is available
for each x; In D= {(x;,v;),i=1,..,N}, using conditional
probabilities py (y[x).

* In classification, the model output y, € R™ (where m Is the
number of classes) given input x, encodes the class assigned
to x; by the model.

« Typically, the ground-truth label y; € {0,1}® is a one-hot
encoded vector in residing In the label-space (|y;|, = 1).
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Background @ML

* Let us employ a generative model to derive a pdf model pg(x)
defined by parameter vector 0 € R¢, so that pg(y[x) = py (¥|X).

« The training objective is to find the “best” 0 that maximizes the
likelihood of Y given X:

N
0" = argmax, | [poiIx)-
1

* We can obtain the equivalent negative log-likelihood reformulation:
0" = argming — E {log pg(y|x)}.

Attificial Intelligen
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Background @ML

* By reformulating the optimization problem into an equivalent
negative log-likelihood one, we obtain:

0" = argming — E {Z 1 V¥ log y*},
where y~p(y|x).

 This Is the multi-class version of the training objective, for
m > 2.

« In the special binary version (m = 2), we typically assume
that we have a positive and a negative class.

|| Artificial Intelligenc .
Information Analysis Lb



GAN theory @ML

A GAN Is composed of two
interacting DNNSs: Real Image Discriminator

* A Generator function y = G(z;0,), 0 ‘ (/ >\W Real
parameterized by vector 0. ‘ | C j " Faks
« A Discriminator function § =
D(q; 0,) parameterized by vector

Noise Generator
OD-
 Optimal 6, and 0, are typically o~
found using Iterative gradient Image

descent and error back-
propagation.
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GAN theory @ML

Real Image Discriminator

« (G and D are trained independently

In an alternating fashion, but the ﬂ (/ \\ Real

individual loss of each one at "N g % >0 — oL
each training Iiteration Is a k j

function of the output of the
other one. Noise Generator

"y Fake
- Image

 During training, only D directly
accesses the training dataset D.
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GAN theory @ML

Real Image Discriminator

« Serendipitously, this acts as a built-
In safeguard mechanism of G (/ \\ Real
against overfitting to p,(x). : C >j ke
« After training is complete, D is
typically discarded and G can be

employed for sampling fake data Mo'*° Gensratar
points from an approximation L
of pX(X). —_— ) ::riléze
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GAN theory

The training optimization problem for D can be formulated using
the cross-entropy loss for binary classification problems,
assuming that positive (real) examples are drawn from the
training dataset and negative ones (fakes) from the output of G:

0" = argmln — E_{log D(x)} —E,{log (1 —D(G(Z)))} =
argmax E Slog D(x)} + E,{log (1 — D(G(Z)))

nere x~p(x), z~p,(z).
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GAN theory @ML

 This Is slightly simplified relatively to the typical binary cross-
entropy loss, because we know that:

« vy =1, for the first expectation (when q is drawn from X), and

« y =0, for the second expectation (when q Is drawn from the
output of G).

Attificial Intelligen
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GAN theory

The training optimization for G may be formulated in different ways.

« Minimax optimization directly penalizes the ability of D to
successfully detect fake data points generated by G:

0c" = argmin, — [—E,{log D(x)} —E,{log (1 — D(G(2)))}] =
%rgmine E,{log (1 — D(G(2)))},
where z~p,(z). G

« It allows us to theoretically summarize overall GAN training as a
minimax game, at a high level of abstraction:

{0.,",05"} = arg min_ _max, E Jog D(x)} +E {log (1 —D(G(z)))
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GAN theory @ML

 Minimax optimization function takes the following numerical
form:

. 1 N
{Bzm) *Dm — arg mlne rnaX9 N i=1(]iD +]iG) =

G D

. 1 1
arg min, max, Nzlivzl log D(x;,) + Ezlivzl log (1 X D(G(zi))),

G
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GAN theory @ML

 An alternative training optimization objective for ¢ that does not
suffer from this low loss signal problem is the heuristic
optimization:

0" = argmmeG — E_{log (D(G(z)))},
where z~p,(z).
. Discriminator optimization function remains unaltered:

0 = argmin, — E, {log D(x)} — E, {log (1 S D(G(z)))}
= argmax, E,{log D(x)} + E,{log (1 — D(G(z)))},
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GANSs in Multimedia Creation @ML
 GANSs appeared in 2014 [GO0O2014].
* Their use exploded since 2016.
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GANSs Iin Multimedia Creation ML

« Over 600 variations exist as of today applied in various
omains [HIN].
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GANSs in Multimedia Creation C\ZML

. Nowadays, main focus of generative models is generating
artificially realistic data or transforming existing [MED].

z
J
4x4
Generative -
Model
Training time: 0 days
4x4 resolution
Z = random code
Generator ‘
=Z hd Discriminator real image

x' = generated image
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Conditional GAN

Conditional GAN (cGAN) is one of the most important GAN
variants.

« Itallows a greater degree of control over the generated images.

 For instance, when training with multi-class datasets, a vector
encoding the class label is given as input both to D (along with
each y, or x;) and to G (along with z).

 Thus, Glearns to conditionally map the noise vector to a
synthetic image, given a class label, while D is trained more
effectively since it knows the class label of the image that it must
recognize as either “fake” or “real”.
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GT prediction

Conditional GAN @ML
RGB
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GAN for Text-to-Image Synthesis C\ZML

This flower has  This flower is This flower 1s

This flower has  long thin pink, white, white and

Text This flower has  a lot of small yellow petals and yellow in yellow in color,
description petals that are purple petals in  and a lot of color, and has with petals that

white and has a dome-like yellow anthers  petals that are are wavy and

pink shading configuration in the center striped smooth
A small bird
The bird 1s A bird with a This small with varying
Text This bird isred  short and medium orange  black bird has shades of
description and brov‘vn n stubby w1th bill wh_1te body  ashort, sllghtly brown with
color, with a yellow on its gray wings and  curved billand  white under the

stubby beak body webbed feet long legs eyes

This flower has
upturned petals
which are thin
and orange
with rounded
edges

A small yellow
bird with a
black crown
and a short
black pointed
beak

This flower has
petals that are
dark pink with
white edges
and pink
stamen

This small bird
has a white
breast, light
grey head, and
black wings
and tail
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LSTM: a woman is cooking
LSTM-GAN: a woman is frying some food
Ground-Truth: she is cooking on the fish

LSTM: a man is pouring tomato into a pot
LSTM-GAN: a man is pouring some sauce into a pot
Ground-Truth: a person pours tomato sauce in a pot

LSTM: a man is dancing
LSTM-GAN: a group of men are dancing on the stage
Ground-Truth: people are dancing on stage

LSTM: a man is cutting a bread
LSTM-GAN: a man is cutting a loaf of bread
Ground-Truth: a man is cuts a loaf of bread

LSTM: a man is jumping on a motorcycle
LSTM-GAN: a man is riding a motorcycle
Ground-Truth: a man is riding a motorcycle

LSTM: a man is cooking a pot
LSTM-GAN: a person is making some food
Ground-Truth: a men is preparing some food



GAN for Video Frame Prediction @ML
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 GAN network can generate future video frames, given an input video
sequence [MAT2015].

It is very useful for video compression and video frame interpolation.

| | Artificial Intelligence &
Informat ion Analysis Lab



GAN for Video Frame Prediction C\ZML

£ result

Adversarial+GDL result

Input frames

£ result

£, result GDL 4, result

Adversarial+GDL result

Input frames Ground truth 45 result
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£, result GDL 4, result Adversarial result Adversarial+GDL result

Q”U Arificial Intelligence & *Image Gradient Difference Loss (GDL).
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GAN for Face Synthesis C\ZML

« TP-GAN synthesises different views of an input facial image.
« Example: given a profile image, synthesize a frontal view.
« |t can be employed for better face recognition performance [HUA2017].

« The Generator contains two neural pathways: one for global face
appearance and one for local details. Their results are combined.

Two-pathway Generator Network
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Synthesis results under various illuminations. The first row is the synthesized image, the second row is the input.

| | Artificial Intelligence & 60
Information Analysis Lab



GAN for Image-to-Image Translation C\ZML
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GAN for Image-to-Image Translation C\ZML

Monet Paintings to Photos

72
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GAN for Image-to-Image Translation C\ZML

Collection Style Transfer

Input

Monet Van Gogh Cezanne
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StarGAN [CHOI2016] is a
CycleGAN variant that
achieves multi-domain
Image-to-Image translation
with a single Generator.

Instead of learning a fixed
translation (e.g., black-to-
blond hair), its input is a pair
{image, label}.

It learns to flexibly translate
the image into the label
domain (e.g., “happy” or
“sad”).

| | Atificial Intelligence &
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GAN for Image-to-Image Translation C\ZML

(a) Training the discriminator (b) Original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator

Depth-wise concatenation

[
t

Real image Fake image

% 7

|

" ey,

omain

(1), (2)r——J k—\(l)

omain .
Ep [ Target domain Input image ] —;
classification

Depth-wise concatenation

Real / Fake

Figure 3. Overview of StarGAN, consisting of two modules, a discriminator D and a generator (7. (a) D learns to distinguish between
real and fake images and classify the real images to its corresponding domain. (b) G takes in as input both the image and target domain
label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (c) G tries to
reconstruct the original image from the fake image given the original domain label. (d) G tries to generate images indistinguishable from
real images and classifiable as target domain by D.
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GAN for Image-to-Image Translation @ML

Blond hair

il A 1

Gender Aged Pale skin Input Angry Happy Fearful
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GAN for Cross-Domain Image

Generat

83

Shown, side by side are sample images from the CelebA dataset, the emoji images created

manually using a web interface (for validation only), and the result of the unsupervised DTN. See
Tab. 4 for retrieval performance.
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Information Analysis Lab

9®



GAN for Image Editing

(vmL

Invertible cGAN (IcGAN) reconstructs or edits images with
specific attributes [PER2016].

o

—
L
~ IcGAN

Encoder

L.

Encoder

female
black hair

=¥ brown hair
make-up

sunglasses

......................................................................................................................................
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GAN for Image Inpainting

S Photoshop
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GAN for Image Super-resolution VML

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4 X upscaling]
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GAN for Image Deblurring
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Blurred — left, DeblurGAN - center, ground truth sharp — right.
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GAN for Object Detection
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GAN for Video Generation C\ZML

 Conditional Video Generation. GAN produces static image
animations by prediction training [VON2016].

Foreground Stream /

3D convolutions

s,

@*@
Foreground

n - Tanh
- 7 g
G, 2

The algorlthm watches Jr s
two m|II|on unlabeled wdeos vise | -—r¢n®f+(1—m)®b——
X y

100 dim

* - (N %«s,,
Mask N
~ 9. Sigmoid Generated Video
Gy, %r;j@ — Space-Time Cuboid
7
""us[,}?&/ —_—
Je{t? Replicate over Time
Background Stream “y
2D convolutions s"*sq@ Background

Tanh

input is 100 dimensional (Gaussian noise). There are two independent streams: a moving foreground
pathway of fractionally-strided spatio-temporal convolutions, and a static background pathway of
fractionally-strided spatial convolutions, both of which up-sample. These two pathways are combined
to create the generated video using a mask from the motion pathway. Below each volume is its size
and the number of channels in parenthesis.
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GAN for Video Generation
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GAN for 3D Object Creation
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GAN for Music Generation VML

« During training, the Discriminator learns to differentiate between synthesized
and real melodies.

« This architecture is an alternative to RNNs/LSTMs that are typically used in

similar problems.
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GAN for Image Synthesis C\ZML

Style-based GAN (StyleGAN) produces good . Synthesis Network
results in data-driven unconditional generative code e Const axaxs12
Image modelling [KAR2019a][KAR2019Db]. ! R ém
In GAN, the feature entanglement problem GME.N y
IS present: . | v
: 5

 small changes to the Input latent vector A #

makes the output image/face look drastically ] Conv 33

different. H_ AdalN |
StyleGAN attempts to solve this problem, —x A 102ex1024

using a NN that maps an input vector to a
second, intermediate latent vector to be
used by GAN.
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Q&A

Thank you very much for your attention!

p

Contacet:-Prof, I. Pitas
pitas@csd.auth.gr o
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