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An image edge can be considered as the border between two

homogeneous image regions having different illumination

intensities.

Edges are useful for:

• image analysis, object recognition and

• image filtering, image compression.

Introduction
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Edge detectors can be grouped into two classes:

• Local techniques use operators on local image neighborhoods.

• Global techniques use global information and filtering methods to

extract edge information.

Introduction

I.Pitas Digital Image Processing Fundamentals
Edge Detection Algorithms
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Edge types

Horizontal image edges
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Edge types

Vertical image edges
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Edge types
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Edge descriptors
• Edge normal is a unit vector in the direction

of maximum image intensity change (image

grad).

• Edge direction is a unit vector perpendicular

to edge normal. It can also be described by

edge direction angle.

• Edge position or center is the image position

where the edge is located.

• Edge strength is related to the local image

intensity change along edge normal.
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Edge detection steps

• Image Smoothing suppresses as much noise as possible,

without destroying true image edges.

• Image smoothing is a low-pass image operator.

• Image Enhancement enhances edge quality, typically by image

sharpening.

• Image sharpening is a high-pass image operator.

• Edge Detection retains true edge pixels, while discarding edge

noise.

• Usually, edge thresholding is used for true edge pixel detection.
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Edge detection steps

• Edge Localization determines the exact edge location.

• Sub-pixel edge localization might be required for some

applications at a fraction pixel distance, at an e.g.,
1

2
,
1

4
,
1

8
pixel

resolution.

• Edge thinning reduces edge width possibly to 1 pixel.

• Edge linking connects broken edge segments.
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• Edge detection is typically a local image differentiation of the

2D signal 𝑓(𝑥, 𝑦) along 𝑥, 𝑦 image directions.

• Local image differentiation techniques can produce edge

detector operators.

Edge detection
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Image intensity gradient:

∇𝑓(𝑥, 𝑦) ≜ [
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
]𝑇 ≜ [𝑓𝑥 𝑓𝑦]

𝑇 .

Gradient magnitude can be used as edge detector:

𝑒 𝑥, 𝑦 = 𝑓𝑥
2 𝑥, 𝑦 + 𝑓𝑦

2 𝑥, 𝑦 .

Edge detection
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• It can be used as a measure of edge strength.

• Alternatives to be used for fast calculation:

𝑒 𝑥, 𝑦 = 𝑓𝑥 𝑥, 𝑦 + 𝑓𝑦 𝑥, 𝑦 .

Edge direction angle:

𝜑(𝑥, 𝑦) = arctan(
𝑓𝑦

𝑓𝑥
).

Edge detection
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Gradient estimates can be obtained by using gradient

operators of the form:

𝑓𝑥 = 𝐰1
𝑇𝐱,

𝑓𝑦 = 𝐰2
𝑇𝐱.

• 𝐱: local 𝑀 ×𝑀 image neighborhood pixel vector.

• Typically, 3 × 3 image neighborhoods are used.

• 𝐰1 , 𝐰2:gradient masks (weight vectors) having 𝑀 ×𝑀 entries.

Edge detection
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Gradient masks examples:

1 1 1
0 0 0
−1 −1 −1

−1 0 1
−1 0 1
−1 0 1

1 2 1
0 0 0
−1 −2 −1

−1 0 1
−2 0 2
−1 0 1

Prewitt edge detector masks. Sobel edge detector masks.

• They can be used for horizontal (left) or vertical (right) edge 

detection.

• No or trivial (by 2) multiplications are involved.

Edge detection
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Edge templates are masks that can be used to detect edges

along different edge directions.

• Such masks of size 3 × 3 are:

1 1 1
0 0 0
−1 −1 −1

−1 0 1
−1 0 1
−1 0 1

1 1 0
1 0 −1
0 −1 −1

0 1 1
−1 0 1
−1 −1 0

Kirsch edge detector masks.

• They detect horizontal (00), vertical (900), 450, 1350 image

edges.

Edge detection
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Edge detection

All templates are applied to each image pixel. The template

that produces the maximal output is the winner:

𝑒 𝑥, 𝑦 = 𝐰𝑖
𝑇𝐱 , if 𝐰𝑖

𝑇𝐱 ≥ 𝐰𝑗
𝑇x , 𝑗 = 1,2, … , 𝑛. 

• 𝐰𝑖 , 𝑖 = 1, …𝑛 is the weight vector associated with each

template.

• The corresponding output |𝐰𝑖
𝑇𝐱| is a measure of confidence

of the edge detector output (edge strength).
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Edge detection

a) Lenna image; b) Sobel edge detector output ; c) horizontal edges; d) vertical edges.
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Edge detection
Edge detection using the Laplace operator :

𝛻2𝑓 𝑥, 𝑦 =
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
.

• Edges correspond to large image changes producing:

• Maxima or minima of first-order image derivatives.

• Zero-crossings of second-order image derivatives.

• Laplace operator can be numerically approximated:

𝛻2𝑓 𝑥, 𝑦 ≅𝑓 𝑥, 𝑦 −
1

4
[𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 ]

to find zero-crossing image locations.
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Edge detection

First and second order differentiation. Zero crossings [DECETI].
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Edge detection

• Differentiation is a high-pass operator, enhancing noise.

• Second-order differentiation tends to enhance image noise too

much.

• The Laplacian operator creates several false edges,

especially in areas where the image variance is small.

• Methods to reduce its noise sensitivity:

• Laplacian-of-Gaussian (LoG) performs low-pass Gaussian

filtering before differentiation.

• Consider zero-crossings only in areas, where the local

image variance 𝜎2(𝑖, 𝑗) is large.
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Edge detection

Laplacian-of-Gaussian (LoG) HVS model 𝛻2𝐺 𝑥, 𝑦 :

• 𝐺(𝑥, 𝑦) is a low-pass Gaussian function:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎
exp −

1

2𝜎2
𝑥2 + 𝑦2 .

• Laplacian operator 𝛻2𝑓 𝑥, 𝑦 is a 2D high-pass filter.

• LoG operator is given by:

𝛻2𝐺 𝑥, 𝑦 = −
1

𝜋𝜎4
(1 −

𝑥2 + 𝑦2

2𝜎2
)exp −

1

2𝜎2
𝑥2 + 𝑦2 .
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Edge detection

• LoG has band-pass frequency characteristics.

• It can smooth noise and perform edge detection.

• 2D LoG has the shape of a Mexican sombrero.

• It models well retina ganglion receptive fields.
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Edge detection

Negative LoG function [LOG].

25



Canny edge detector

• This is probably the most widely used edge detector in

computer vision.

• Canny has shown that the first derivative of a Gaussian filter

kernel closely approximates the operator that optimizes the

product of signal-to-noise ratio and localization.

• This analysis is based on step edges corrupted by additive

Gaussian noise.
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Canny edge detector
• Image smoothing can be performed by applying a Gaussian

filter 𝐺 𝑥, 𝑦 :
𝑓 𝑥, 𝑦 = 𝑖 𝑥, 𝑦 ∗∗ 𝐺 𝑥, 𝑦 ,

where 𝐺(𝑥, 𝑦) is the Gaussian kernel function:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎
exp −

1

2𝜎2
𝑥2 + 𝑦2

and ∗∗ denotes 2D convolution.
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Canny edge detector
• The partial derivatives 𝑓𝑥 and 𝑓𝑦 are given by:

𝑓𝑥=
𝜕 𝑖∗∗𝐺

𝜕𝑥
=𝑖(𝑥,𝑦)∗∗

𝜕𝐺

𝜕𝑥
(𝑥,𝑦)=𝑖(𝑥,𝑦)∗∗𝐺𝑥(𝑥,𝑦),

𝑓𝑦=
𝜕 𝑖∗∗𝐺

𝜕𝑦
=𝑖(𝑥,𝑦)∗∗

𝜕𝐺

𝜕𝑦
(𝑥,𝑦)=𝑖(𝑥,𝑦)∗∗𝐺𝑦(𝑥,𝑦).

28

Differentiation property:
𝑑
𝑑𝑥 𝑓 ∗∗ 𝑔 = 𝑑𝑓

𝑑𝑥∗∗𝑔=𝑓∗∗
𝑑𝑔
𝑑𝑥



Canny edge detector

• 𝐺𝑥 𝑥, 𝑦 , 𝐺𝑦(𝑥, 𝑦) are the partial derivates of 𝐺(𝑥, 𝑦) with

respect to 𝑥, 𝑦:

𝐺𝑥 𝑥, 𝑦 = −𝑥

𝜎2
𝐺(𝑥, 𝑦)

𝐺𝑦 𝑥, 𝑦 = −𝑦

𝜎2
𝐺 𝑥, 𝑦 .

• Compute the gradient magnitude:

𝑒 𝑥, 𝑦 = 𝑓𝑥
2 + 𝑓𝑦

2.

• Apply non-maxima suppression.

• Apply hysteresis thresholding/edge linking.
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Edge detection

• Local data dispersion measures can be used as edge detector.

• Local variance 𝜎2(𝑖, 𝑗) in a 𝑀 ×𝑀, 𝑀 = 2𝜈 + 1 image

neighborhood (image window):

𝜎2 𝑖, 𝑗 = 1

𝑀2σ𝑘=𝑖−𝜈
𝑖+𝜈 σ𝑙=𝑗−𝜈

𝑗+𝜈
[𝑓 𝑘, 𝑙 − ҧ𝑓(𝑖, 𝑗)]2,

ҧ𝑓 𝑖, 𝑗 = 1

𝑀2σ𝑘=𝑖−𝜈
𝑖+𝜈 σ𝑙=𝑗−𝜈

𝑗+𝜈
𝑓 𝑘, 𝑙 .
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Edge detection

• Local image range:

𝑤 𝑘, 𝑙 = max
𝐴

𝑓 𝑘, 𝑙 − min
𝐴

𝑓 𝑘, 𝑙

• 𝐴: Local 𝑀 ×𝑀 image window.
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When the edge detector output is large, a local edge is

present. This can be found by thresholding:

𝐸 𝑖, 𝑗 = ቊ
1, if 𝑒 𝑖, 𝑗 ≥ 𝑇,

0, otherwise.

• Threshold 𝑇 can be chosen using edge detector output

histogram, so that it exceeds only a small percentage of

edge pixels.

• Thresholding is global.

• Edge detector output thresholding produces a binary image.
33
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Edge thresholding

• Global thresholding may produce thick edges in one region and

thin or broken edges in another region. Thus, locally adapted

thresholding is desirable.

• A heuristic adaption technique is to calculate the local

arithmetic mean of the edge detector output:

ҧ𝑒 𝑖, 𝑗 = 1

𝑀2σ𝑘=𝑖−𝜈
𝑖+𝜈 σ𝑙=𝑗−𝜈

𝑗+𝜈
𝑒 𝑘, 𝑙

and to use it in the threshold calculation:

𝑇 𝑖, 𝑗 = ҧ𝑒 𝑖, 𝑗 1 + 𝑝 .

• 𝑝 is a percentage indicating the level of the thresholding above

the local arithmetic mean.
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Hough Transform uses a parametric description of simple

geometrical shapes (curves), in order to reduce the

computational complexity of the search space.

• The parametric description a straight line is a linear equation:

𝑦 = 𝑎𝑥 + 𝑏.

36

Hough transform

a) Image plane; b) parameter space.
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Hough transform

Hough transform for straight line detection:

• The parameter space is discretized to form a parameter matrix

𝑃 𝛼, 𝑏 , 𝑎1≤ 𝛼 ≤ 𝑎𝑘 , 𝑏1≤ 𝑏 ≤ 𝑏𝑘.

• For every pixel 𝑥𝑖 , 𝑦𝑖
𝑇 that possesses value 1 at the binary

edge detector output, the equation 𝑏 = −𝛼𝑥𝑖 + 𝑦𝑖 is formed.

• For every parameter value 𝛼, 𝑎1 ≤ 𝛼 ≤ 𝑎𝑘 , the corresponding

parameter 𝑏 is calculated and the appropriate parameter matrix

element (bin) 𝑃(𝑎, 𝑏) is increased by 1:

𝑃(𝛼, 𝑏) = 𝑃(𝛼, 𝑏) + 1.

• This process is repeated until the entire binary image is

scanned.



Hough transform

• The parametric model has difficulties in representing vertical straight

lines, because parameter 𝑎 must tend to infinity.

• A polar representation of a straight line can be used instead :

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃

• It describes a line having the orientation 𝜃 at the distance 𝑟 from the

origin.

• For a binary image of size 𝑁1 × 𝑁2:

− 𝑁1
2 + 𝑁2

2 ≤ 𝑟 ≤ 𝑁1
2 + 𝑁2

2,

−𝜋/2 ≤ 𝜃 ≤ 𝜋/2.
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Hough transform

The same Hough transform algorithm can be used by employing

the model:

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃
using a parameter matrix 𝑃 𝑟, 𝜃 .

a) Polar straight-line representation on the image plane; b) parameter space.
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Hough transform

Upper row: a) Original image; b) Hough polar parameter space;

Lower row: c) detected straight lines; d) lines overlaid on original image.



• Local edge direction can be used in the Hough Transform

calculation, by reducing a 2D search to a 1D search.

• If both sides of 𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 are differentiated with

respect to 𝑥, the following equation gives the line gradient:

𝑑𝑦

𝑑𝑥
= −cos 𝜃 = tan

π

2
+ 𝜃 ,

𝜃 =
π

2
− 𝜑.

• 𝜑: local edge direction.

• The use of the edge gradient reduces the computational

complexity of the Hough Transform to the order 𝑂(𝑁).

41
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• Hough Transform can be generalized to detect any parametric
curves of the form 𝑓(𝐱, 𝐚) = 0, where 𝐚 is the parameter vector.

• The memory required for the parameter matrix 𝑃(𝐚) increases

as 𝐾𝑝 , where 𝑝 is the parameter number.

• This method is practical only for curves having a small number

of parameters, e.g., for circles:

(𝑥 − 𝑎)2+(𝑦 − 𝑏)2= 𝑟2.

• Its parameters are the radius 𝑟 and the center coordinates (𝑎, 𝑏).

• A 3D parameter matrix 𝑃(𝑟, 𝑎, 𝑏) is needed. 

Hough transform
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𝑎) Locus of circle centers that traverse 𝑥𝑖 , 𝑦𝑖
𝑇; b) Locus of circle centers that 

traverse 𝑥𝑖 , 𝑦𝑖
𝑇 and are tangent to local edge.

Hough transform
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Hough Transform for circles

Let 𝑥𝑖 , 𝑦𝑖
𝑇 be a candidate binary edge image pixel. A circle of radius

𝑟 = 𝑅 having center (𝑎, 𝑏) and passing through 𝑥𝑖 , 𝑦𝑖
𝑇 is given by:

𝑥𝑖 = 𝑎 + 𝑅 cos 𝜃,
𝑦𝑖 = 𝑏 + 𝑅 sin 𝜃.

• For any radius 𝑟, 0 < 𝑟 ≤ 𝑟𝑚𝑎𝑥, the coordinates (𝑎, 𝑏) are calculated

and the corresponding matrix 𝑃 𝑎, 𝑏, 𝑟 elements increase by one.

• These points belong to a cone surface.

• This process is repeated for any eligible pixel of the binary edge

detector output.
44
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Hough Transform in Byzantine iconography analysis.
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Boundary-following algorithms follow the local edge elements,

ensuring local edge continuity.

Edge continuity features:

• 𝑒(𝐱) = 𝑒(𝑥, 𝑦): edge magnitude at location 𝐱 = 𝑥, 𝑦 𝛵.

• 𝜑(𝐱) = 𝜑(𝑥, 𝑦): edge direction.

• |𝑒(𝐱𝑖) − 𝑒(𝐱𝑗)|: similarity measure for neighboring edge

magnitude.

• |𝜑(𝐱𝑖) − 𝜑(𝐱𝑗)|: direction difference similarity measure.

Edge-following algorithms
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Two neighboring edge pixels can be linked (for edge

following), if:

|𝑒(𝐱𝑖) − 𝑒(𝐱𝑗)| ≤ 𝑇1,

𝜑 𝐱𝑖 − 𝜑 𝐱𝑗 mod 2𝜋 ≤ 𝑇2,

𝑒(𝐱𝑖) ≥ 𝑇, 𝑒 𝐱𝑗 ≥ 𝑇.

• Edges do not change magnitude and/or direction abruptly.

• Small edge magnitude pixels should not be mistaken as

edge elements to be followed.

48
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Heuristic edge following uses the previous constraints:

• Edge following starts from an edge pixel 𝐱𝐴, satisfying

|𝑒(𝐱𝐴)| ≥ 𝑇 .

• If no neighboring edge pixel satisfies all inequalities, the

algorithm stops.

• If more than one neighbor satisfies them, edge pixel 𝐱𝑁 that

possesses the minimal differences |𝑒(𝐱𝑁) − 𝑒(𝐱𝐴)|,
|𝜑(𝐱𝑁) − 𝜑(𝐱𝐴)| is chosen.

• The procedure continues recursively, with the new edge pixel

𝐱𝑁 as a starting element.

49
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Heuristic contour following in subtractive angiography [Wikipedia].
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Edge following can be based on graph search:

• Edge elements at position 𝐱𝑖 can be considered as graph

nodes.

• The nodes are connected to each other, if local edge linking

rules are satisfied.

51
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I.Pitas Digital Image Processing Fundamentals
Edge Detection Algorithms
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Edge-following algorithms
• Let us suppose we form a cost function 𝐶(𝐱1, 𝐱2, … , 𝐱𝑁) for a path

connecting nodes 𝐱1 = 𝐱𝐴 to 𝐱𝑁 = 𝐱𝐵:

𝐶 𝐱1, 𝐱2, . . , 𝐱𝑁

≜ −

𝑘=1

𝑁

𝑒 𝐱𝑘 + 𝑎

𝑘=2

𝑁

𝜃 𝐱𝑘 − 𝜃 𝐱𝑘−1 + 𝑏

𝑘=2

𝑁

𝑒 𝐱𝑘 − 𝑒 𝐱𝑘−1 .

• The heuristic graph search algorithm tries to produce a minimum

cost path from 𝐱𝐴 to 𝐱𝐵.

• The algorithm is based on the cost function and on the choice of the

successors of a node 𝐱𝑖, by using edge linking criteria.



I.Pitas Digital Image Processing Fundamentals
Edge Detection Algorithms
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Edge-following algorithms
Basic disadvantages of the heuristic graph search algorithm:

• The need to keep track of all current best paths.

• Short paths (close to the origin) may have smaller cost than

longer paths that are more likely to be the final winners.



I.Pitas Digital Image Processing Fundamentals
Edge Detection Algorithms
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Edge-following algorithms
Edge following based on dynamic programming:

• The optimal path between two nodes 𝐱𝐴, 𝐱𝐵 of an edge graph

consists of optimal subpaths for any node lying on it.

• Thus, the optimal path between two nodes 𝐱𝐴, 𝐱𝐵 can be split

into two optimal subpaths 𝐱𝐴 𝐱𝑖 and 𝐱𝑖 𝐱𝐵 for any 𝐱𝑖 lying on

the optimal path 𝐱𝐴 𝐱𝐵 .
• Following objective function to be maximized:

F(𝐱1, 𝐱2, . . , 𝐱𝑁)= 

𝑘=1

𝑁

𝑒 𝐱𝑘 − 𝑎

𝑘=2

𝑁

𝜃 𝐱𝑘 − 𝜃 𝐱𝑘−1



• Start and target nodes: 𝐱1 = 𝐱𝐴 and 𝐱𝑁 = 𝐱𝐵.

• The target function 𝐹 can be written:

𝐹(𝐱1, 𝐱2, . . , 𝐱𝑁)=𝐹(𝐱1, 𝐱2, . . , 𝐱𝑘−1)+𝑓 𝐱𝑘−1, 𝐱𝑘 ,

where:

𝑓(𝐱𝑘−1, 𝐱𝑘)= 𝑒 𝐱𝑘 − 𝑎 𝜃 𝐱𝑘 − 𝜃 𝐱𝑘−1 .
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• The optimal path ො𝐱1 ො𝐱𝑘 can be divided into two optimal paths

ො𝐱1 ො𝐱𝑘−1and ො𝐱𝑘−1 ො𝐱𝑘 that satisfy the following relation:

𝐹(ො𝐱1,..,ො𝐱𝑘) = max
𝐱𝑖,𝑖=1,..,𝑘

𝐹(𝐱1, . . , 𝐱𝑘) =

max
𝐱𝑖,𝑖=1,..,𝑘

{𝐹(𝐱1, . . , 𝐱𝑘−1) + 𝑓 𝐱𝑘−1, 𝐱𝑘) =

max
𝐱𝑘

{ 𝐹(ො𝐱1,..,ො𝐱𝑘−1) + 𝑓(ො𝐱𝑘−1, ො𝐱𝑘)}.

• The initial value of 𝐹(ො𝐱1) is given by: 𝐹(ො𝐱1)= 𝑒 𝐱1 .

• 𝑁 independent optimization steps: In every step, we are looking for

nodes 𝐱𝑘 such that the objective function 𝐹 ( ො𝐱1 ,.., ො𝐱𝑘 ) to be

maximized.
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Edge-following algorithms

Edge following based on dynamic programming: a) original 

image; b) edge following result. 
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Contour detection

• Edge detection aims at detecting characteristic image

changes in image intensity and/or color.

• An object contour is a typically closed curve enclosing all

image object pixels , i.e., image pixels having same color or

intensity or texture.

• Contour detection aims to find pixel label changes at the

border between two image objects.

• Typically, a binary classifier determines whether an image

pixel belongs to a contour.
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Contour detection

• Contour detection is more difficult than edge detection.

• It is useful for shape analysis and object recognition.

• Simplest contour description: ordered list of contour pixels

𝑥𝑖 , 𝑦𝑖
𝑇 , 𝑖 = 1, …𝑁.
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Contour following
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a) Tooth cross-section mosaic; b) tooth and oral cavity contour following.
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• Binary valued digital image 𝒳.

• A pixel 𝐱 is equaled to one when it belongs to the pattern

(black pixel) or zero when it is part of the background (white

pixel).

• Contour: list of black pixels that are connected to each

other (forming pixel sequence ℬ).

• Types of contour pixel: 4-border and 8-border.
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Square Tracing Algorithm

• It is one of the first attempts to extract the contour of a

binary pattern.

• Input: A binary image 𝒳, containing one object (connected

component) 𝒫 of black pixels in a background of white

pixels.

• Output: A sequence ℬ = {𝐱1, 𝐱2, . . , 𝐱𝑘} of contour pixels.

• At algorithm start, set ℬ as empty.
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On a black pixel, 

turn left, on a white 

pixel, turn right..

Contour following algorithms

[GHU2000] 

Square Tracing Algorithm

• Start at starting pixel 𝐩: Scan each pixel column

from bottom to top and left to right, until encounter

a black pixel 𝐱 belonging to 𝒫 and insert 𝐱 in ℬ. The

starting pixel 𝐩 is 𝐱 and the current pixel 𝐱 is the left

to the previous one.

• If you find black pixel 𝐱, turn left and if you find a

white one, turn right in a square clockwise motion

until you find a black pixel 𝐱 again.
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On a black pixel, 

turn left, on a white 

pixel, turn right..

Contour following algorithms

[GHU2000] 

• The algorithm stops when you encounter the

starting pixel again.

• The black pixels you walked over will be the

contour of the pattern.
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66

[GHU2000] 

Moore-Neighbor Tracing Algorithm

• Moore neighborhood of a pixel 𝐩 is the set of 8

pixels 𝑀 = {𝐩1 ,…,𝐩8} , which shares a vertex or

edge with that pixel.

• Input: A binary image 𝒳, containing one object

(connected component) 𝒫 of black pixels in a

background of white pixels.

• Output: A sequence ℬ = {𝐱1, 𝐱2, . . , 𝐱𝑘} of contour

pixels.
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[GHU2000] 

• At algorithm start, set ℬ as empty.

• Start at starting pixel 𝐩 ∶ Scan each pixel of 𝒫 from

bottom to top and left to right until encounter a black

pixel 𝐱. The starting pixel 𝐩 is 𝐱 and the current pixel

is the white pixel next to it which belongs to 𝑀.

• Insert the starting pixel to ℬ.
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Every time you hit a black 

pixel, backtrack, 

go around pixel in a 

clockwise direction until 

you hit a black pixel.

[GHU2000] 

• If 𝐱 is a black pixel, let this pixel be the starting pixel

𝐩 and until we find a black pixel 𝐱 again, define as

the current pixel the white pixel next to it which

belongs to Moore neighborhood 𝑀. This continues,

until the starting pixel is visited for a second time.

• The walked over black pixels will be the object

contour.
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Theo Pavlidis' Algorithm

• Let 3 image pixels be denoted by: 𝐩1, 𝐩2, 𝐩3.

• Input: A binary image 𝒳, containing one object

(connected component) 𝒫 of black pixels in a

background of white pixels.

• Output: A sequence ℬ = {𝐱1, 𝐱2, . . , 𝐱𝑘} of contour

pixels.

•

[GHU2000] 
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• At algorithm start, set ℬ is empty.

• Start at starting pixel 𝐩: Scan each pixel column of

from bottom to top and left to right until encounter a

black pixel 𝐱, whose left adjacent pixel is white. Now

the start pixel 𝐩 is 𝐱. Insert the start pixel 𝐩 in ℬ.

• If 𝐩1 is black, insert it to ℬ and move one step

forward followed by one step to your current left pixel

to land on 𝐩1.

[GHU2000] 
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What if all 3 pixels in front of 

you are white?

→rotate

Which 𝒑𝑖 (i=1,2,3) 
is black

[GHU2000] 

• If 𝐩2 is black, insert it to ℬ and move

one step forward to land on 𝐩2.

• If 𝐩3 is black, insert it to ℬ and move

one step to your right followed by one

step to your current left.

• If they are all white, rotate.

• Stop when you have rotated 3 times, or

the start pixel is visited for a second

time.

• The contour will be the black pixels in

ℬ.
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Active Contours
• Active contours or snakes are deformable models of an 

image contour. 

• They describe object boundaries/contours by a parametric 

curve.

• An energy functional is always associated with an active

contour.

• The desired contour is obtained by defining energy

functional minimization.
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Active Contours
A curve can be represented by a vectorial function.

• In the continuous case:

𝐯 𝑠 = 𝑥 𝑠 , 𝑦 𝑠 𝑇,  0 ≤ 𝑠 ≤ 1.

• In the discrete space case, a contour is described by a  vertex 

list:

𝐶 = 𝐯0, 𝐯1, 𝐯2, . . , 𝐯𝑛−1 , 𝐯𝑖 = 𝑥𝑖 , 𝑦𝑖
𝑇 .
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a) Closed curve; b) Open curve.



Active Contours
• An active contour possesses energy 𝐸(energy functional),

which is defined as the sum of the three energy terms:

𝐸 = 𝐸𝑖 + 𝐸𝑒 + 𝐸𝑐 = න
0

1

𝐸𝑖 𝐯 𝑠 + 𝐸𝑒 𝐯 𝑠 + 𝐸𝑐 𝐯 𝑠 𝑑𝑠.

• 𝐸𝑖: Internal energy due to contour bending. It serves to impose

piecewise contour smoothness constraint.
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Active Contours
• 𝐸𝑒 : External energy that describes how well the contour

matches local image data.

• Numerous forms can be used, attracting the curve toward

specific image features, e.g., local image edges.2

• 𝐸𝑐: External constraints are responsible for putting the snake

near the desired local minimum (optional).
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Active Contours
Internal Energy

𝐸𝑖 𝐯 s = 𝛼 𝑠 |𝑑𝐯/𝑑𝑠|2 + 𝛽 𝑠 |𝑑2𝐯/𝑑𝑠2|2.

• 𝑑𝐯/𝑑𝑠 is the first order derivative, forcing the contour to act like

a membrane.

• 𝑑2𝐯/𝑑𝑠2 is the second order derivative, forcing the contour to

act like a thin-plate.

• 𝛼 𝑠 and 𝛽 𝑠 controls the relative importance of membrane

and thin-plate terms: elastic/stretching and

stiffness/bending.
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Active Contours
• Smoothness of the whole snake:

𝐸𝑖 = න
0

1

𝐸𝑖 𝐯 𝑠 𝑑𝑠

• In the discrete space case, numerical differentiation can be

performed:
𝑑𝐯/𝑑𝑠 ≅ 𝐯𝑖+1 −𝐯𝑖

𝑑2𝐯/𝑑𝑠2 ≅ 𝐯𝑖+1 −2𝐯𝑖 +𝐯𝑖−1

• Internal energy is given by:

𝐸𝑖 = 

𝑖=0

𝑛−1

𝛼|𝐯𝑖+1 −𝐯𝑖 |
2 + 𝛽|𝐯𝑖+1 −2𝐯𝑖 +𝐯𝑖−1|

2 .
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Active Contours
External Energy

• Image edges are described by image gradient ∇𝐼 𝑥, 𝑦 .

• External energy at a contour point 𝐯 𝑠 is given by:

𝐸𝑒(𝐯 𝑠 ) = −|∇𝐼 𝑥, 𝑦 |2.

• and or the whole snake:

𝐸𝑒 = 0
1
𝐸𝑒 𝐯 𝑠 𝑑𝑠 (continuous case)

𝐸𝑒 = σ𝑖=0
𝑛−1𝐸𝑒 𝐯𝑖 (discrete case).

• Simplified version of the total energy:

𝐸 = 𝛼

𝑖=0

𝑛−1

|𝐯𝑖+1 −𝐯𝑖 |
2 −

𝑖=0

𝑛−1

∇𝐼 𝐯𝑖
2 .
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Active Contours
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Active contour on a brain CT image.

[HEM2018] 
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NN Edge detection

• A Neural Network (NN) edge detector can be considered

as a nonlinear filter: it can have a built-in thresholding

capability.

• Thus, the filtering, thresholding operation of edge detection

is a natural application for neural network processing.

Convolutional Neural networks (CNN) have convolutional

layers and nonlinear activation functions interspersed with

pooling (subsampling) layers.

• Typical CNN convolution kernels perform edge detection

(learned only by training).
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NN Edge detection

Neural Network Architecture for image edge detection [SEN2012].
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NN Edge detection
Biological V1 Hypercolumn:

• CNNs were inspired by brain neurons in

the mammalian primary visual cortex

(V1).

• V1 cells are mapped to the same local

region of the retina, forming

hypercolumns.

• Hidden layers are similar to V1 simple cells,

detect image lines and are

sensitive to orientation.



ZFNet convolution kernels that have been produced by training to perform 

edge/line  detection.

orientation selectivity 

found in V1 simple cells

green/red color opponency 

observed in retinal neurons 

and human visual perception

blue/yellow color opponency 

observed in retinal neurons 

and human visual perception

NN Edge detection



NN Edge detection
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CNN training for edge detection:

• 17 spatial image patterns are considered (8 edge and 9 non-

edge patterns).

• Edge thresholding implemented through sigmoid activation

functions.

a) Edge Training Patterns;   b) Non edge Training Patterns [MOH2013].



NN Edge detection
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goal is to learn 9 parameters

By just treating 

these 9 numbers 

as parameters the 

backprop can 

choose to learn 

1,1,1 or −1,−1,−1 

or learn the Sobel 

filter or Scharr filter.

We can also learn to detect edges there at 

45° or 70° or 73° or any other orientation it 

chooses.

𝑊𝑖=weights→edge templates



NN Edge detection

• The best Peak signal-to-noise
ratio (PSNR) is obtained when
the test image is applied for the
maximum epochs trained
network.

• NN edge detection is better than
other edge detection methods.

• It detects more true edge pixels
and produces little edge noise.
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[MOH2013] 



NN Edge detection

89

[MOH2013] 



SVM Edge Detection

• Binary SVM classification: 

• ‘the pixel is part of an edge’ or not. 
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a) SVM edge image;  b) Sobel edge image [GOHA2000].



SVM Edge Detection

• Input to the SVM: a vector which is formed for each pixel given the

difference between this one and the pixels in its 3 × 3 neighborhood.

• In Training: horizontal and vertical edges are used.

• The other edges will be generalized by the SVM.

• The pixels considered as edges are those into each image that are in the

border between bright and dark zones.
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SVM Edge Detection
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Training images [GOH2000].
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NN Contour detection
Contour detection can be considered as a classification task:

• Classify a pixel as contour or non-contour one.

• Contour detection can be achieved by sliding-window strategy:

• CNN image features are extracted in which each image

window, to be followed by classification.

• Pixels as features: number of inputs neurons.

• Any classifier, e.g., random forest classifier, can be used to

predict whether the central pixel of this local image window is a

contour point or not.
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NN Contour detection
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a) Original Image; b) CNN contour detection in Cassini ISS images [LI2019].



SVM Contour detection
• We can use SVMs for binary classification.

• The SVM is connected to neural network with two

fully connected layers.
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a) Original Image; b) CNN contour detection in Cassini ISS images [LI2019].
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