

Distance-based Classification

P. Papageorgiou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.5.3

Outline

- Nearest neighbor classification
- Supervised Learning Vector Quantization

 x_2

Euclidean distance between two points.

 \mathbf{x}_1

 \mathbf{x}_2

 x_1

K-means Algorithm

- Distances between a feature vector and a class center:
 - Mahalanobis distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = (\mathbf{x}_i - \mathbf{m}_j)^T \mathbf{A}(\mathbf{x}_i - \mathbf{m}_j).$$

- A: symmetric, positive definite matrix.
- Euclidean distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = (\mathbf{x}_i - \mathbf{m}_j)^T (\mathbf{x}_i - \mathbf{m}_j)$$

K-means Algorithm

Minkowski distance:

$$d(\mathbf{x}_i, \mathbf{m}_j) = \left(\sum_{k=1}^l |x_{ik} - m_{jk}|^p\right)^{\frac{1}{p}}.$$

• x_{ik} , m_{jk} are the k-th coordinates of \mathbf{x}_i , \mathbf{m}_j respectively.

 $\mathbf{X} \bullet$

 x_2

Distance between point and set (set center).

 x_1

 $d'(\mathbf{x}, \mathcal{C}) = \max_{\mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$

 $d'(\mathbf{x}, \mathcal{C}) = \min_{\mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$

 $d'(\mathbf{x}, \mathcal{C}) = \frac{1}{|\mathcal{C}|} \sum_{\mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$

Distance Functions between a Point and a Set (class)

- Distance $d'(\mathbf{x}, \mathcal{C})$ between vector \mathbf{x} and class \mathcal{C} :
 - Distance to class center (vector) **m**: $d'(\mathbf{x}, C) = d(\mathbf{x}, \mathbf{m})$.
 - Max Distance function:
 - Min Distance function:
 - Average Distance function:
- |C| : set C cardinality.

Artificial Intelligence &

nformation Analysis Lab

Class center:

- Representative vector of a data vector set:
 - Arithmetic mean vector:

$$\mathbf{m} = \frac{1}{|\mathcal{C}|} \sum_{\mathbf{x} \in \mathcal{C}} \mathbf{x}.$$

Sensitive to outliers.

• Vector median:

 $\sum_{\mathbf{y}\in\mathcal{C}} d(\mathbf{m}_{v},\mathbf{y}) \leq \sum_{\mathbf{y}\in\mathcal{C}} d(\mathbf{z},\mathbf{y}), \, \mathbf{m}_{v}\in\mathcal{C}, \, \forall \mathbf{z}\in\mathcal{C}.$

• Median center:

 $med(d(\mathbf{m}_m, \mathbf{y})|\mathbf{y} \in \mathcal{C}) \le med(d(\mathbf{z}, \mathbf{y})|\mathbf{y} \in \mathcal{C}), \mathbf{m}_m \in \mathcal{C}, \forall \mathbf{z} \in \mathcal{C}.$

med: median operator.

Nearest class classification

- A data point **x** is to be classified to one of the classes C_i , i = 1, ..., m.
- A data class C_i is represented by a labeled data set: $C_i = \{\mathbf{x}_{1i}, \mathbf{x}_{2i}, \dots, \mathbf{x}_{Ni}\}.$
- Classify x to the closest class C, by minimizing a distance
- $d'(\mathbf{x}, \mathcal{C}).$

Nearest class classification

Nearest neighbor graphs

 2^{nd}

1 st

3rd

4th

a) k-nearest neighbor graph; b) e-neighborhood graph.

k-Nearest neighbor classification

- A data point **x** is to be classified to one of the classes C_i , i = 1, ..., m.
- A data class C_i is represented by a labeled data set:

$$\mathcal{C}_i = \{\mathbf{x}_{1i}, \mathbf{x}_{2i}, \dots, \mathbf{x}_{Ni}\}.$$

Classify x to the class C, whose data vectors are most common in the k –neighborhood of x.

Outline

- Nearest neighbor classification
- Supervised Learning Vector Quantization

Supervised Learning Vector Quantization

- A data point **x** is to be classified to one of the classes C_i , i = 1, ..., m.
- A data class C_i is represented by a labeled data set: $C_i = \{\mathbf{x}_{1i}, \mathbf{x}_{2i}, \dots, \mathbf{x}_{Ni}\}.$
- Each class is represented by a class center \mathbf{m}_i , i = 1, ..., m.

Supervised Learning Vector Quantization

Supervised LVQ training

- x: vector to be assigned to a class.
- Employ Euclidean distance.
- Find the optimal class centers \mathbf{m}_i , i = 1, ..., m.
- Find the closest class center \mathbf{m}_k :

 $d(\mathbf{x}, \mathbf{m}_k) = \min_i \{d(\mathbf{x}, \mathbf{m}_i)\}, \forall i \neq k.$

(VML

Supervised Learning Vector Quantization

• Winning class center updating:

$$\mathbf{m}_k(t+1) = \mathbf{m}_k(t) + a(t)[\mathbf{x} - \mathbf{m}_k(t)]$$

 $\mathbf{m}_i(t+1) = \mathbf{m}_i(t), \quad \text{for } i \neq k,$

•
$$0 \leq a(t) \leq 1$$
.

Supervised Learning Vector Quantization

- Incremental algorithm: data may come on the fly.
- For the first steps, a(t) value shall be close to 1.
- Depending on total number of steps, a(t) decreases:
 - Linear, exponential decrease.

• When a(t) falls below the threshold, the algorithm freezes.

Supervised Learning Vector Quantization

Competition during training:

• If C_i is the closest cluster to **x**, but C_j is the correct cluster $(C_j \neq C_i)$:

$$\mathbf{m}_i(t+1) = \mathbf{m}_i(t) - a(t)[\mathbf{x}(t) - \mathbf{m}_i(t)],$$

$$\mathbf{m}_j(t+1) = \mathbf{m}_j(t) + a(t)[\mathbf{x}(t) - \mathbf{m}_j(t)].$$

• For all other clusters: $\mathbf{m}_k(t+1) = \mathbf{m}_k(t)$.

LVQ testing:

 $\prod_{\text{Information Analysis tab}} \mathbf{x} \text{ to the closest class } \mathcal{C}_k, \text{ by minimizing } d(\mathbf{x}, \mathbf{m}_k).$

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

