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2D data types: images

2

Spatial coordinates 𝑥, 𝑦.



2D data types: images

• Still images/pictures: spatial 2D signals of the form

𝑓 𝑥, 𝑦 : ℝ2 → ℝ, having:

• domain ℝ2 and codomain ℝ.

• two spatial coordinates 𝑥, 𝑦.

• Image sampling/digitization transforms continuous

coordinates images to digital images:

𝑓 𝑖, 𝑗 : ℤ2 → 0,… , 2𝐵 − 1 .
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3D data types: video
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3D data types: video

• Moving images: spatiotemporal 3D signals of the form:

𝑓 𝑥, 𝑦, 𝑡 : ℝ3 → ℝ, having:

• domain ℝ3 and codomain ℝ.

• the time 𝑡 coordinate has a different nature than the spatial

coordinates 𝑥, 𝑦.

• Video scanning: the process for obtaining an 1D analog

video signal, by sampling the time-varying images

(luminance or RGB channels) along the vertical axis 𝑦 and

time 𝑡.
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3D data types: video

• Analog video signal 𝑓 𝑥, 𝑗Δ𝑦, 𝑘Δ𝑡 : ℝ × ℤ2 → ℝ.

• discrete along 𝑦 and 𝑡 axes

• continuous along 𝑥 axis.

• Digital video signal 𝑓 𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑡 : ℤ3→ ℝ.

• Spatial sampling intervals Δ𝑥, Δ𝑦 define image resolution:

the smaller they are, the smaller the pixel size is.

• Temporal sampling interval Δ𝑡 defines the video frame rate

in frames per second (fps).
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3D data types: 
volumetric images
• 3D volumetric images: 3D signals of the form

𝑓 𝑥, 𝑦, 𝑧 : ℝ3 → ℝ.

• Discrete versions (defined on a Euclidean grid ℤ3) :

𝑓 𝑛1, 𝑛2, 𝑛3 : ℤ3 → ℝ.

• 𝑥 = 𝑛1Δ𝑥, 𝑦 = 𝑛2Δ𝑦, 𝑧 = 𝑛3Δ𝑧

• Δ𝑥, Δ𝑦, Δ𝑧: spatial sampling intervals defining 3D image

resolution

• each voxel is a real number.
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3D data types : 
volumetric images
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3D data types: 
multispectral images

• Multispectral/multichannel ( 𝑛 -channel) images have the

form: 𝐟 𝑥, 𝑦 : ℝ2→ ℝ𝑛.

• color images (𝑛 = 3): 𝐟 𝑥, 𝑦 = [𝑓𝑅 𝑥, 𝑦 , 𝑓𝐺 𝑥, 𝑦 , 𝑓𝐵 𝑥, 𝑦 ]𝑇 ∶ ℝ2 →

ℝ3.

• digital color images (assigning 8 bits per color channel to each

voxel): 𝐟 𝑛1, 𝑛2 : ℤ2→ 0,… , 255 3.

• Hyperspectral images: 𝑓 𝑥, 𝑦, 𝜆 : ℝ3 → ℝ

• 𝜆 wavelength.
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Infrared images
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[www.Infrareddiagnostic.com]



Reflectography
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a) IR image tiles of a painting; b) mosaiced IR image.



Hyperspectral images
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[Wikipedia]



3D data types

• Multiview images: images of an object or set, taken from

different view points, typically using different cameras.

• Stereo images: a special case, employing only two cameras (left

and right).

• They both carry only implicit geometrical information about

the visualized 3D object.

• They are not 3D data.

• 3D object geometry can be derived using stereo or multiview 3D

geometry reconstruction techniques.
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3D data types

Multiview video: captured by synchronized video-cameras.
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3D data types

a) 3D surface 𝒮 ⊂ ℝ3 (expressed, e.g., by a triangular mesh)

b) 3D surface texture:       𝐟 𝑋, 𝑌, 𝑍 : 𝒮 ⊂ ℝ3→ ℝ3.
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3D data types

a) 3D surface 𝒮 ⊂ ℝ3 (expressed, e.g., by a triangular mesh)

b) 3D surface texture:       𝐟 𝑋, 𝑌, 𝑍 : 𝒮 ⊂ ℝ3→ ℝ3.
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3D data types

• RGB-D images have: a) RGB channels and b) D (depth)

channel.

• They are acquired by RGB-D cameras.

17



3D data types

RGB-Depth image acquired from monocular video [APOLLO].
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3D data types : seismic 
images and volumes
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3D data types : ultrasound 
images and volumes
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3D data types : x-ray 
images
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a) Tooth X-ray; b) CBCT volume.



3D data types: Ground 
penetrating radar
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Ground penetrating radar a) image; b) volume.



Color theory

• Visible light: an electromagnetic wave with wavelength 𝜆

varying in the range 380 − 780 𝑛𝑚.

• Perceived color: depends on the spectral content of the light.

• Red light: a signal with energy concentrated around 700 𝑛𝑚.

• White light: a signal with evenly distributed energy across the

wavelength spectrum.

• Monochromatic color: a color with a very narrow spectral content

(typically single-wavelength).
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Color theory

• Multispectral/multichannel ( 𝑛 -channel) images have the

form: 𝐟 𝑥, 𝑦 : ℝ2→ ℝ𝑛.

• color images( 𝑛 = 3 ): 𝐟 𝑥, 𝑦 = [𝑓𝑅 𝑥, 𝑦 , 𝑓𝐺 𝑥, 𝑦 , 𝑓𝐵 𝑥, 𝑦 ]𝑇 ∶ ℝ2 →

ℝ3.

• digital color images (assigning 8 bits per color channel to each

voxel): 𝐟 𝑛1, 𝑛2 : ℤ2→ 0,… , 255 3.

• They can also be considered as 3D images: 𝑓 𝑛1, 𝑛2, 𝑖 , 𝑖 = 1,2,3.

• Hyperspectral images (3D images): 𝑓 𝑥, 𝑦, 𝜆 : ℝ3 → ℝ

• 𝜆 wavelength.
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Color images

RGB color image.
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Color coordinate systems

• Alternative color image representation:

• Subtractive colors: cyan, magenta, yellow

(complementary of red, green, blue primary colors).

• CMYK color system: subtractive color model

complemented with black color (mainly used in color

image printing).
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Color coordinate systems
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Color  cube.



Color coordinate systems

• Human visual system is less sensitive to color than to

luminance.

• RGB color space: the three colors considered equally

important and stored at the same spatial resolution.

• More efficient color image representation: in the luminance-

chrominance domain, allocating higher spatial resolution to

luminance than to chrominance channels.
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Color coordinate systems

• 𝑌𝐶𝑏𝐶𝑟 color space:

• It is an efficient color representation in analog and digital TV.

• 𝑌: the luminance channel:

𝑌 = 𝑘𝑟𝑅 + 𝑘𝑔𝐺 + 𝑘𝑏𝐵.

• 𝑘 : coefficients, with typical values 𝑘𝑟 = 0.299, 𝑘𝑔 = 0.587,

𝑘𝑏 = 0.114 .

• Small weight in the B channel.

• Chrominance information can be represented as:

𝐶𝑏 = 𝐵 − 𝑌, 𝐶𝑟 = 𝑅 − 𝑌.
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Color coordinate systems

• Advantages of the YIQ color space:

• It guarantees backwards compatibility with monochrome television:

𝑌
𝐼
𝑄

=
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

𝑅
𝐺
𝐵

.

• 𝑌: luminance component.

• 𝐼, 𝑄: image chrominance.
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Color coordinate systems

• The Commission Internationale de l’ Eclairage (CIE):

• proposed the fundamental spectral system RGB to match the

monochromatic fundamental sources of 𝑅𝐶𝐼𝐸 , 𝐺𝐶𝐼𝐸 , 𝐵𝐶𝐼𝐸.

• White color reference: 𝑅𝐶𝐼𝐸 = 𝐺𝐶𝐼𝐸= 𝐵𝐶𝐼𝐸= 1.

• CIE RGB color space is unable to display all reproducible colors.

• It proposed the XYZ color system:

• Hypothetical coordinates 𝑋, 𝑌, 𝑍.

• White reference color: 𝑋 = 𝑌 = 𝑍 = 1.

𝑋
𝑌
𝑍

=
0.490 0.310 0.200
0.177 0.813 0.011
0.000 0.010 0.990

𝑅𝐶𝐼𝐸
𝐺𝐶𝐼𝐸
𝐵𝐶𝐼𝐸

.

31



Color coordinate systems

• The color coordinates:

𝑥 =
𝑋

𝑋+𝑌+𝑍
, 𝑦 =

𝑌

𝑋+𝑌+𝑍

can be used to produce a chromaticity

diagram.

• Ellipses correspond to colors which

cannot be discerned by the human

visual system.
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Color coordinate systems

• Such systems can not approximate well the human visual

perception of the following three color properties:

• Hue: it determines color redness, greenness, blueness.

• Saturation: it defines the percentage of white light added

to a pure color.

• Brightness: it indicates the perceived light luminance.
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Color coordinate systems

Hue, saturation, brightness color

coordinates define a cylindrical color

coordinate system:

• Brightness 𝐼 varies from pure black to pure

white color.

• Saturation 𝑆 ranges from pure gray 𝑠 = 0

to highly saturated colors 𝑠 = 1 .

• Hue 𝐻 is measured by the angle between

the actual color vector and a reference pure

color vector.
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Color coordinate systems

Color hue and  saturation.
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Color coordinate systems

HSI system (Hue, Saturation,

Intensity):

• It is a cylindrical coordinate system

with axes determined by the

diagonal line 𝑅 = 𝐺 = 𝐵 in the

RGB space.

• The colors in the HSI cylindrical

coordinate system that are inside

in the RGB cube can be displayed.
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Spatial Frequency Content

• A (temporal) frequency 𝐹 is linked to angular frequency

𝛺 = 2𝜋𝐹 = 2𝜋/𝑇.

• 𝐹𝑥 , 𝐹𝑦: 2D spatial frequencies representing how rapidly image

luminance or chrominance changes on the image plane:

• in cycles per unit length along a given axis,

• in cycles per meter (cpm) in the metric measure system.

• 𝛺𝑥 = 2𝜋𝐹𝑥 , 𝛺𝑦 = 2𝜋𝐹𝑦: respective angular frequencies.
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Spatial Frequency Content
• Spatial frequencies (video content changes along 𝑥, 𝑦 axes):

𝛺𝑥 = 2𝜋𝐹𝑥 and 𝛺𝑦 = 2𝜋𝐹𝑦 .
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2D sinusoidal signals: a) 𝐹𝑥, 𝐹𝑦 = (0,6); b) 𝐹𝑥 , 𝐹𝑦 = 10,4 .



Spatial Frequency Content

Image

𝑓 𝑥, 𝑦 = sin 20𝜋𝑥 + 8𝜋𝑦

has frequencies 𝐹𝑥 = 10, 𝐹𝑦 = 4 , 𝛺𝑥 = 20𝜋, 𝛺𝑦 = 8𝜋 :

• 10 cycles per unit length along the horizontal direction,

• 4 cycles per unit length along the vertical direction.

• 𝐹𝑠 = 𝐹𝑥
2 + 𝐹𝑦

2 = 10,77 ≅ 11 cycles per unit length along the

direction:

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 Τ𝐹𝑥 𝐹𝑦 = 21,8𝑜.
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Spatial Frequency Content

Any image 𝑓𝑎 𝑥, 𝑦 can be analyzed in many complex exponential

components using Fourier transform:

𝐹𝑎 𝛺𝑥, 𝛺𝑦 = න

−∞

∞

න

−∞

∞

𝑓𝑎 𝑥, 𝑦 𝑒−𝑖 𝛺𝑥𝑥+𝛺𝑦𝑦 𝑑𝑥𝑑𝑦

• 𝐹𝑎 0,0 : DC term that is equal to the average image luminance.

• Small spatial image change rate results to power spectrum 𝐹𝑎 𝛺𝑥, 𝛺𝑦

concentrated around the DC term, at low frequencies 𝛺𝑥, 𝛺𝑦 .

• Image edges and details correspond to higher frequencies 𝛺𝑥, 𝛺𝑦

lying further apart from the DC term.
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41I. Pitas Digital Image Processing Fundamentals

Digital Image Transfom Algorithms

a) Test image LENNA;                      b) periodogram of LENNA.

Spatial Frequency Content



Image sampling

2D image digitization: uniform image sampling along axes

𝑥, 𝑦:

• Δ𝑥, Δ𝑦 : the sampling intervals along the two axes (inversely

proportional to the horizontal and vertical 𝑑𝑝𝑖).

• Usually Δ𝑥 = Δ𝑦, so that image pixels are square.

An analog image is sampled on an orthogonal lattice

resulting in a discrete image 𝑓 𝑛1, 𝑛2 = 𝑓𝑎 𝑛1Δ𝑥, 𝑛2Δ𝑦 .
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2D signal sampling

Rectangular image sampling grid.
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Image sampling

• Problems resulting from image sampling:

• Relationship between the spectra of the continuous and

the discrete images.

• Reconstruction of the continuous images from the

discrete one.

• Both can solved by the 2D Fourier transform of the

continuous image.
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Image sampling

𝐹𝑎 𝛺𝑥, 𝛺𝑦 ≜ න

−∞

∞

න

−∞

∞

𝑓𝑎 𝑥, 𝑦 𝑒𝑥𝑝 −𝑖𝛺𝑥𝑥 − 𝑖𝛺𝑦𝑦 𝑑𝑥𝑑𝑦

𝑓𝑎 𝑥, 𝑦 =
1

4𝜋2
න

−∞

∞

න

−∞

∞

𝐹𝑎 𝛺𝑥, 𝛺𝑦 𝑒𝑥𝑝 𝑖𝛺𝑥𝑥 + 𝑖𝛺𝑦𝑦 𝑑𝛺𝑥𝑑𝛺𝑦

where 𝛺𝑥 = 2𝜋𝐹𝑥 , 𝛺𝑦 = 2𝜋𝐹𝑦.

• Fourier transform 𝐹𝑎 𝛺𝑥, 𝛺𝑦 of the discrete image 𝑓 𝑛1, 𝑛2 :

𝐹 𝛺𝑥∆𝑥, 𝛺𝑦∆𝑦 =
1

∆𝑥∆𝑦


𝑘1



𝑘2

𝐹𝑎 𝛺𝑥 −
2𝜋𝑘1
∆𝑥

, 𝛺𝑦 −
2𝜋𝑘2
∆𝑦
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Image sampling

Discrete image spectrum: a 2D periodic extension of 

the continuous image spectrum.
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Image sampling

• Spectrum 𝐹𝑎 𝛺𝑥, 𝛺𝑦 of a low-pass image 𝑓𝑎 𝑥, 𝑦 with

spectrum contained in a region of the 𝛺𝑥 , 𝛺𝑦 plane around

0,0 and sufficiently small intervals Δ𝑥, Δ𝑦:

𝐹𝑎 𝛺𝑥, 𝛺𝑦 = Δ𝑥Δ𝑦 𝐹 𝛺𝑥∆𝑥, 𝛺𝑦∆𝑦 , 𝛺𝑥 ≤
𝜋

Δ𝑥
, 𝛺𝑦 ≤

𝜋

Δ𝑦

• Reconstruction of the continuous image 𝑓𝑎 𝑥, 𝑦 :

𝑓𝑎 𝑥, 𝑦 =

𝑛1



𝑛2

𝑓 𝑛1, 𝑛2
sin

𝜋
∆𝑥

𝑥 − 𝑛1∆𝑥

𝜋
∆𝑥

𝑥 − 𝑛1∆𝑥
∙
sin

𝜋
∆𝑦

𝑦 − 𝑛2∆𝑦

𝜋
∆𝑦

𝑦 − 𝑛2∆𝑦
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Image sampling

• Analog (continuous-space) image reconstruction from its

pixels:

• It occurs when projecting or displaying a digital image on

screen.

• It is essentially a 2D interpolation operation.

• Other interpolation forms:

• Zero order polynomial interpolation

• Linear interpolation.
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Image sampling

• Nyquist-Shannon sampling theorem: An accurate

reconstruction of a continuous image from the discrete one is

possible when the sampling frequencies 𝛺𝑠𝑥 = Τ2𝜋 Δ𝑥 ,

𝛺𝑠𝑦 = Τ2𝜋 Δ𝑦 satisfy:

𝛺𝑠𝑥 ≥ 2𝛺𝑥𝑚𝑎𝑥 , 𝛺𝑠𝑦 ≥ 2𝛺𝑦𝑚𝑎𝑥.

• 𝛺𝑥𝑚𝑎𝑥 , 𝛺𝑦𝑚𝑎𝑥: maximal image frequencies along 𝑥, 𝑦 axis.

• Nyquist sampling rate: sampling intervals should satisfy:

∆𝑥 ≤
𝜋

𝛺𝑥𝑚𝑎𝑥
, ∆𝑦 ≤

𝜋

𝛺𝑦𝑚𝑎𝑥
.
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Image sampling

• Image aliasing:

• It is caused by alterations of the spectrum, due to its

periodic repetitions, primarily in high frequencies, when:

• the image is not low-pass.

• the sampling intervals Δ𝑥, Δ𝑦 are not sufficiently small.

• It renders exact reconstruction of the continuous image

impossible.
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Image sampling

• Orthogonal sampling can be extended to other types of

sampling lattices by:

𝐱 = 𝐕𝐧

where:

𝐱 = 𝑥, 𝑦 𝑇 , 𝐧 = 𝑛𝑥 , 𝑛𝑦
𝑇
, 𝐕 = ȁ𝐯1 𝐯2 =

𝜐11 𝜐12
𝜐21 𝜐22

• Vectors 𝐯1, 𝐯2 must be linearly independent.
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Image sampling

• Continuous analog image sampling:

𝑓 𝐧 ≜ 𝑓𝛼 𝐕𝐧 .

• Rectangular sampling matrix:

𝐕 =
Δ𝑥 0
0 Δ𝑦

.

• In a square lattice with Δ𝑥 = Δ𝑦 = 1, the eight neighbors of a

pixel may be 1 or 2 apart.
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Image sampling

Hexagonal lattice.
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Image sampling

• Hexagonal lattice: every pixel has six equally distant

neighbors.

• Sampling matrix:

𝐕 =
Δ𝑥 Δ𝑥
Δ𝑦 −Δ𝑦

.

• Curves are uniformly sampled on a hexagonal lattice.
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Image sampling

• Discrete – continuous image spectrum relation:

𝐹 𝐕𝑇𝛀 =
1

det 𝐕


𝐤

𝐹𝛼 𝛀 − 𝐔𝐤 ,

where:

𝐤 = 𝑘1, 𝑘2
𝑇,   𝛀 = 𝛺𝑥 , 𝛺𝑦

𝑇
, 𝐔𝑇𝐕 = 2𝜋𝐈.

• Periodic spectrum with periodicity matrix 𝐔.

• Less severe aliasing problems.

• Better quality images for same CCD chip area.
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Spatiotemporal 
Frequency Content
• In video signal, consisting of 2D video frames changing over

time, we have spatiotemporal frequencies 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡.

• Temporal frequency 𝛺𝑡 depends on temporal video content

changes, primarily due to object motion.

• Possible reasons of video content changes:

• object motion,

• camera motion,

• illumination changes,

• combination of all the above.
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Spatiotemporal 
Frequency Content

57

Linear object motion.



Spatiotemporal 
Frequency Content
• Let 𝑓0 𝑥, 𝑦 = 𝑓 𝑥, 𝑦, 0 be an object image at time zero, and

𝜐𝑥 , 𝜐𝑦 be the object speed along the horizontal and vertical

directions respectively.

• The object image at time 𝑡 is given by:

𝑓 𝑥, 𝑦, 𝑡 = 𝑓 𝑥 − 𝜐𝑥𝑡, 𝑦 − 𝜐𝑦𝑡, 0 = 𝑓0 𝑥 − 𝜐𝑥𝑡, 𝑦 − 𝜐𝑦𝑡 .
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Spatiotemporal 
Frequency Content

• The spatiotemporal Fourier transform 𝐹 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡 of the

video signal 𝑓 𝑥, 𝑦, 𝑡 is given by:

𝐹 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡 = 𝐹0 𝛺𝑥 , 𝛺𝑦 𝛿 𝛺𝑡 + 𝛺𝑥𝜐𝑥 + 𝛺𝑦𝜐𝑦 .

• 𝛿 ∙ : the delta Dirac function.

• The spectrum 𝐹 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡 is nonzero only on the plane:

𝛺𝑡 + 𝛺𝑥𝜐𝑥 + 𝛺𝑦𝜐𝑦 = 0.
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Spatiotemporal 
Frequency Content
Therefore:

𝛺𝑡 = −𝛺𝑥𝜐𝑥 − 𝛺𝑦𝜐𝑦 = −𝛀𝑇𝐯.

𝛀 = 𝛺𝑥 , 𝛺𝑦
𝑇
: frequency vector.

𝐯 = 𝜐𝑥 , 𝜐𝑦
𝑇
: motion vector.

• The temporal frequency depends not only on motion speed,

but also on the spatial object frequencies.
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Spatiotemporal 
Frequency Content

• When 𝛺𝑥 = 𝛺𝑦 = 0, 𝛺𝑡 = 0 regardless of 𝜐𝑥 , 𝜐𝑦.

• If the object has uniform luminance, no temporal variation can be

observed when it moves.

• If the motion vector 𝜐𝑥 , 𝜐𝑦
𝑇

is orthogonal to the spatial

frequency vector 𝛀, then 𝛺𝑡 = 0.

• The direction of the maximal spatial luminance variations is the

same as the direction of 𝛀, i.e., perpendicular to the local image

edges.
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Spatiotemporal 
Frequency Content

• If an object moves along a direction

and the object pattern does not

change, it will not produce any

temporal variation.

• Temporal frequency is maximal

when the object moves along a

direction where spatial luminance

change is the greatest.
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Video sampling

• Analog video signal:

• a time-varying image of the form 𝑓 𝑥, 𝑗Δ𝑦, 𝑘Δ𝑡

• It is obtained by video scanning: sampling the 

time-varying image luminance along the 𝑦

and 𝑡 axis.

• Digital video 𝑓 𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑡 can be obtained by:

• sampling the analog video along the horizontal scan lines or

• using the existing discrete two-dimensional sampling grip that is

inherent in several photoelectrical sensors (e.g., CCD chips).
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Video sampling

• Progressive video sampling grid:

• It is the simplest way to digitize an analog 3D video signal.

• It leads to uniform spatiotemporal sampling along three space-time

coordinates 𝑥, 𝑦, 𝑡.

• Progressive digital video consists of video frames:

• SDTV PAL system: 25 𝑓𝑝𝑠, Δ𝑡 = Τ1 25, video frame resolution 480 ×

720 pixels.

• SDTV NTSC system: 30 𝑓𝑝𝑠, Δ𝑡 = Τ1 30, video frame resolution

576 × 720 pixels.
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Video sampling

• HDTV digital video 1080p offers 1080 × 1920 pixels per

video frame both for ATSC and DVB systems.

• Alternative form of digital video sampling: 

2:1 interlaced video

• It samples the odd- and even-numbered 

video lines alternatively. 

• It produces odd and even video fields at 

double the sampling rate per second.

• Two video fields can form one video frame (when motion is small).
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Video sampling

• Let 𝑓𝑎 𝑥, 𝑦, 𝑡 be the 3D analog continuous signal and

Δ𝑥, Δ𝑦, Δt be the sampling intervals along 𝑥, 𝑦, 𝑡 axes.

• The discrete video is given by:

𝑓 𝑛1, 𝑛2, 𝑛𝑡 = 𝑓𝑎 𝑛1Δ𝑥, 𝑛2Δ𝑦, 𝑛𝑡Δ𝑡 .

• Forward 3D Fourier transform of continuous video:

𝐹𝑎 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡 = න

−∞

+∞

න

−∞

+∞

න

−∞

+∞

𝑓𝑎 𝑥, 𝑦, 𝑡 𝑒−𝑖𝛺𝑥𝑥−𝑖𝛺𝑦𝑦−𝑖𝛺𝑡𝑡𝑑𝑥𝑑𝑦𝑑𝑡
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Video sampling

• The inverse 3D Fourier transform of continuous video:

𝑓𝑎 𝑥, 𝑦, 𝑡 =
1

2𝜋 3
න

−∞

+∞

න

−∞

+∞

න

−∞

+∞

𝐹𝑎 𝛺𝑥, 𝛺𝑦, 𝛺𝑡 𝑒
𝑖𝛺𝑥𝑥+𝑖𝛺𝑦𝑦+𝑖𝛺𝑡𝑡𝑑𝛺𝑥𝑑𝛺𝑦𝑑𝛺𝑡

𝛺𝑥 = 2𝜋𝐹𝑥 , 𝛺𝑦 = 2𝜋𝐹𝑦 , 𝛺𝑡 = 2𝜋𝐹𝑡 are the spatiotemporal

frequencies describing video content variations along axes

𝑥, 𝑦, 𝑡.
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Video sampling

• Spatiotemporally smooth video content has power spectrum

concentrated around the DC term 𝛺𝑥, 𝛺𝑦, 𝛺𝑡
𝑇
= 0,0,0 𝑇.

• Fourier transform 𝐹 𝛺𝑥, 𝛺𝑦, 𝛺𝑡 of the discrete video signal

𝑓 𝑛1, 𝑛2, 𝑛3 :

𝐹 𝛺𝑥Δ𝑥, 𝛺𝑦Δ𝑦,𝛺𝑡Δ𝑡

=
1

Δ𝑥Δ𝑦Δ𝑡


𝑘𝑥



𝑘𝑦



𝑘𝑡

𝐹𝑎 𝛺𝑥 −
2𝜋𝑘𝑥
Δ𝑥

, 𝛺𝑦 −
2𝜋𝑘𝑦
Δ𝑦

, 𝛺𝑡 −
2𝜋𝑘𝑡
Δ𝑡

.
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Video sampling

• Discrete progressive video

spectrum: a 3D periodic

translation of the continuous

video spectrum.
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Video sampling

• Spectral aliasing:

• caused by spectrum overlapping, due to its periodic repetitions,

primarily in high frequencies (close to ± Τ𝜋 Δ𝑥 ,± Τ𝜋 Δ𝑦 ,± Τ𝜋 Δ𝑡), if:

• the video is not low-pass,

• the sampling intervals Δ𝑥, Δ𝑦 are not sufficiently small.

• It renders accurate reconstruction of the continuous video

impossible.

70



Video sampling

• Nyquist criterion: The accurate reconstruction of a

continuous video from the discrete one is possible when the

sampling periods Δ𝑥, Δ𝑦, Δ𝑡 satisfy:

∆𝑥 ≤
𝜋

𝛺𝑥𝑚𝑎𝑥
, ∆𝑦 ≤

𝜋

𝛺𝑦𝑚𝑎𝑥
, ∆𝑡 ≤

𝜋

𝛺𝑡𝑚𝑎𝑥
.

• Therefore, sampling frequencies 𝐹𝑠𝑥 =
1

Δ𝑥
, 𝐹𝑠𝑦 =

1

Δ𝑦
, 𝐹𝑠𝑡 =

1

Δ𝑡

must be at least double the maximal spatial and temporal

video frequencies: 𝐹𝑠𝑥 ≥ 2𝐹𝑥𝑚𝑎𝑥 , 𝐹𝑠𝑦 ≥ 2𝐹𝑦𝑚𝑎𝑥 , 𝐹𝑠𝑡 ≥ 2𝐹𝑡𝑚𝑎𝑥 .
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Video sampling

• Let a low-pass signal 𝑓𝑎 𝑥, 𝑦, 𝑡 with spectrum contained in a

region of the 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡
𝑇

plane around 𝐎 = 0,0,0 𝑇 and the

intervals Δ𝑥, Δ𝑦, Δ𝑡 are sufficiently small, so that:

𝐹𝑎 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡 = 0, 𝛺𝑥 ≥
𝜋

Δ𝑥
, 𝛺𝑦 ≥

𝜋

Δ𝑦
, 𝛺𝑡 ≥

𝜋

Δ𝑡
.
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Video sampling

• Continuous video spectrum:

𝐹𝑎 𝛺𝑥 , 𝛺𝑦 , 𝛺𝑡 = Δ𝑥Δ𝑦Δ𝑡 𝐹 𝛺𝑥Δ𝑥, 𝛺𝑦Δ𝑦, 𝛺𝑡Δ𝑡 ,

𝛺𝑥 ≤
𝜋

Δ𝑥
, 𝛺𝑦 ≤

𝜋

Δ𝑦
, 𝛺𝑡 ≤

𝜋

Δ𝑡

• Continuous video reconstruction:

𝑓𝛼 𝑥, 𝑦, 𝑡 =

𝑛1



𝑛2



𝑛𝑡

𝑓 𝑛1, 𝑛2, 𝑛𝑡
sin

𝜋
∆𝑥

𝑥 − 𝑛1∆𝑥

𝜋
∆𝑥

𝑥 − 𝑛1∆𝑥
∙
sin

𝜋
∆𝑦

𝑦 − 𝑛2∆𝑦

𝜋
∆𝑦

𝑦 − 𝑛2∆𝑦
∙
sin

𝜋
∆𝑡

𝑡 − 𝑛𝑡∆𝑡

𝜋
∆𝑡

𝑡 − 𝑛𝑡∆𝑡
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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