

Decision surfaces. Support Vector Machines

V. Mygdalis, F. Fotopoulos, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 4.2

Outline

- Decision surfaces
- Hyperplanes
- Non-linear Decision Surfaces
- 2nd degree polynomial surfaces
- Hyperellipsoid/Hyperparaboloid
- Support Vector Machines

Decision surfaces

VML

- Classification:
 - Two class (m = 2) and multiple class (m > 2) classification.
 - Example: *Face detection* (two classes), *face recognition* (many classes).
 - Two class C_1, C_2 (binary) classification of sample $\mathbf{x} \in \mathbb{R}^n$:
 - One (binary) hypothesis to be tested:

 \mathcal{H}_1 : $\mathbf{x} \in \mathcal{C}_1$, \mathcal{H}_2 : $\mathbf{x} \in \mathcal{C}_2$.

• Use one **decision** surface to separate two classes.

Two Class Classification

 x_2

• A binary hypothesis to be tested: \mathbf{x} is either in \mathcal{C}_1 or in \mathcal{C}_2 .

 x_1

• Find a decision surface to separate two classes.

 C_2

Hyperplanes

• *Hyperplane* \mathbb{H} is described by a linear equation having parameters w_0 , $\mathbf{w} = [w_1, ..., w_n]^T$:

$$\sum_{j=1}^{n} w_j x_j + w_0 = \mathbf{w}^T \mathbf{x} + w_0 = 0, \qquad \mathbf{x} = [x_1, \dots, x_n]^T.$$

• Distance of a point x from hyperplance \mathbb{H} :

$$d(\mathbf{x}, \mathbb{H}) = \frac{|\mathbf{w}^T \mathbf{x} + w_0|}{||\mathbf{w}||}.$$

Hyperplanes

Linear discriminant function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b.$$

- w is the weight vector and b (or w₀) is the bias (or threshold weight).
- Decision rule:
- If $g(\mathbf{x}) > 0$ then \mathbf{x} is assigned in \mathcal{C}_1 class.
- Otherwise, if $g(\mathbf{x}) < 0$, it is assigned in C_2 class.
- The *decision surface* g(x) = 0 separates points assigned to C₁ from points assigned to C₂.

Hyperplanes

- If $g(\mathbf{x})$ is **linear**, the decision surface is a *hyperplane* \mathbb{H} .
- It divides the feature space into two half-spaces, decision region \mathcal{R}_1 for \mathcal{C}_1 and region \mathcal{R}_2 for \mathcal{C}_2 .
- We usually consider any x point in R₁ to be on the *positive* side g(x) > 0 and, respectively, any point in R₂ to be on the negative side g(x) < 0.
 - **x** can also be expressed by its distance *d* from the hyperplane:

$$\mathbf{x} = \mathbf{x}_p + d \frac{\mathbf{w}}{\|\mathbf{w}\|},$$

Hyperplanes (Plane)

 x_3

 R_2

ð

マ

42

X

 R_1

The linear decision boundary \mathbb{H} :

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$

separates the feature space into 2 half-spaces:

- \mathcal{R}_1 (where $g(\mathbf{x}) > 0$) and
- \mathcal{R}_2 (where $g(\mathbf{x}) < 0$).

g(x)=0

Decision surfaces

- *Multiclass Classification* (m > 2):
- Binary hypothesis testing:
 - One class against all: *m* binary hypotheses.
 - *m* decision surfaces must be found.
 - Pair-wise class comparisons (one-against-one):
 - m(m-1)/2 binary hypotheses
 - m(m-1)/2 decision surfaces must be found.

a) One-against-all multi-class classification; b) Pairwise multi-class classification.

Non-linear Decision Surfaces

• Linear discriminant function $g(\mathbf{x})$:

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i,$$

- coefficients w_i are the components of the weight vector w.
- A general *nonlinear discriminant function*: $g(\mathbf{x}) = f(\mathbf{x}; \mathbf{w})$ defines a decision surface S.
- Distance of a point x from S:

Artificial Intelligence & Information Analysis Lab

$$d(\mathbf{x}, \mathbb{S}) = \min_{\mathbf{z} \in \mathbb{S}} d(\mathbf{x}, \mathbf{z}).$$

12

Information Analysis Lab

Quadratic Decision Surfaces

 Polynomial discriminant function: $g(\mathbf{x})$

Artificial Intelliaence &

• The quadratic discriminant function is a second degree multivariate polynomial function:

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j$$
Artificial Intelligence & $i = 1$

Quadratic Decision Surfaces

Special cases of *quadratic decision surfaces*:

• *Hypersphere* equation having parameters **c**, *r* (hypersphere center, radius):

$$g(\mathbf{x}) = (\mathbf{x} - \mathbf{c})^T (\mathbf{x} - \mathbf{c}) - r^2$$

Hyperellipsoid equation having parameters A, c, r: $g(\mathbf{x}) = (\mathbf{x} - \mathbf{c})^T \mathbf{A} (\mathbf{x} - \mathbf{c}) - r^2.$

3D ellipsoid

Introduction to SVMs

- Support Vector Machines is a supervised learning algorithm originally introduced in order to solve the binary classification problem.
- Its main objective is to find a *hyperplane* in the *n*-dimensional space (*n*: number of features) that separates the classes with the *maximum margin* (i.e., the maximum distance between samples of both classes).

Introduction to SVMs

- The derived hyperplane is a weighted, linear combination of the training set.
- Support Vectors are the training samples that lie closer to the hyperplane and have the biggest influence on its position and orientation.

Support Vector Machines

Information Analysis Lab

Support Vector Machines

- As we have seen, we can use the function g(x) = w^Tx + b to define the decision surface (*hyperplane*).
- Then we can divide the training data samples into 2 classes, $\mathcal{C}_1 = \{x_+\}$ and $\mathcal{C}_2 = \{x_-\}$ so that:

$$\mathbf{w}^T \mathbf{x}_+ + b \ge 1,$$
$$\mathbf{w}^T \mathbf{x}_- + b \le -1.$$

Maximize Margin

The *margin distance* between $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = 1$ should be maximized.

 The distance between the decision boundary w^Tx + b = 0 and one of the 2 lines that form the margin (e.g., w^Tx + b = 1) is half of margin distance:

 $\frac{|\mathbf{w}^T \mathbf{x} + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||},$

• Thus, the *margin distance* is $\frac{2}{||w||}$.

• In order to *maximize the margin*, we need to *minimize*

Support Vector Machines

• We introduce the parameter y_i , so that:

$$y_i = egin{cases} 1, & ext{for } \mathbf{x}_+ ext{ samples,} \ -1, & ext{for } \mathbf{x}_- ext{ samples.} \end{cases}$$

Thus, in both cases:

 $y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1.$

Primal SVM optimization problem

The *primal SVM optimization problem* is defined as follows:

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2,$$

s.t.: $y_i(\mathbf{w}^T\mathbf{x}_i+b) \leq 1, \quad i=1,\ldots,N,$

• $\mathbf{x}_i, i = 1, ..., N$: training samples.

Soft-margin SVM formulation

- The original SVM optimization criteria can never be met, if the data are not linearly separable.
- Therefore, *soft-margin formulation* is employed instead:

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + c \sum_{i=1}^{N} \xi_i,$$
s.t.: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \le 1 - \xi_i, \quad i = 1, ..., N.$
 $\xi_i \ge 0, \quad i = 1, ..., N.$

• ξ_i , i = 1, ..., N are the so-called **slack variables**.

Lagrangian Dual Problem

- c > 0 is a hyperparameter that controls the amount of error allowed in the optimization problem.
- c = 0 denotes the hard-margin formulation.
- SVM optimization solution is equivalent to finding the saddle points of the Lagrangian:

 $J_p(\mathbf{w}, b, \xi) = \frac{1}{2} ||\mathbf{w}||^2 + c \sum_{i=1}^N \xi_i - \sum_{i=1}^N a_i [y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i] + \sum_{i=1}^N \beta_i \xi_i.$

• a_i and β_i are **Lagrange multipliers** corresponding to the constraints of the primal problem.

Lagrangian Dual Problem

According to *Karush–Kuhn–Tucker* (*KKT*) optimality conditions, we zero the partial derivatives of J_p, with respect to w, b, ξ and we obtain:

Lagrangian Dual Problem

• By substituting back in *J_p*, a *Quadratic Programming* (*QP*) optimization problem is formed:

$$\max_{a_i} \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_j y_j \mathbf{x}_i^T \mathbf{x}_j,$$

 $s.t.: 0 \leq a_i \leq c.$

- This optimization problem can be solved using optimized QPsolvers, e.g., Sequential Minimal Optimization (SMO).
- Note that most of the vector a entries will turn out to have 0

SVM decision function

- The non-zero a entries will correspond to the *support vectors*.
- Finally, in order to classify a test sample **x**, we employ the following decision function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^N a_i \mathbf{x}_i^T \mathbf{x} + b,$$

- **x** is classified to C_1 , if $g(\mathbf{x}) > 0$,
- x is classified to C_2 , otherwise.

Kernel SVMs

If we can not find an acceptable linear decision surface to separate the training data, we can generate a nonlinear one using the *Kernel Trick*.

 x_2

a) data are not linearly separable in the 1D space.

b) If we move to 2D using $f(x) = x^2$, the data become linearly separable.

Artificial Intelligence & Information Analysis Lab

Kernel SVM problem

- In order to obtain non-linear hyperplanes, we assume a mapping function $\varphi(\cdot): \mathbb{R}^n \mapsto \mathcal{H}$ for the training data, where \mathcal{H} is a space of high or even arbitrary dimensionality.
- The linear SVM optimization problem contains inner products $\mathbf{x}_i^T \mathbf{x}_i$ between the training samples.

Kernel SVM problem

• In the non-linear case, this inner product is replaced by any **Reproducing Kernel Hilbert Space** (**RKHS**) function: $\kappa(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j),$

that expresses data similarity in space \mathcal{H} .

• Common choices for $\kappa(\cdot,\cdot)$ include the **Polynomial**, **Gaussian, Radial Basis Functions**.

Kernel SVM optimization

Artificial Intelliaence &

nformation Analysis Lab

• In *Kernel SVM optimization*, the Lagrangian function takes the following form:

$$\max_{a_i} \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_j y_j \kappa(\mathbf{x}_i, \mathbf{x}_j),$$

s.t.: $0 \le a_i \le c$.

• Finally, the decision function requires the same implicit mapping for the test sample as well:

$$g(\mathbf{x}) = \sum_{i=1}^{N} a_i \kappa(\mathbf{x}_i, \mathbf{x}) + b.$$

Bibliography

[HAY2009] S. Haykin, *Neural networks and learning machines*, Prentice Hall, 2009.

- [BIS2006] C.M. Bishop, Pattern recognition and machine learning, Springer, 2006.
- [THEO2011] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2011.

[ZUR1992] J.M. Zurada, Introduction to artificial neural systems. Vol. 8. St. Paul: West publishing company, 1992.

[YEG2009] Yegnanarayana, Bayya. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

