Decision surfaces. Support Vector Machines

V. Mygdalis, F. Fotopoulos, Prof. Ioannis Pitas

Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 4.2

Outline

- Decision surfaces
- Hyperplanes
- Non-linear Decision Surfaces
- $2^{\text {nd }}$ degree polynomial surfaces
- Hyperellipsoid/Hyperparaboloid
- Support Vector Machines

Decision surfaces

- Classification:
- Two class $(m=2)$ and multiple class $(m>2)$ classification.
- Example: Face detection (two classes), face recognition (many classes).
- Two class $\mathcal{C}_{1}, \mathcal{C}_{2}$ (binary) classification of sample $\mathbf{x} \in \mathbb{R}^{n}$:
- One (binary) hypothesis to be tested:

$$
\mathcal{H}_{1}: \quad \mathbf{x} \in \mathcal{C}_{1}, \quad \mathcal{H}_{2}: \quad \mathbf{x} \in \mathcal{C}_{2} .
$$

- Use one decision surface to separate two classes.

Two Class Classification

Two class $\mathcal{C}_{1}, \mathcal{C}_{2}$ (binary) classification of sample $\mathbf{x} \in \mathbb{R}^{n}$:

- A binary hypothesis to be tested: \mathbf{x} is either in \mathcal{C}_{1} or in \mathcal{C}_{2}.
- Find a decision surface to separate two classes.

Hyperplanes

- Hyperplane \mathbb{H} is described by a linear equation having parameters $w_{0}, \mathbf{w}=\left[w_{1}, \ldots, w_{n}\right]^{T}$:

$$
\sum_{j=1}^{n} w_{j} x_{j}+w_{0}=\mathbf{w}^{T} \mathbf{x}+w_{0}=0, \quad \mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} .
$$

- Distance of a point \mathbf{x} from hyperplance \mathbb{H} :

$$
d(\mathbf{x}, \mathbb{H})=\frac{\left|\mathbf{w}^{T} \mathbf{x}+w_{0}\right|}{\|\mathbf{w}\|}
$$

Hyperplanes

Linear discriminant function:

$$
g(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b
$$

- \mathbf{w} is the weight vector and b (or w_{0}) is the bias (or threshold weight).
- Decision rule:
- If $g(\mathbf{x})>0$ then \mathbf{x} is assigned in \mathcal{C}_{1} class.
- Otherwise, if $g(x)<0$, it is assigned in \mathcal{C}_{2} class.
- The decision surface $g(x)=0$ separates points assigned to \mathcal{C}_{1} from points assigned to \mathcal{C}_{2}.

Hyperplanes

- If $g(\mathbf{x})$ is linear, the decision surface is a hyperplane \mathbb{H}.
- It divides the feature space into two half-spaces, decision region \mathcal{R}_{1} for \mathcal{C}_{1} and region \mathcal{R}_{2} for \mathcal{C}_{2}.
- We usually consider any \mathbf{x} point in \mathcal{R}_{1} to be on the positive side $g(\mathbf{x})>0$ and, respectively, any point in \mathcal{R}_{2} to be on the negative side $g(x)<0$.
- \mathbf{x} can also be expressed by its distance d from the hyperplane:

$$
\mathbf{x}=\mathbf{x}_{p}+d \frac{\mathbf{w}}{\|\mathbf{w}\|},
$$

Hyperplanes (Line)

a) Linear Decision Line.
b) Distance of a point from a line.

Hyperplanes (Plane)

The linear decision boundary \mathbb{H} :

$$
g(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b=0
$$

separates the feature space into 2 half-spaces:

- $\mathcal{R}_{1}($ where $g(\mathbf{x})>0)$ and
- $\mathcal{R}_{2}($ where $g(\mathbf{x})<0)$.

Decision surfaces

Multiclass Classification ($m>2$):

- Binary hypothesis testing:
- One class against all: m binary hypotheses.
- m decision surfaces must be found.
- Pair-wise class comparisons (one-against-one):
- $m(m-1) / 2$ binary hypotheses
- $m(m-1) / 2$ decision surfaces must be found.

a) One-against-all multi-class classification; b) Pairwise multi-class classification.

Non-linear Decision Surfaces

- Linear discriminant function $g(\mathbf{x})$:

$$
g(\mathbf{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}
$$

- coefficients w_{i} are the components of the weight vector \mathbf{w}.
- A general nonlinear discriminant function: $g(\mathbf{x})=f(\mathbf{x} ; \mathbf{w})$ defines a decision surface \mathbb{S}.
- Distance of a point \mathbf{x} from \mathbb{S} :

$$
d(\mathbf{x}, \mathbb{S})=\min _{\mathbf{z} \in \mathbb{S}} d(\mathbf{x}, \mathbf{z})
$$

Non-linear Decision Surfaces VML

Quadratic Decision Surfaces

- Polynomial discriminant function:

$$
\begin{aligned}
& g(\mathbf{x}) \\
& =w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} x_{i} x_{j}+\cdots+\sum_{i_{1}=1}^{n} \ldots \sum_{i_{n}=1}^{n} w_{i_{1} \ldots i_{n}} x_{i_{1}} \ldots x_{i_{n}}
\end{aligned}
$$

- The quadratic discriminant function is a second degree multivariate polynomial function:

$$
g(\mathbf{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} x_{i} x_{j}
$$

Quadratic Decision Surfaces

Special cases of quadratic decision surfaces:

- Hypersphere equation having parameters c,r (hypersphere center, radius):

$$
g(\mathbf{x})=(\mathbf{x}-\mathbf{c})^{T}(\mathbf{x}-\mathbf{c})-r^{2} .
$$

- Hyperellipsoid equation having parameters $\mathbf{A}, \mathbf{c}, r$:

$$
g(\mathbf{x})=(\mathbf{x}-\mathbf{c})^{T} \mathbf{A}(\mathbf{x}-\mathbf{c})-r^{2} .
$$

3D ellipsoid

©nl

3D hyperboloid

Introduction to SVMs

- Support Vector Machines is a supervised learning algorithm originally introduced in order to solve the binary classification problem.
- Its main objective is to find a hyperplane in the n dimensional space (n : number of features) that separates the classes with the maximum margin (i.e., the maximum distance between samples of both classes).

Introduction to SVMs

- The derived hyperplane is a weighted, linear combination of the training set.
- Support Vectors are the training samples that lie closer to the hyperplane and have the biggest influence on its position and orientation.

Support Vector Machines

a) Small Margin.

b) Optimal Margin.

Support Vector Machines

- As we have seen, we can use the function $g(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b$ to define the decision surface (hyperplane).
- Then we can divide the training data samples into 2 classes, $\mathcal{C}_{1}=\left\{\mathbf{x}_{+}\right\}$and $\mathcal{C}_{2}=\left\{\mathbf{x}_{-}\right\}$so that:

$$
\begin{gathered}
\mathbf{w}^{T} \mathbf{x}_{+}+b \geq 1, \\
\mathbf{w}^{T} \mathbf{x}_{-}+b \leq-1 .
\end{gathered}
$$

Maximize Margin

The margin distance between $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=$ 1 should be maximized.

- The distance between the decision boundary $\mathbf{w}^{T} \mathbf{x}+b=0$ and one of the 2 lines that form the margin (e.g., $\mathbf{w}^{T} \mathbf{x}+b=$ 1) is half of margin distance:

$$
\frac{\left|\mathbf{w}^{T} \mathbf{x}+b\right|}{\|\mathbf{w}\|}=\frac{1}{\|\mathbf{w}\|},
$$

- Thus, the margin distance is $\frac{2}{\|\mathbf{w}\|}$.
- In order to maximize the margin, we need to minimize

Support Vector Machines

- We introduce the parameter y_{i}, so that:

$$
y_{i}=\left\{\begin{array}{rc}
1, & \text { for } \mathbf{x}_{+} \text {samples, } \\
-1, & \text { for } x_{-} \text {samples }
\end{array}\right.
$$

- Thus, in both cases:

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1 .
$$

Primal SVM optimization problem

- The primal SVM optimization problem is defined as follows:

$$
\begin{gathered}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}, \\
\text { s.t. } y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \leq 1, \quad i=1, \ldots, N,
\end{gathered}
$$

- $\mathbf{x}_{i}, i=1, \ldots, N$: training samples.

Soft-margin SVM formulation

- The original SVM optimization criteria can never be met, if the data are not linearly separable.
- Therefore, soft-margin formulation is employed instead:

$$
\min _{\mathbf{w}, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+c \sum_{i=1}^{N} \xi_{i},
$$

$$
\begin{gathered}
\text { s.t.: } y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \leq 1-\xi_{i}, \\
\xi_{i} \geq 0,
\end{gathered} \quad i=1, \ldots, N . \quad i=1 . .
$$

- $\xi_{i}, i=1, \ldots, N$ are the so-called slack variables.

Lagrangian Dual Problem

- $c>0$ is a hyperparameter that controls the amount of error allowed in the optimization problem.
- $c=0$ denotes the hard-margin formulation.
- SVM optimization solution is equivalent to finding the saddle points of the Lagrangian:

$$
J_{p}(\mathbf{w}, b, \xi)=\frac{1}{2}| | \mathbf{w} \|^{2}+c \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} a_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right]+\sum_{i=1}^{N} \beta_{i} \xi_{i} .
$$

- a_{i} and β_{i} are Lagrange multipliers corresponding to the constraints of the primal problem.

Lagrangian Dual Problem

- According to Karush-Kuhn-Tucker (KKT) optimality conditions, we zero the partial derivatives of J_{p}, with respect to \mathbf{w}, b, ξ and we obtain:

$$
\begin{array}{ll}
\frac{\partial J_{p}}{\partial w}=0, & \mathbf{w}=\sum_{i=1}^{N} a_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial J_{p}}{\partial b}=0, & \sum_{i=1}^{N} a_{i} y_{i}=0 . \\
\frac{\partial J_{p}}{\partial \xi_{i}}=0, \quad ~ & \sum_{i=1}^{N} \beta_{i}=c-\sum_{i=1}^{N} \alpha_{i} .
\end{array}
$$

Lagrangian Dual Problem

- By substituting back in J_{p}, a Quadratic Programming (QP) optimization problem is formed:

$$
\max _{a_{i}} \sum_{i=1}^{N} a_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}
$$

$$
\text { s.t.: } 0 \leq a_{i} \leq c .
$$

- This optimization problem can be solved using optimized QPsolvers, e.g., Sequential Minimal Optimization (SMO).
- Note that most of the vector a entries will turn out to have 0 value.
Information Analysis Lab

SVM decision function

- The non-zero a entries will correspond to the support vectors.
- Finally, in order to classify a test sample \mathbf{x}, we employ the following decision function:

$$
g(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b=\sum_{i=1}^{N} a_{i} \mathbf{x}_{i}^{T} \mathbf{x}+b
$$

- \mathbf{x} is classified to C_{1}, if $g(x)>0$,
- \mathbf{x} is classified to \mathcal{C}_{2}, otherwise.

Kernel SVMs

If we can not find an acceptable linear decision surface to separate the training data, we can generate a nonlinear one using the Kernel Trick.

Kernel Trick (intuition)

a) data are not linearly separable in the 1D space.
b) If we move to 2D using $f(x)=x^{2}$, the data become linearly separable.

Kernel SVM problem

- In order to obtain non-linear hyperplanes, we assume a mapping function $\varphi(\cdot): \mathbb{R}^{n} \mapsto \mathcal{H}$ for the training data, where \mathcal{H} is a space of high or even arbitrary dimensionality.
- The linear SVM optimization problem contains inner products $\mathbf{x}_{i}^{T} \mathbf{x}_{j}$ between the training samples.

Kernel SVM problem

- In the non-linear case, this inner product is replaced by any Reproducing Kernel Hilbert Space (RKHS) function:

$$
\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\varphi\left(\mathbf{x}_{\mathrm{i}}\right)^{T} \varphi\left(\mathbf{x}_{\mathrm{j}}\right),
$$

that expresses data similarity in space \mathcal{H}.

- Common choices for $\kappa(\cdot, \cdot)$ include the Polynomial, Gaussian, Radial Basis Functions.

Kernel SVM optimization

- In Kernel SVM optimization, the Lagrangian function takes the following form:

$$
\max _{a_{i}} \sum_{i=1}^{N} a_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} y_{i} y_{j} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

$$
\text { s.t.: } \quad 0 \leq a_{i} \leq c \text {. }
$$

- Finally, the decision function requires the same implicit mapping for the test sample as well:

$$
g(\mathbf{x})=\sum_{i=1}^{N} a_{i} \kappa\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

Bibliography

[HAY2009] S. Haykin, Neural networks and learning machines, Prentice Hall, 2009.
[BIS2006] C.M. Bishop, Pattern recognition and machine learning, Springer, 2006.
[THEO2011] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2011.
[ZUR1992] J.M. Zurada, Introduction to artificial neural systems. Vol. 8. St. Paul: West publishing company, 1992.
[YEG2009] Yegnanarayana, Bayya. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

