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Decision surfaces
• Classification:

• Two class (𝑚 = 2) and multiple class (𝑚 > 2)

classification.

• Example: Face detection (two classes), face

recognition (many classes).

• Two class 𝒞1, 𝒞2 (binary) classification of sample 𝐱 ∈ ℝ𝑛:

• One (binary) hypothesis to be tested:

ℋ1: 𝐱 ∈ 𝒞1, ℋ2 : 𝐱 ∈ 𝒞2.

• Use one decision surface to separate two classes.
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Two Class Classification

Two class 𝒞1, 𝒞2 (binary) classification of sample 𝐱 ∈ ℝ𝑛:

• A binary hypothesis to be tested: 𝐱 is either in 𝒞1 or in 𝒞2.

• Find a decision surface to separate two classes.
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Hyperplanes

• Hyperplane ℍ is described by a linear equation having 

parameters 𝑤0 , 𝐰 = 𝑤1, … , 𝑤𝑛
𝑇:

σ𝑗=1
𝑛 𝑤𝑗𝑥𝑗 +𝑤0 = 𝐰𝑇𝐱 + 𝑤0 = 0,             𝐱 = 𝑥1, … , 𝑥𝑛

𝑇 .

• Distance of a point 𝐱 from hyperplance ℍ:

𝑑 𝐱,ℍ =
|𝐰𝑇𝐱 + 𝑤0|

||𝐰||
.
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Hyperplanes

Linear discriminant function:

𝑔 𝐱 = 𝐰𝑇𝐱 + 𝑏.

• 𝐰 is the weight vector and 𝑏 (or 𝑤0) is the bias (or threshold

weight).

• Decision rule:

• If 𝑔 𝐱 > 0 then 𝐱 is assigned in 𝒞1 class.

• Otherwise, if 𝑔 𝐱 < 0, it is assigned in 𝒞2 class.

• The decision surface 𝑔 𝐱 = 0 separates points assigned

to 𝒞1 from points assigned to 𝒞2.
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Hyperplanes
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• If 𝑔 𝐱 is linear, the decision surface is a hyperplane ℍ.

• It divides the feature space into two half-spaces, decision

region ℛ1 for 𝒞1 and region ℛ2 for 𝒞2.

• We usually consider any 𝐱 point in ℛ1 to be on the positive

side 𝑔 𝐱 > 0 and, respectively, any point in ℛ2 to be on the

negative side 𝑔 𝐱 < 0.

• 𝐱 can also be expressed by its distance 𝑑 from the

hyperplane:

𝐱 = 𝐱𝑝 + 𝑑
𝐰

𝐰
,

• 𝐱𝑝 is the normal projection of 𝐱 onto ℍ.



Hyperplanes (Line)
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a) Linear Decision Line. b) Distance of a point from a line.



Hyperplanes (Plane)
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The linear decision boundary ℍ:

𝑔 𝐱 = 𝐰𝑇𝐱 + 𝑏 = 0

separates the feature space into

2 half-spaces:

• ℛ1 (where 𝑔 𝐱 > 0) and

• ℛ2 (where 𝑔 𝐱 < 0).



Decision surfaces

Multiclass Classification (𝑚 > 2):

• Binary hypothesis testing:

• One class against all: 𝑚 binary hypotheses.

• 𝑚 decision surfaces must be found.

• Pair-wise class comparisons (one-against-one):

• 𝑚(𝑚 − 1)/2 binary hypotheses

• 𝑚(𝑚 − 1)/2 decision surfaces must be found.
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a) One-against-all multi-class classification; b) Pairwise multi-class classification.



Non-linear Decision Surfaces

• Linear discriminant function 𝑔 𝐱 :

𝑔 𝐱 = 𝑤0 +෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 ,

• coefficients 𝑤𝑖 are the components of the weight vector 𝐰.

• A general nonlinear discriminant function: 𝑔 𝐱 = 𝑓 𝐱;𝐰
defines a decision surface 𝕊.

• Distance of a point 𝐱 from 𝕊:

𝑑 𝐱, 𝕊 = min
𝐳∈𝕊

𝑑 𝐱, 𝐳 .
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Non-linear Decision Surfaces
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Quadratic Decision Surfaces

• Polynomial discriminant function:

𝑔 𝐱

= 𝑤0 +෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 +෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑤𝑖𝑗𝑥𝑖𝑥𝑗 +⋯+ ෍

𝑖1=1

𝑛

… ෍

𝑖𝑛=1

𝑛

𝑤𝑖1…𝑖𝑛𝑥𝑖1 …𝑥𝑖𝑛

• The quadratic discriminant function is a second degree

multivariate polynomial function:

𝑔 𝐱 = 𝑤0 +෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 +෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑤𝑖𝑗𝑥𝑖𝑥𝑗 .
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Quadratic Decision 

Surfaces
Special cases of quadratic decision surfaces:

• Hypersphere equation having parameters 𝐜, 𝑟 (hypersphere

center, radius):

𝑔 𝐱 = 𝐱 − 𝐜 𝑇 𝐱 − 𝐜 − 𝑟2.

• Hyperellipsoid equation having parameters 𝐀, 𝐜, 𝑟:

𝑔 𝐱 = 𝐱 − 𝐜 𝑇𝐀 𝐱 − 𝐜 − 𝑟2 .
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3D ellipsoid
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3D hyperboloid
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Introduction to SVMs

• Support Vector Machines is a supervised learning

algorithm originally introduced in order to solve the binary

classification problem.

• Its main objective is to find a hyperplane in the 𝑛 -

dimensional space (𝑛: number of features) that separates

the classes with the maximum margin (i.e., the maximum

distance between samples of both classes).
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Introduction to SVMs

• The derived hyperplane is a weighted, linear combination of

the training set.

• Support Vectors are the training samples that lie closer to

the hyperplane and have the biggest influence on its

position and orientation.
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Support Vector Machines
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a) Small Margin. b) Optimal Margin.



Support Vector Machines

• As we have seen, we can use

the function 𝑔 𝐱 = 𝐰𝑇𝐱 + 𝑏 to

define the decision surface

(hyperplane).

• Then we can divide the training

data samples into 2 classes,

𝒞1 = {𝐱+} and 𝒞2 = {𝐱−} so

that:

𝐰𝑇𝐱+ + 𝑏 ≥ 1,

𝐰𝑇𝐱− + 𝑏 ≤ −1. 
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Maximize Margin

The margin distance between 𝐰𝑇𝐱 + 𝑏 = −1 and 𝐰𝑇𝐱 + 𝑏 =
1 should be maximized.

• The distance between the decision boundary 𝐰𝑇𝐱 + 𝑏 = 0
and one of the 2 lines that form the margin (e.g., 𝐰𝑇𝐱 + 𝑏 =
1) is half of margin distance:

|𝐰𝑇𝐱+𝑏|

||𝐰||
=

1

||𝐰||
,

• Thus, the margin distance is
2

||𝐰||
.

• In order to maximize the margin, we need to minimize

| 𝒘 |.
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Support Vector Machines

• We introduce the parameter 𝑦𝑖 , so that:

𝑦𝑖 = ቊ
1, for 𝐱+ samples,

−1, for 𝐱− samples.

• Thus, in both cases:

𝑦𝑖(𝐰
𝑇𝐱𝑖 + 𝑏) ≥ 1.
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Primal SVM optimization 

problem

• The primal SVM optimization problem is defined as

follows:

min
𝐰,𝑏

1

2
||𝐰||2 ,

𝑠. 𝑡. ∶ 𝑦𝑖 𝐰
𝑇𝐱𝑖 + 𝑏 ≤ 1, 𝑖 = 1,… , 𝑁,

• 𝐱𝑖 , 𝑖 = 1,… , 𝑁: training samples.
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Soft-margin SVM 

formulation

• The original SVM optimization criteria can never be met, if

the data are not linearly separable.

• Therefore, soft-margin formulation is employed instead:

min
𝐰,𝑏,𝛏

1

2
||𝐰||2 + 𝑐෍

𝑖=1

𝑁

𝜉𝑖 ,

𝑠. 𝑡. ∶ 𝑦𝑖 𝐰
𝑇𝐱𝑖 + 𝑏 ≤ 1 − 𝜉𝑖 , 𝑖 = 1,… , 𝑁.
𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑁.

• 𝜉𝑖 , 𝑖 = 1, … ,𝑁 are the so-called slack variables.
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Lagrangian Dual Problem

• 𝑐 > 0 is a hyperparameter that controls the amount of error

allowed in the optimization problem.

• 𝑐 = 0 denotes the hard-margin formulation.

• SVM optimization solution is equivalent to finding the

saddle points of the Lagrangian:

𝐽𝑝 𝐰, 𝑏, 𝛏 =
1

2
𝐰

2
+ 𝑐෍

𝑖=1

𝑁

𝜉𝑖 − ෍

𝑖=1

𝑁

𝑎𝑖[𝑦𝑖 𝐰𝑇𝐱𝑖 + 𝑏 − 1 + 𝜉𝑖] +෍

𝑖=1

𝑁

𝛽𝑖𝜉𝑖 .

• 𝑎𝑖 and 𝛽𝑖 are Lagrange multipliers corresponding to the

constraints of the primal problem.
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Lagrangian Dual Problem
• According to Karush–Kuhn–Tucker (KKT) optimality

conditions, we zero the partial derivatives of 𝐽𝑝, with

respect to 𝐰, 𝑏, 𝛏 and we obtain:

𝜕𝐽𝑝

𝜕𝑤
= 0, 𝐰 = σ𝑖=1

𝑁 𝑎𝑖𝑦𝑖𝐱𝑖 ,

𝜕𝐽𝑝

𝜕𝑏
= 0, ෍

𝑖=1

𝑁

𝑎𝑖𝑦𝑖 = 0.

𝜕𝐽𝑝

𝜕𝜉𝑖
= 0, ෍

𝑖=1

𝑁

𝛽𝑖 = 𝑐 −෍

𝑖=1

𝑁

𝛼𝑖 .
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Lagrangian Dual Problem

• By substituting back in 𝐽𝑝, a Quadratic Programming (QP)

optimization problem is formed:

max
𝑎𝑖

෍

𝑖=1

𝑁

𝑎𝑖 −
1

2
෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐱𝑖
𝑇𝐱𝑗 ,

𝑠. 𝑡. : 0 ≤ 𝑎𝑖 ≤ 𝑐.

• This optimization problem can be solved using optimized QP-

solvers, e.g., Sequential Minimal Optimization (SMO).

• Note that most of the vector 𝐚 entries will turn out to have 0
value.
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SVM decision function

• The non-zero 𝐚 entries will correspond to the support

vectors.

• Finally, in order to classify a test sample 𝐱, we employ the

following decision function:

𝑔 𝐱 = 𝐰𝛵𝐱 + 𝑏 = σ𝑖=1
𝑁 𝑎𝑖 𝐱𝑖

𝑇𝐱 + 𝑏,

• 𝐱 is classified to 𝒞1, if 𝑔(𝐱) > 0, 

• 𝐱 is classified to 𝒞2, otherwise.

29



Kernel SVMs

30

If we can not find an acceptable linear decision surface to

separate the training data, we can generate a nonlinear one

using the Kernel Trick.



Kernel Trick (intuition)
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a) data are not linearly separable in the 1D space. 

b) If we move to 2D using  𝑓 𝑥 = 𝑥2, the data become linearly separable.



Kernel SVM problem

• In order to obtain non-linear hyperplanes, we assume a

mapping function 𝜑 ⋅ :ℝ𝑛 ↦ ℋ for the training data, where

ℋ is a space of high or even arbitrary dimensionality.

• The linear SVM optimization problem contains inner

products 𝐱𝑖
𝑇𝐱𝑗 between the training samples.
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Kernel SVM problem

• In the non-linear case, this inner product is replaced by any

Reproducing Kernel Hilbert Space (RKHS) function:

𝜅 𝐱𝑖 , 𝐱𝑗 = 𝜑 𝐱i
𝑇𝜑(𝐱j),

that expresses data similarity in space ℋ.

• Common choices for 𝜅(⋅,⋅) include the Polynomial,

Gaussian, Radial Basis Functions.
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Kernel SVM optimization

• In Kernel SVM optimization, the Lagrangian function takes

the following form:

max
𝑎𝑖

෍

𝑖=1

𝑁

𝑎𝑖 −
1

2
෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝜅(𝐱𝑖 , 𝐱𝑗),

𝑠. 𝑡. : 0 ≤ 𝑎𝑖 ≤ 𝑐.

• Finally, the decision function requires the same implicit

mapping for the test sample as well:

𝑔 𝐱 =෍

𝑖=1

𝑁

𝑎𝑖 𝜅(𝐱𝑖 , 𝐱) + 𝑏.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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