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Outline @ML

* Decision surfaces

* Hyperplanes

* Non-linear Decision Surfaces

« 27d degree polynomial surfaces
» Hyperellipsoid/Hyperparaboloid
« Support Vector Machines
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Decision surfaces C\ZML

e Classification:

*Two class (m=2) and multiple class (m > 2)
classification.

« Example: Face detection (two classes), face
recognition (many classes).

* Two class C;, G, (binary) classification of sample x € R":
» One (binary) hypothesis to be tested:
:]'[1: X € 61, :7'[2: X € 62.

* Use one decision surface to separate two classes.
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Two Class Classification @ML

Two class Cq, C, (binary) classification of sample x € R":
« A binary hypothesis to be tested: x Is either in C; or in C,.

* Find a decision surface to separate two classes.

. -
| | Artificial Intelligence & xl 4
Information Analysis Lab



Hyperplanes @ML

 Hyperplane H Is described by a linear equation having
parameters wy ,w = [wyq, ..., w, ]’

i=1wix; + wo = WX+ wy =0, X = [xq, ..., x,]".

 Distance of a point x from hyperplance H:

|| Artificial Intelligenc :
Information Analysis Lb



Hyperplanes @ML

Linear discriminant function:
gx) =wix+b.
w IS the weight vector and b (or wy) Is the bias (or threshold
weight).
* Decision rule:
If g(x) > 0 then x is assigned in C; class.
Otherwise, if g(x) < 0, it is assigned in C, class.

The decision surface g(x) = 0 separates points assigned
to G, from points assigned to C,.
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Hyperplanes

If g(x) is linear, the decision surface is a hyperplane H.

It divides the feature space into two half-spaces, decision
region R, for C; and region R, for C,.

We usually consider any x point in R, to be on the positive
side g(x) > 0 and, respectively, any point in R, to be on the
negative side g(x) < 0.

x can also be expressed by its distance d from the
hyperplane:

+d w
X=X —=
o wll’
Is the normal projection of x onto H.
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Hyperplanes (Line) @ML

xZA
xZA C
Cl ) 1 X,
9.
C> >
X, X1
a) Linear Decision Line. b) Distance of a point from a line.
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Hyperplanes (Plane)

The linear decision boundary H:
gx)=wlx+b=0

separates the feature space into
2 half-spaces:

* R, (where g(x) > 0) and
* R, (where g(x) < 0).

|| Artificial Intelligen
Informatio AIy Lb



Decision surfaces

Multiclass Classification (m > 2):
 Binary hypothesis testing:
* One class against all: m binary hypotheses.

 m decision surfaces must be found.

» Pair-wise class comparisons (one-against-one):

* m(m — 1)/2 binary hypotheses

* m(m — 1) /2 decision surfaces must be found.
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a) One-against-all multi-class classification; b) Pairwise multi-class classification.
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Non-linear Decision Surfaces @ML

* Linear discriminant function g(x):
n
g(x) = wy + ZWixi:
=1

 coefficients w; are the components of the weight vector w.

* A general nonlinear discriminant function: g(x) = f(x; w)
defines a decision surface S.

« Distance of a point x from S:

O”D Artificial Infelligen d(X, S) — rznelél d(X, Z).
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Non-linear Decision Surfaces
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Quadratic Decision Surfaces @ML

 Polynomial discriminant function:

9(x)
n n n n n
+ Z wW; X ZZ WiiXiXj + -+ z z Wi i, Xiy - Xi
=1 =1 j=1 1=1 in=1

« The quadratic discriminant function is a second degree
multivariate polynomial function

n n

g(X) = Wy + lexl Z Winin .
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Quadratic Decision C\ZML

Surfaces
Special cases of quadratic decision surfaces:

* Hypersphere equation having parameters c,r (hypersphere
center, radius):

gx) =x-o)'(x—c)—r*

« Hyperellipsoid equation having parameters A, ¢,
gx)=xx—-c)fAx—c) —12.
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Introduction to SVMs C\ZML

« Support Vector Machines Is a supervised learning
algorithm originally introduced in order to solve the binary
classification problem.

* [ts main objective Is to find a hyperplane In the n-
dimensional space (n: number of features) that separates
the classes with the maximum margin (i.e., the maximum
distance between samples of both classes).
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Introduction to SVMs C\ZML

* The derived hyperplane is a weighted, linear combination of
the training set.

« Support Vectors are the training samples that lie closer to

the hyperplane and have the biggest influence on its
position and orientation.
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Support Vector Machines @ML

XA o

a) Small Margin. b) Optimal Margin.
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Support Vector Machines @ML

 As we have seen, we can use x4
the function g(x) = w/x+ b to
define the decision surface
(hyperplane).

« Then we can divide the training
data samples into 2 classes,
C,=1{x;} and G, ={x_} so
that:

wix, +b=> 1,

wix_ +b<-1. ~ >

| | Artificial Intelligence & 21
Information Analysis Lab




Maximize Margin @ML

The margin distance between w/x+b =—-1 and wix+ b =
1 should be maximized.

- The distance between the decision boundary w/x+b =0
and one of the 2 lines that form the margin (e.g., w/x + b =
1) Is half of margin distance:

 Thus, the margin distance is ==

[lwl|

. In order to maximize the margin, we need to minimize
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Support Vector Machines @ML

* We Iintroduce the parameter y;, so that:

_ 1, forx, samples,
Yi=1-1, forx_ samples.

« Thus, In both cases:
y;(wlx; + b) > 1.
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O”Olfmi AIy Lb 23



Primal SVM optimization C\ZML
problem

« The primal SVM optimization problem is defined as

follows:
. 2
min —||w||“,

s.t.: y;(wl'x; +b) <1, i=1,..,N,

* xX;,i =1,..,N: training samples.
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QD

Soft-margin SVM C\ZML
formulation

 The original SVM optimization criteria can never be met, If
the data are not linearly separable.

* Therefore, soft-margin formulation IS employed instead:

min —||w||2 +cz€l,

w,b,§
s.t.: y;(wl'x; +b) <1-¢, i=1,..,N.
ELZO, i=1,..,N.
« &, 1 =1,..,N arethe so-called slack variables.
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Lagrangian Dual Problem @ML

¢ > 0 Is a hyperparameter that controls the amount of error
allowed in the optimization problem.

* ¢ = 0 denotes the hard-margin formulation.

« SVM optimization solution is equivalent to finding the

saddle points of the Lagrangian:
N N

N
1
Jp(W, b, &) = §||W||2 + szi = z a;ly; Ww'x; + b) — 1+ &;] +2,3i5i-
=1 =1 =1
 aq; and [; are Lagrange multipliers corresponding to the
constraints of the primal problem.
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Lagrangian Dual Problem @ML

 According to Karush—-Kuhn-Tucker (KKT) optimality
conditions, we zero the partial derivatives of j,, with

respect tow, b,§ and we obtain:

d/p N
— =0, W = Zi=1 a;yiX;,

9] -
a—lf — O, z a;y; = 0.

l

=71
Zﬁi=c— a;.

=1 [
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Lagrangian Dual Problem @ML

* By substituting back in J,, a Quadratic Programming (QP)
optimization problem IS formed

maXE a; — —z z a-ajyl-ijl- XJ,

=1]

S.t.:OSaiSC.

* This optimization problem can be solved using optimized QP-
solvers, e.g., Sequential Minimal Optimization (SMO).

 Note that most of the vector a entries will turn out to have 0
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SVM decision function (UmL

The non-zero a entries will correspond to the support
vectors.

Finally, in order to classify a test sample x, we employ the
following decision function:

gx)=wix+b=3%" a;x/x +b,

X Is classified to Cq, If g(x) > 0,
x IS classified to C,, otherwise.
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Kernel SVMs @ML

If we can not find an acceptable linear decision surface to
separate the training data, we can generate a nonlinear one
using the Kernel Trick.

X2}

. >
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Kernel Trick (intuition) C\ZML

sz sz

>
xl xl

a) data are not linearly separable in the 1D space.
) If we move to 2D using f(x) = x?, the data become linearly separable.

| | Atificial Intelligence & .
Information Analysis Lab



Kernel SVM problem @ML

* In order to obtain non-linear hyperplanes, we assume a
mapping function ¢(:): R™ » H for the training data, where
H Is a space of high or even arbitrary dimensionality.

* The Iinear SVM optimization problem contains inner
products x; X; between the training samples.
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Kernel SVM problem @ML

* |In the non-linear case, this inner product is replaced by any
Reproducing Kernel Hilbert Space (RKHS) function:

K(Xi'xj) = ‘P(Xi)TQD(Xj)»
that expresses data similarity in space H.

« Common choices for k(:,-)  Include the Polynomial,
Gaussian, Radial Basis Functions.
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Kernel SVM optimization @ML

* In Kernel SVM optimization, the Lagrangian function takes

the following form:
N

1 N N
“}B"z a; — Ez 2 ai“j)’i)’j’c(xi: Xj):
l =1 =1

=1

s.t.: 0=<a; <c.

* Finally, the decision function requires the same implicit

mapping for the test sample as well:
N

g(x) = 2 a; k(X;,X) + b.
@@ P -
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(vmL

Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmisweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr
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