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Bayesian Learning

• Bayesian classification

• Bayesian clustering
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Bayes probability

General Bayesian classification problem: Classify data sample

𝐱 ∈ ℝ𝑛 to one of the 𝑚 classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚.

Definitions:

• 𝑃 𝒞𝑖 : A-priori probability of class 𝒞𝑖.

• 𝑃 𝒞𝑖 𝐱 : A-posteriori probability that the class 𝒞𝑖 is

adopted, given data sample 𝐱.
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Bayes probability

• 𝑝 𝐱 𝒞𝑖 : Multidimensional conditional probability

distribution of data sample 𝐱𝑖, given class 𝒞𝑖.

• 𝑝 𝐱 : Multidimensional probability distribution of

data sample 𝐱.

• 𝑃 𝐱, 𝒞𝑖 : Joint probability of 𝐱 and 𝒞𝑖.

Bayes theorem:

𝑝 𝐱 𝒞𝑖 𝑃 𝒞𝑖 = 𝑃 𝒞𝑖 𝐱 𝑝 𝐱 = 𝑃 𝐱, 𝒞𝑖 .
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Bayes Decision

General approach: Given 𝑚 hypotheses (one per class

𝒞𝑖 , 𝑖 = 1, … ,𝑀), choose the one having the least cost (risk).

• 𝐿𝑖𝑗: cost of adopting 𝒞𝑗 when choosing 𝒞𝑖 is the correction

decision.

• The average cost of adopting 𝒞𝑗 given data vector 𝐱, is

given by:

𝑟𝑗 𝐱 =෍

𝑖=1

𝑚

𝐿𝑖𝑗𝑃 𝐱, 𝒞𝑖 =෍

𝑖=1

𝑚

𝐿𝑖𝑗𝑝 𝐱 𝒞𝑖 𝑃(𝒞𝑖) .
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Bayes Decision

Bayes Decision Rule:

• For a given data sample 𝐱, if 𝑟𝑘 𝐱 < 𝑟𝑗 𝐱 for every 𝑗 ≠ 𝑘,

𝑗, 𝑘 = 1,…𝑚, then classify 𝐱 to class 𝒞𝑘.

• That is, for everydata sample 𝐱, the hypothesis (class) 𝒞𝑘
resulting in the minimal Bayes cost 𝑟𝑘(𝐱) is adopted.
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Maximum A-Posteriori 

Criterion (MAP)

Special case:

• 𝐿𝑖𝑖 = 0 (zero cost for correct decisions).

• 𝐿𝑖𝑗 = 𝐿: cost is independent of class pair 𝒞𝑖 , 𝒞𝑗, when 𝑖 ≠ 𝑗.

• Then Bayes rule is greatly simplified. 𝒞𝑘 is selected if:

𝑟𝑘 𝐱 =෍

𝑖≠𝑘

𝑝 𝐱 𝒞𝑖 𝑃 𝒞𝑖 <෍

𝑖≠𝑗

𝑝 𝐱 𝒞𝑖 𝑃 𝒞𝑖 = 𝑟𝑗 𝐱 .
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MAP Criterion 

• By eliminating mutual terms in this inequality, 𝒞𝑘 is selected

if:

𝑝 𝐱 𝒞𝑘 𝑃 𝒞𝑘 > 𝑝 𝐱 𝒞𝑗 𝑃 𝒞𝑗 ,

𝑃 𝐱, 𝒞𝑘 > 𝑃 𝐱, 𝒞𝑗 ,

𝑃 𝒞𝑘 𝐱 𝑝 𝐱 > 𝑃 𝒞𝑗 𝐱 𝑝 𝐱 .

Maximum A-Posteriori Criterion (MAP):

• 𝒞𝑘 is selected if:

𝑃 𝒞𝑘 𝐱 > 𝑃 𝒞𝑗 𝐱 .
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ML Criterion

• Special case. Equiprobable classes:

𝑃 𝒞𝑖 =
1

𝑚
, 𝑖 = 1,… ,𝑚.

Maximum Likelihood Criterion (ML):

• 𝒞𝑘 is selected if:

𝑝 𝐱 𝒞𝑘 > 𝑝 𝐱 𝒞𝑗 , ∀𝑗 ≠ 𝑘,
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ML Criterion

• In the 1D case, decision regions ℛ1 and ℛ2 are defined as:

ℛ1 = {𝑥 ∈ ℝ, 𝑝 𝑥 𝒞1 > 𝑝 𝑥 𝒞2 }, 

ℛ2 = {𝑥 ∈ ℝ, 𝑝 𝑥 𝒞1 < 𝑝 𝑥 𝒞2 }.
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ML Criterion
In this special case, the costs 𝑟1 𝐱 , 𝑟2 𝐱 are proportional to

the possibility of the false adoption of the class 𝒞1, 𝒞2
respectively.
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Binary Classifier for two classes having 1D pdfs 𝑁 0,1 ,𝑁 1, 1 .



ML Criterion

In the case of a two-class problem (𝑚 = 2 ), Bayes rule

becomes:

• Adopt 𝒞1, if 𝑟1 𝐱 < 𝑟2 𝐱 or:

Λ 𝐱 =
𝑝 𝐱 𝒞1
𝑝 𝐱 𝒞2

> 𝛵12.

• Λ 𝐱 : likelihood ratio.

• Decision threshold 𝛵12:

𝛵12 =
𝑃 𝒞2 𝐿21 − 𝐿22
𝑃 𝒞1 𝐿12 − 𝐿11

.
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ML Criterion

• In the case of MAP criterion:

𝛵12 =
𝑃 𝒞2
𝑃(𝒞1)

.

• In the case of ML criterion:

𝑇𝑀𝐿 = 1.
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Bayes Decision

• In the multiclass case (𝑚 > 2), class 𝒞𝑘 is adopted if:

Λ𝑘𝑗 𝐱 =
𝑝 𝐱 𝒞𝑘

𝑝 𝐱 𝒞𝑗
> 𝑇𝑘𝑗 , ∀𝑗 ≠ 𝑘, 𝑗, 𝑘 = 1,… ,𝑚.

• or equivalently:

ln Λ𝑘𝑗 𝐱 = ln 𝑝 𝐱 𝒞𝑘 − ln 𝑝 𝐱 𝒞𝑘 > ln𝑇𝑘𝑗 .

• 𝑇𝑘𝑗 thresholds depends on the employed MAP/ML criterion,

𝐿𝑘𝑗 and 𝑃 𝒞𝑗 .
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Gaussian Probability 

Distribution
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Normal (Gaussian) distribution 𝑁(𝑚, 𝜎):

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒
−
1

2

𝑥−𝑚

𝜎

2

.



Gaussian Probability 

Distribution

16
1D Gaussian distribution 𝑁 0,1 .



Gaussian Probability 

Distribution
• Gaussian (normal) joint pdf 𝑁(𝑚1, 𝑚2,𝜎1, 𝜎2, 𝑟): 

𝑓𝑋𝑌 𝑥, 𝑦 =
1

2𝜋𝜎1𝜎2 1 − 𝑟2
𝑒𝐴,

• 𝑟: correlation coefficient of 𝑋, 𝑌.

𝛢 = −
1

2 1 − 𝑟2
𝑥 − 𝑚1

𝜎1

2

+
𝑦 −𝑚2

𝜎2

2

−
2𝑟 𝑥 − 𝑚1 𝑦 −𝑚2

𝜎1𝜎2



Gaussian Probability 

Density Function
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Gaussian Probability 

Distribution
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2D Gaussian pdfs with positive and negative 𝑟𝑋𝑌. 



Gaussian Probability 

Distribution

2D Gaussian pdf with 𝑟𝑋𝑌 = 0.



Gaussian Probability 

Density Function
Gaussian (normal) random vectors:

• Variables 𝛸1, … , 𝑋𝑛 are jointly normal if:

𝑓𝐗 𝐱 =
1

( 2𝜋) 𝑛det(𝐂)
1
2

𝑒𝐴,

𝐴 = −
1

2
𝐱 −𝐦 𝑇𝐂−1 𝐱 −𝐦

• Expected vector: 𝐦 = 𝐸 𝐱 .

• Covariance matrix: 𝐂 = 𝛦 𝐱 −𝐦 𝑇 𝐱 −𝐦 .

• det(𝐂) : determinant of 𝐂.



Normally Distributed 

Sample Classification
• In the case where data sample 𝐱 ∈ ℝ𝑛 belonging to class

𝒞𝑘 follow multivariate normal distribution 𝑁(𝐦, 𝐂), we have:

ln 𝑝 𝐱 𝒞𝑘 =

−
1

2
𝐱 −𝐦𝑘

𝑇𝐂𝑘
−1 𝐱 −𝐦𝑘 −

1

2
𝑛 ln 2𝜋 −

1

2
ln det(𝐂𝑘) =

−
1

2
𝐱𝑇𝐂𝑘

−1𝐱 +
1

2
𝐱𝑇𝐂𝑘

−1𝐦𝑘 +
1

2
𝐦𝑘

𝑇𝐂𝑘
−1𝐱 −

1

2
𝐦𝑘

𝑇𝐂𝑘
−1𝐦𝑘 −

𝑛 ln 2𝜋 − ln det(𝐂𝑘) .
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Normally Distributed 

Sample Classification

• Thus, 𝒞𝑘 is adopted if:

−𝐱𝑇𝐂𝑘
−1𝐱 + 2𝐦𝑘

𝑇𝐂𝑘
−1𝐱 > −𝐱𝑇𝐂𝑗

−1𝐱 + 2𝐦𝑗
𝑇𝐂𝑗

−1𝐱 + 𝑏𝑘𝑗 ,

where:

𝑏𝑘𝑗 = 2 ln Τ𝑘𝑗 + ln(det(𝐂𝑘)) − ln(det(𝐂𝑗)) +𝐦𝑘
𝑇𝐂𝑘

−1𝐦𝑘 −𝐦𝑗
𝑇𝐂𝑗

−1𝐦𝑗 .
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Normally Distributed 

Sample Classification

24

Second degree decision boundary for two 2D Gaussian pdfs.



Normally Distributed 

Sample Classification

• Thus, the optimal classification can be achieved by

employing second degree hypersurfaces (e.g., hyper-

ellipsoid, hyper-paraboloid, hyper-hyperboloid).

• Hyperplanes are optimal classification surfaces if all classes

have same covariance matrix: 𝐂𝑘 = 𝐂, 𝑘 = 1,… ,𝑚.

• Then first degree (linear) decision surface emerges

(perceptron). Adopt 𝒞𝑘 if:

𝐚𝑘𝑗
𝑇 𝐱 > 𝑓𝑘𝑗 .
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Normally Distributed 

Sample Classification

• Hyperplane coefficients:

𝐚𝑘𝑗
𝑇 = 𝐦𝑘 −𝐦𝑗

𝑇
𝐂−1,

𝑓𝑘𝑗 = ln𝑇𝑘𝑗 +
1

2
𝐦𝑘

𝑇𝐂𝑘
−1𝐦𝑘 −

1

2
𝐦𝑗

𝑇𝐂𝑗
−1𝐦𝑗 .
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Normally Distributed 

Sample Classification
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Linear decision boundary for two 2D Gaussian pdfs having equal 𝐂.



Normally Distributed 

Sample Classification

Total classification error probability:

𝑃𝑒 = 𝑃𝑒1𝑃 𝒞2 + 𝑃𝑒2𝑃 𝒞1
= 𝑃 𝐚12

𝑇 𝐱 > 𝑓12 𝒞2 𝑃 𝒞2 + 𝑃 𝐚12
𝑇 𝐱 < 𝑓12 𝒞1 𝑃 𝒞1 .
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Normally Distributed 

Sample Classification

• If class 𝒞2 is the correct one, the quantity 𝐚12
𝑇 𝐱 has a

multivariate normal distribution with expected vector:

𝑚 = 𝐚12
𝑇 𝐸{𝐱|𝒞2} = 𝐚12

𝑇 𝐦2 = 𝐦1 −𝐦2
𝑇𝐂−1𝐦2,

and variance:

𝜎2 = 𝐚12
𝑇 𝐂 𝐚12 = 𝐦1 −𝐦2

𝑇𝐂−1 𝐦1 −𝐦2 .
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Normally Distributed 

Sample Classification

• Error probability is calculated using the erf function:

𝑃𝑒1 = 𝑃 𝐚12
𝑇 𝐱 > 𝑓12 𝒞2 = න

𝜏

∞

𝑒−
𝑡2

2 𝑑𝑡 , 𝜏 =
𝑓12 − 𝐚12

𝑇 𝐦2

𝜎
.

• If 𝑇12 = 1:

𝜏 =
1

2
𝐦1 −𝐦2

𝑇𝐂−1 𝐦1 −𝐦2 .
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Normally Distributed 

Sample Classification
• Error 𝑃𝑒1 is inversely proportional to the Mahalanobis

distance between the two class centers 𝐦1,𝐦2:

𝑑 𝐦1, 𝐦2 = 𝐦1 −𝐦2
𝑇𝐂−1 𝐦1 −𝐦2 .

• Error 𝑃𝑒2can be found in the same way.
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Normally Distributed 

Sample Classification
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Special case:

• Gaussian classes having same diagonal covariance matrix

with equal diagonal elements 𝐂 = 𝜎2𝐈.

• Then:

ln 𝑃 𝐱 𝒞𝑘 = −
1

2
𝐱𝑇𝐂𝑘

−1𝐱 +
1

2
𝐱𝑇𝐂𝑘

−1𝐦𝑘 +
1

2
𝐦𝑘

𝑇𝐂𝑘
−1𝐱 −

−
1

2
𝐦𝑘

𝑇𝐂𝑘
−1𝐦𝑘 − 𝑛 ln 2𝜋 − ln(det(𝐂𝑘)) = −

1

2𝜎2
𝐱𝑇𝐱 +

1

𝜎2
𝐦𝑘

𝑇𝐱

−
1

2𝜎2
𝐦𝑘

𝑇𝐦𝑘 − 𝑛 ln 2𝜋 − 𝑛 ln(𝜎2) .



Normally Distributed 

Samples Classification

33

• In this case, he decision hyperplane takes the form:

ln 𝑝 𝐱|𝒞𝑘 + ln𝑃(𝒞𝑘) − ln 𝑝 𝐱|𝒞𝑗 + ln𝑃 𝒞𝑗 =

= 𝐰𝑇 𝐱 − 𝐱0 = 0.

• Hyperplane parameters:

𝐰 = 𝐦𝑘 −𝐦𝑗 ,

𝐱0 =
1

2
𝐦𝑘 +𝐦𝑗 − 𝜎2 ln

𝑃 𝒞𝑘

𝑃 𝒞𝑗

𝐦𝑘 −𝐦𝑗

∥ 𝐦𝑘 −𝐦𝑗 ∥
2
.



Normally Distributed 

Samples Classification

34

• Special cases:

• If 𝑃 𝒞𝑘 = 𝑃 𝒞𝑗 , the decision hyperplane is the

perpendicular bisector of the line segment connecting

class centers 𝐦𝑘 and 𝐦𝑗:

𝐱0 =
1

2
𝐦𝑘 +𝐦𝑗 .

• If 𝑃 𝒞𝑘 ≫ 𝑃(𝒞𝑗), the decision hyperplane approaches 𝐦𝑗.

• If 𝑃 𝒞𝑖 ≪ 𝑃(𝒞𝑗), the decision super-surface approaches

𝐦𝑘.



Normally Distributed 

Samples Classification
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Perpendicular bisector of two 2D Gaussian pdfs having equal 𝐂 = 𝜎2𝐈.



Normally Distributed 

Samples Classification
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• Special cases:

• In the two class case, if 𝑃 𝒞1 = 𝑃 𝒞2 = 1/2 and the two

classes 𝒞1, 𝒞2 have 1D data 𝑥 ∈ ℝ follow Gaussian

distributions 𝑁 0, 𝜎 , 𝑁(1, 𝜎) the decision threshold is

given by:

𝑇 = 𝑥0 = 1/2.

• This describes a routine modem operation in data

communications.



Bayes Decision
In this special case, the costs 𝑟1 𝐱 , 𝑟2 𝐱 are proportional to

the possibility of the false adoption of the class 𝒞1, 𝒞2
respectively.
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Binary Classifier for two classes having 1D pdfs 𝑁 0,1 ,𝑁 1, 1 .



Normally Distributed 

Samples Classification

38

Special case:

• Gaussian classes having same non-diagonal covariance

matrix 𝐂.

• A decision hyperplane results:

𝐰𝑇 𝐱 − 𝐱0 = 0,

Having parameters

𝐰 = 𝐂−1 𝐦𝑘 −𝐦𝑗 ,

𝐱0 =
1

2
𝐦𝑘 +𝐦𝑗 − ln

𝑃 𝒞𝑘

𝑃 𝒞𝑗

𝐦𝑘 −𝐦𝑗

𝑑(𝐦𝑘 , 𝐦𝑗)
.



Normally Distributed 

Sample Classification

• where:

𝑑(𝐦𝑘 , 𝐦𝑗) = 𝐦𝑘 −𝐦𝑗
𝑇
𝐂−1 𝐦𝑘 −𝐦𝑗 .

is the Mahalanobis distance between the two class centers

𝐦𝑘 , 𝐦𝑗.
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Normally Distributed 

Samples Classification

40

Linear decision boundary or two  equiprobable 2D Gaussian pdfs  

having equal 𝐂.



Bayesian Learning

• Bayesian classification

• Bayesian clustering
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Bayesian clustering

• It follows Bayesian philosophy for clustering.

• The data set must be partitioned in 𝑚 clusters, 𝒞𝑗 , 𝑗 =

1,… ,𝑚.

• Each vector 𝐱𝑖 ∈ ℝ𝑛, 𝑖 = 1, … , 𝑁, belongs to a cluster 𝒞𝑗 with

probability 𝑃(𝒞𝑗|𝐱𝑖).

• A vector 𝐱𝑖 is assigned to a cluster 𝒞𝑘 if:

𝑃 𝒞𝑘 𝐱𝑖 > 𝑃 𝒞𝑗 𝐱𝑖 , 𝑗 = 1, … ,𝑚, 𝑘 ≠ 𝑗.
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Bayesian clustering

• Clustering using Expectation Maximization (EM)

algorithm.

• E-step of EM algorithm.

• Entropy functional to be optimized at iteration step 𝑡 using an

iterative algorithm:

𝐸 𝚯; ෡𝚯𝑡 =෍

𝑖=1

𝑁

෍

𝑗=1

𝑚

𝑃 𝒞𝑗 𝐱𝑖; ෡𝚯𝑡 ln 𝑝 𝐱𝑖 𝒞𝑖 ; 𝜽 𝑃 𝒞𝑗 .
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Bayesian clustering

• 𝛉 = 𝛉1
𝑇 , … , 𝛉𝑚

𝑇 𝑇 , 𝛉𝑘: the parameter vector corresponding cluster 𝑘.

• Typical case: 𝛉𝑘 = 𝐦𝑘
𝑇𝐜𝑘

𝑇 𝑇
, containing the cluster 𝑘 location and

dispersion parameters.

• 𝐏 = 𝑃 𝒞1 , … , 𝑃 𝒞𝑚
𝑇 with 𝑃 𝒞𝑘 the a priori probability for cluster

𝑘.

• 𝚯 = 𝛉𝑇 , 𝐏𝑇 𝑇 .

• M-step of the EM algorithm:

෡𝚯𝑡+1 = arg 𝑚𝑎𝑥𝚯𝐸 𝚯; ෡𝚯𝑡 .
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Bayesian clustering

• Estimate 𝜽𝑗 by cost function 𝐸 differentiation:

෍

𝑖=1

𝑁

෍

𝑗=1

𝑚

𝑃 𝒞𝑗 𝐱𝑖; ෡𝚯𝑡

𝜕

𝜕𝜽𝑗
ln 𝑝 𝐱𝑖 𝒞𝑖 ; 𝛉 = 0.

• Maximization under constraints:

𝑃 𝒞𝑗 ≥ 0, 𝑗 = 1, 2, … ,𝑚,

෍

𝑗=1

𝑚

𝑃 𝒞𝑗 = 1.
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Bayesian clustering

• Lagrangian function:

𝐸𝜆 𝐏; 𝜆 = 𝐸 𝚯; ෡𝚯𝑡 − 𝜆 ෍
𝑗=1

𝑚

𝑃 𝒞𝑗 − 1 .

• {𝛉𝑘 , 𝛉𝑗}, 𝑘 ≠ 𝑗 pairs are assumed to be independent.

• Setting partial derivatives of 𝐸𝜆 𝐏; 𝜆 with respect to 𝑃 𝒞𝑗
equal to zero results in:

𝑃 𝒞𝑗 =
1

𝜆
෍

𝑖=1

𝑁

𝑃 𝒞𝑗 𝐱𝑖; ෡𝚯𝑡 , 𝑗 = 1, 2, … ,𝑚.
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Bayesian clustering

• By summing 𝑃 𝒞𝑗 , 𝑗 = 1, … ,𝑚, we obtain:

𝜆 =෍
𝑖=1

𝑁

෍
𝑗=1

𝑚

𝑃(𝒞𝑗|𝐱𝑖; ෡𝚯𝑡) = 𝑁.

• And conclude that:

𝑃 𝒞𝑗 =
1

𝑁
෍

𝑖=1

𝑁

𝑃(𝒞𝑗|𝐱𝑖; ෡𝚯𝑡) , 𝑗 = 1, . . , 𝑚.
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Bayesian clustering

48

• Suitable convergence criterion:

෡𝚯𝑡+1 − ෡𝚯𝑡 < 𝜖.

where

• . : the appropriate vector norm.

• 𝜖: a “small” user-defined constant.



Bayesian clustering

• Choose initial estimates at iteration 𝑡 = 0: 𝛉0 and 𝐏0.

• Repeat until convergence, with respect to 𝚯 is achieved:

• Compute:

𝑃 𝒞𝑘 𝐱𝑖; ෡𝚯𝑡 =
𝑝 𝐱𝑖 𝒞𝑘; ෡𝛉𝑘𝑡 𝑃 𝒞𝑘 𝑡

σ𝑗=1
𝑚 𝑝 𝐱𝑖 𝒞𝑗; ෡𝛉𝑗𝑡 𝑃 𝒞𝑗 𝑡

, 𝑖 = 1,…𝑁, 𝑘 = 1,… ,𝑚.
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Bayesian clustering

• Set ෡𝛉𝑗𝑡+1 equal to the solution of:

෍

𝑖=1

𝑁

෍

𝑗=1

𝑚

𝑃 𝒞𝑗 𝐱𝑖; ෡𝚯𝑡

𝜕

𝜕θ𝑗
ln 𝑝 𝐱𝑖 𝒞𝑖 ; 𝛉𝑗 = 0, 𝑗 = 1,… ,𝑚.

with respect to 𝛉𝑗 .

• Set:

𝑃 𝒞𝑘 𝑡+1 =
1

𝑁
෍

𝑖=1

𝑁

𝑃(𝒞𝑘|𝐱𝑖; ෡𝚯𝑡) , 𝑘 = 1, . . , 𝑚.

• Repeat for 𝑡 + 1.
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Gaussian Clusters

• Multivariate Gaussian cluster probability distribution:

𝑝 𝐱 𝒞𝑘; 𝛉𝑘 =
1

2𝜋 𝑛 det(𝐂𝑘)
𝑒−

1

2
𝐱−𝐦𝑘

𝑇𝐂𝑘
−1 𝐱−𝐦𝑘 , 𝑘 = 1,… ,𝑚.

• By taking the logarithm, we obtain:

ln 𝑝 𝐱 𝒞𝑘; 𝛉𝑘 = ln
det(𝐂𝑘)

2𝜋 𝑛 −
1

2
𝐱 −𝐦𝑘

𝑇𝐂𝑘
−1 𝐱 −𝐦𝑘 ,

𝑘 = 1,… ,𝑚.
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Gaussian Clusters

• Each vector 𝛉𝑘 = 𝐦𝑘
𝑇𝐜𝑘

𝑇 𝑇
consists of 𝑛 parameters for the location

vector 𝐦𝑘 the
𝑛 𝑛+1

2
independent parameters of the covariance matrix

𝐂𝑘.

• Therefore, 𝚯 consists of 𝑚𝑛 +𝑚
𝑛 𝑛+1

2
parameters.

𝑃 𝒞𝑘 𝐱𝑖; ෡𝚯𝑡 =
det(𝐂𝑘𝑡) e

−
1
2 𝐱−𝐦𝑘𝑡

𝑇𝐂𝑘𝑡
−1 𝐱−𝐦𝑘𝑡 𝑃 𝒞𝑘 𝑡

σ𝑗=1
𝑚 det(𝐂𝑗𝑡) e

−
1
2 𝐱−𝐦𝑗𝑡

𝑇
𝐂𝑗𝑡
−1 𝐱−𝐦𝑗𝑡 𝑃 𝒞𝑗 𝑡

.
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Gaussian Clusters

• Updating equation for 𝐦𝑘 and 𝐂𝑘 .

• M-step of the EM algorithm:

𝐦𝑘,𝑡+1 =
σ𝑗=1
𝑁 𝑃 𝒞𝑘 𝐱𝑗; ෡𝚯𝑡 𝐱𝑗

σ𝑗=1
𝑁 𝑃 𝒞𝑘 𝐱𝑗; ෡𝚯𝑡

.

• Cluster centers are weighted averages of cluster data

points.
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Gaussian Clusters

• Updating equation for 𝐂𝑘 .

𝐂𝑘,𝑡+1 =
σ𝑗=1
𝑁 𝑃 𝒞𝑘 𝐱𝑗 ; ෝ𝚯𝑡 (𝐱𝑗−𝐦𝑘𝑡)(𝐱𝑗−𝐦𝑘𝑡)

𝑇

σ𝑗=1
𝑁 𝑃 𝒞𝑗 𝐱𝑗 ; ෝ𝚯𝑡

, 𝑘 = 1,… ,𝑚.
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Bayesian clustering

• The conditional probability 𝑃 𝒞𝑗 𝐱𝑖 indicates how likely it is

that 𝐱𝑖 ∈ ℝ𝑛 belongs to cluster 𝒞𝑗 , 𝑖 = 1, … ,𝑁.

• The constraint:

෍
𝑗=1

𝑚

𝑃 𝒞𝑗 𝐱𝑖 = 1

describes an (𝑚 − 1)-dimensional hyperplane:

𝐚𝑇𝐩 = 1,

• 𝐩 = 𝑃 𝒞1 𝐱𝑖 , … , 𝑃 𝒞𝑚 𝐱𝑖
𝑇 .
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A Geometrical 

Interpretation

• Since 0 ≤ 𝑃 𝒞𝑗 𝐱𝑖 ≤ 1, 𝑗 = 1,… ,𝑚, 𝐩 lies inside the unit

hypercube 0,1 𝑚.

• Noisy feature vectors or outliers:

• Let 𝐱𝑖 be such a vector.

• At least one of 𝑃 𝒞𝑗 𝐱𝑖 , 𝑗 = 1,… ,𝑚 is significant and lies in the

interval
1

𝑚
, 1 .

• 𝐱𝑖 will affect at least the estimates for the corresponding cluster 𝒞𝑗 ,

Resulting in clustering sensitivity to outliers.
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A Geometrical 

Interpretation

• Noisy feature vectors or outliers:

• Let 𝐱𝑖 be such a vector.

• At least one of the y𝑖’s 𝑗 = 1,… ,𝑚 is significant and lies in the

interval
1

𝑚
, 1 .

• 𝐱𝑖 will affect at least the estimates for the corresponding cluster 𝒞𝑗 .

• This makes GMDAS sensitive to outliers.
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Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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