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Introduction

• Image compression reduces the amount of data required to

represent an image.

• The number of images compressed and decompressed

daily is innumerable.

• Image compression plays an important role in multimedia

storage and Internet communication.

• It is the most useful and commercially successful

technologies in the field of Digital Image Processing.
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Image Compression Types

Lossless image compression

• The original image can be readily retrieved.

• Example: legal and medical multimedia documents.

• It exploits only statistical pixel redundancy.

• Compression ratio is not very big.

• Example image type: .png
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Image Compression Types

Lossy image compression. 

• Information is lost and the original image cannot be fully 

retrieved.

• It exploits both statistical and spatial image redundancy.

• It takes into account human visual perception properties.

• Example image type: .jpg
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Image Compression Evaluation 

• Peak Signal to Noise Ratio (PSNR): Ratio between the

maximum possible power of an image and the power of the

compression noise that affects image quality.

• It is expressed in the logarithmic decibel scale.

• PSNR-HVS: Peak signal-to-noise ratio extension that takes

into account HVS properties (e.g., contrast perception).

• Multi-Scale Structural Similarity Measure (MS-SSIM): It

considers image degradation as perceived change in

structural image content.

• It incorporates HVS perceptual characteristics.
9



Image Compression Evaluation 

10
Rate-distortion trade-off [BHA2000].
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Transform Image Compression

12Transform compression pipeline [BHA2000].



Transform Image Compression

• Linearly transformation of the image data.

• DCT, DWT transforms.

• Many transform coefficients:

• have small values quantized to 0 without causing

noticeable artifacts;

• are uncorrelated and hence can be coded independently

without losing efficiency.

13



Transform Image Compression 

Digital image transforms concentrate image energy in a few

transform coefficients.

• Heavy quantization or deletion of most transform coefficients

leads to big lossy compression.

Transform encoding/decoding.
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Neural Predictive Image Coding

• One way to describe information redundancy in digital images

is to use local image neighborhood predictability .

• Pixel intensity 𝑓 𝑛,𝑚 can be predicted from the pixel

intensities in its local neighborhood 𝒜:
መ𝑓 𝑛,𝑚 = 𝐿 𝑓 𝑛 − 𝑖,𝑚 − 𝑗 , 𝑖, 𝑗 ∈ 𝒜, 𝑖, 𝑗 ≠ 0,0 .

• Causal prediction is used, which is based on already

reconstructed past pixel values:
መ𝑓 𝑛,𝑚 = 𝐿 𝑓𝑟 𝑛 − 𝑖,𝑚 − 𝑗 , 𝑖, 𝑗 ∈ 𝒜 .
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Neural Predictive Image Coding

Causal windows used in image prediction.
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• It is sufficient to code the prediction error:

𝑒 𝑛,𝑚 = 𝑓 𝑛,𝑚 − መ𝑓 𝑛,𝑚 .

• If the prediction is good, the error term has a small dynamic

range and a substantial compression can be achieved.

• For pixel 𝑓𝑟 𝑛,𝑚 reconstruction, the transmission of the

prediction coefficients and of the coded error is needed.

• If 𝑒𝑞 𝑛,𝑚 is the quantized and decoded error value, the

pixel value can be reconstructed as follows:

𝑓𝑟 𝑛,𝑚 = 𝐿 𝑓𝑟 𝑛 − 𝑖,𝑚 − 𝑗 , 𝑖, 𝑗 ∈ 𝐴 + 𝑒𝑞 𝑛,𝑚 .

Neural Predictive Image Coding
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Neural Predictive Coding

Perceptron performs non-recurrent signal processing.
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Neural Predictive Coding

DPCM with a  multilayer perceptron.
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• Autoencoders are typically used for dimensionality reduction and 

feature extraction.

• The encoder output could be used for image coding.
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Neural Image Autoencoding

Autoencoder architecture.
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Prediction 
vector ො𝑥𝑗
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Encoding Decoding

Neural Image Autoencoding

Autoencoder architecture.



Neural Image Autoencoding
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Joint optimization of the reconstruction quality and the compressed image size 

[BAL2017].
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CNN-Transformer Image 

Compression
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CNN based image compression [HU2020]. 



CNN-Transformer Image 

Compression
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Quantization and entropy coding (U|Q) [HU2020].



CNN-Transformer Image 

Compression
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Performance Evaluation  [HU2020].
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Different types of RNN architectures can be used:

• LSTMs

• Associative Long Short-Term Memory

• Gated Recurent Units (GRU). 

RNN Image Compression
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RNN Image Compression

• Feed-forward neural networks with autoencoders can be

combined with Recurrent Neural Networks (RNN) for image

compression.

• RNN models can be used in various ways to achieve better

compression results.

• They can be combined with CNNs to better capture image

information.
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Fully connected LSTM residual encoder. LSTM layers have 512 fully
connected units [TOD2016] .

RNN Image Compression
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RNN Image Compression

RNN image compression architecture.

Decoder
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RNN Image Compression

Performance measured on the Kodak dataset.
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RNN Image Compression

a) JPEG 420 and b) Residual GRU(one-shot) compressed images. 
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Variable Rate RNN Image 

Compression

37

Conv/Deconv LSTM architecture [TOD2016].



Variable Rate RNN Image 

Compression

• In fixed rate image compression, a separate model has to

be trained for each point along the rate–distortion curve.

• Variable rate RNN image compression can be performed

based on the autoencoder architecture and residual

encoding.

• A single network can recurrently be used for different

bitrates, depending on the number of times the input passes

through the network.

• It extracts hierarchical latent representation with increasing

levels of detail, which are focused on global information first.
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Variable Rate RNN Image 

Compression
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Convolutional / deconvolutional residual encoder [TOD2016].



Variable Rate RNN Image 

Compression

40

Residual image in iterative variable rate image compression [TOD2016].



Standardization of Learning-

based image compression

41
JPEG statement on AI solutions [JPE2020]. 



Bibliography
[PIT2021] I. Pitas, “Computer vision”, Createspace/Amazon, in press.
[PIT2017] I. Pitas, “Digital video processing and analysis” , China

Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, “Digital Video and Television” , Createspace/Amazon,

2013.
[NIK2000] N. Nikolaidis and I. Pitas, “3D Image Processing Algorithms”,

J. Wiley, 2000.
[PIT2000] I. Pitas, “Digital Image Processing Algorithms and
Applications”, J. Wiley, 2000.

62



43

Bibliography

[TOD2015] G. Toderici, S.M. O'Malley, S.J. Hwang, D. Vincent, D. Minnen, S.

Baluja, M. Covell, R. Sukthankar, “Variable rate image compression with

recurrent neural networks” arXiv preprint arXiv:1511.06085, 2015.

[TOD2016] G. Toderici, S.M. O'Malley, S.J. Hwang, D. Vincent, D. Minnen, S.

Baluja, M. Covell, R. Sukthankar, “Variable Rate Image Compression with

Recurrent Neural Networks”, Proc. ICLR 2016.

[TOD2017] G. Toderici, D. Vincent, N. Johnston, S.J. Hwang, D. Minnen, J.

Shor, M. Covell “Full Resolution Image Compression with Recurrent Neural

Networks” Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR2017), pp. 5306-5314, 2017.



Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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