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Introduction

Signal detection theory is a means to measure the ability to

differentiate between information-bearing patterns and random

patterns that distract from the information.
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Introduction

• Example: A bit, 0 or 1, is sent through a noisy channel of a

communication channel. The noise is modeled as a realization of

a 𝑁 (0, 1) random variable The receiver gets the bit plus noise.

Assume that 𝑃0 = 𝑃1 =
1

2
. We must decide between two

hypotheses, when the 𝑥 received:

𝐻0: 𝑋~𝑁 0,1

𝐻1: 𝑋~𝑁 1,1
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Signal or Noise Decision

• A noisy signal 𝑥 has the following representation:

𝑥 = 𝑠 + 𝑛,

• where 𝑠 is the clean signal and 𝑛 is the noise.

• Τhe problem we want to deal with is how we can decode the

signal 𝑠 from 𝑥.
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Signal or Noise Decision

• If noise is white:

1. The received noisy signal will

distribute as a normal

distribution

2. The mean of this distribution

would reflect the signal
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Signal or Noise Decision

Decision can be made based on the

information from two distribution. A simple

criterion to make decisions is the

following:

➢ If 𝑥 < 𝐶: The received signal is noise.

➢ If 𝑥 > 𝐶: The original signal is

received.
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Signal or Noise Decision

• Sensitivity (Discriminability) is a measure of how close are

signal and noise. We can estimate the Sensitivity 𝑑 ́ as the

difference between means of 𝑠 and 𝑛 by the following type:

𝑑′ = µ𝑠 − µ𝑛.
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Signal or Noise Decision
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Different combinations of stimuli and responses.



Signal or Noise Decision
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Figure: Distribution of the decision variable across noise and signal trials.
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Cost Function

• We want to design a decision rule 𝐻 𝑥 . For this purpose, we

create two disjoint regions:

ℛ0 = 𝑥 ∶ 𝐻 𝑥 = 𝐻0

ℛ1 = 𝑥 ∶ 𝐻 𝑥 = 𝐻1

• To optimize the choice of decision regions, we can specify a

cost for decisions.
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Cost Function

• The expected Bayes Cost defined as:

𝐶 = σ𝑖,𝑗=0
1 𝑐𝑖𝑗𝑃(𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝐻𝑖 , 𝐻𝑗 𝑖𝑠 𝑡𝑟𝑢𝑒)

= σ𝑖,𝑗=0
1 𝑐𝑖𝑗𝜋𝑗 𝑃(𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝐻𝑖 𝐻𝑗 𝑖𝑠 𝑡𝑟𝑢𝑒 . 

where 𝜋𝑗 is the probability the hypothesis 𝐻𝑗 is true.

14



Detection Theory

• Introduction

• Signal or Noise Decision

• Cost Function

• Likelihood Ratio Test

• MAP Detector

• Neyman-Pearson Hypothesis Testing

15



Likelihood Ratio Test 

• Therefore, the optimal test takes the following Likelihood

Ratio form:

• For 𝐻1:

𝐿 𝑥 =
p1 𝑥

𝑝0 𝑥
>

𝜋0 𝑐10 − 𝑐00
𝜋1 𝑐01 − 𝑐11

,

and for 𝐻0:

𝐿 𝑥 =
𝑝1 𝑥

𝑝0 𝑥
<

𝜋0 𝑐10 − 𝑐00
𝜋1 𝑐01 − 𝑐11

.
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MAP Detector

Finally, the MAP detector has the following form:

• For 𝐻1:

P(𝐻 = 𝐻1 𝑥 > 𝑃(𝐻 = 𝐻0 𝑥 ,

and for 𝐻0 :

P(𝐻 = 𝐻1 𝑥 < 𝑃(𝐻 = 𝐻0 𝑥 .

• This is also called Maximum a Posteriori (MAP) Detector.
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Neyman-Pearson Hypothesis 

Testing
We defined the following probabilities:

• Hit probability: 𝑃 𝐻 = 𝐻1 𝐻1 .

• Correct Rejection probability: 𝑃 𝐻 = 𝐻0 𝐻0 .

• False Alarm probability: 𝑃𝐹𝐴 = 𝑃 𝐻 = 𝐻1 𝐻0 = ℛ1
𝑝0 𝑥 𝑑𝑥 .

• Mis-detection probability: 𝑃𝑀𝐷 = 𝑃 𝐻 = 𝐻0 𝐻1 = ℛ0
𝑝1 𝑥 𝑑𝑥 .

𝑃𝑀𝐷 = 1 − 𝑃𝐷.
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Neyman-Pearson Hypothesis 

Testing

The Neyman-Pearson criterion is defined as follows.

• Minimize the probability 𝑃𝑀𝐷 = 𝑃 𝐻 = 𝐻0 𝐻1 subject to:

𝑃𝐹𝐴 < 𝑎.

• The main advantage of this minimization criterion is that it

does not require prior probabilities nor cost assignments.
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Neyman-Pearson Hypothesis 

Testing

Τo minimize the probability 𝑃𝑀𝐷, we rely on the following theorem:

To maximize 𝑃𝐷 with a given 𝑃𝐹𝐴 < 𝑎 , decide 𝐻1 if

𝐿 ≑
𝑝 𝑥 𝐻1)

𝑝 𝑥 𝐻0)
≥ λ

where 𝜆 found from

𝑃𝐹𝐴 = න
𝑥:𝐿 𝑥 >𝜆

𝑝 𝑥 𝐻0 𝑑𝑥 = 𝑎
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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