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Hydro Acoustics

Sound waves follow a non-linear path underwater due to refraction 

caused by their variable speed[1].
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Hardware

Sonars consist of an array of emitters/transducers and 

receivers/hydrophones for the collection of range and bearing data.

They come in different configurations of frequencies, beam sizes and 

mounting based on their intended use case.

Sonar frequencies commonly used in research is 18~100kHz for seabed 

mapping and 100~400kHz for fisheries research[3].
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Hardware – Mutli beam

Direct development of single beam sonar, uses multiple receivers and 

beamforming to calculate the angle of the reflected object from the 

center of the beam[3]. Along with power data, alongship and athwartship 

angles are stored for each sample telegram[6].
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Beam pattern – Angle

Transducers transmit a directional 

sound wave[3,7]. During processing 

the equivalent beam angle ψ is 

required for 𝑆𝑣 calculations.

𝜓 =
5.78

(𝑘𝑎)2
,

𝛼 =
1.6

𝑘 sin( Τ𝜃3𝑑𝐵 2)

where:

𝛼 is the active radius,

𝜃3𝑑𝐵 is the half power beam angle,

𝑘 = Τ2𝜋 𝜆 and 𝜆 is the wavelength.
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Calibration

Before the survey, the target strength(𝑇𝑆) gain for each frequency is 

adjusted against either a copper or tungsten sphere with standard, 

known 𝑇𝑆[3,9].
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Frequency (kHz) Calibration Sphere Nominal TS (dB)

38 60.0 mm Cu -33.60

38 38.1 mm WC -42.04

70 32.1 mm Cu -39.10

70 38.1 mm WC -40.56

120 23.0 mm Cu -40.40
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Noise reduction - SNR
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An example of a 200kHz beam being limited by SNR after 200m. Noise 

is caused by the vessel’s electrical systems, propeller, engine and other 

ambient noises. Noise levels remain constant with depth, but signal 

levels decrease due to spreading and absorption[3].

DY1706 survey

Left: 𝑆𝑣

Right: 𝑇𝑆
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Echograms

Raw data is processed and visualized in 𝑆𝑣 and 𝑇𝑆 echograms.
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Echograms - DY1706
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DY1706[13] was a survey of fisheries around the Gulf of Alaska. Primary 

data collection was performed using a Simrad EK60 split-beam 

echosounder utilizing 18, 38, 70, 120, and 200 kHz beams.



Echograms - DY1706
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A plot of a single ping’s raw 

power measurements.
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Echograms - DY1706
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Echograms of processed power data. 3 distinct areas with detections 

can be seen, but no further information can be derived from this stage.
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Bottom Detection

The seabed has a much higher reflection coefficient than other common 

targets. Therefore, the most common bottom detection method is 

amplitude-based detection applied on 𝑆𝑣 data[14].
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Bottom Detection
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Example of erroneous amplitude-based bottom detection on noisy data. 

In these cases, a statistical framework can be used that also takes 

account the spatial continuity in alongship and athwartship directions[14].



3D Mapping

Split-beam sonar data can be directly visualized as cloud point data. 

Points are selected based on a 𝑇𝑆 threshold, 𝑥, 𝑦 position is the angle 

and the 𝑧 axis is the depth.
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3D Mapping
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3D Mapping
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Further works
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More advanced works combine multiple pings of a split beam system to 

reconstruct the sampled 3D environment[15] or to solve the bundle 

adjustment problem in AUVs[16].

Neural networks used in image segmentation can also be used for 

classification of 𝑠𝑣 sonar images where the number of input channels 

equals the number of frequencies[17].
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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