

Road Traffic Monitoring summary

C.Bezdemiotis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 1.4.1 Date: 12/12/2020

Road Traffic Monitoring

- Introduction
- Traffic Attributes
- Traffic Counters
- Sensing Technologies
- Video Imaging Traffic Counters
 - Traffic Attributes by Detection
 - Traffic Attributes by Clustering
 - Traffic Attributes by Regression

Introduction

- Road Traffic Monitoring can be defined as the study of interactions between means of transport and infrastructure, in order to develop an optimal transport network.
- Why is it essential?
 - Time
 - Safety
 - Environmental impact

Traffic Attributes

The most important Traffic Attributes being monitored are:

- Traffic Flow
- Traffic Speed
- Traffic Density
- Road Occupancy

Event detection is not considered as Traffic Attribute, but it is a very important task handled by Traffic Monitoring Systems.

Traffic Flow

• **Traffic Flow** *q* is defined as the number of passing vehicles *m* from a reference point over time *T*.

 $q = \frac{1}{T}$

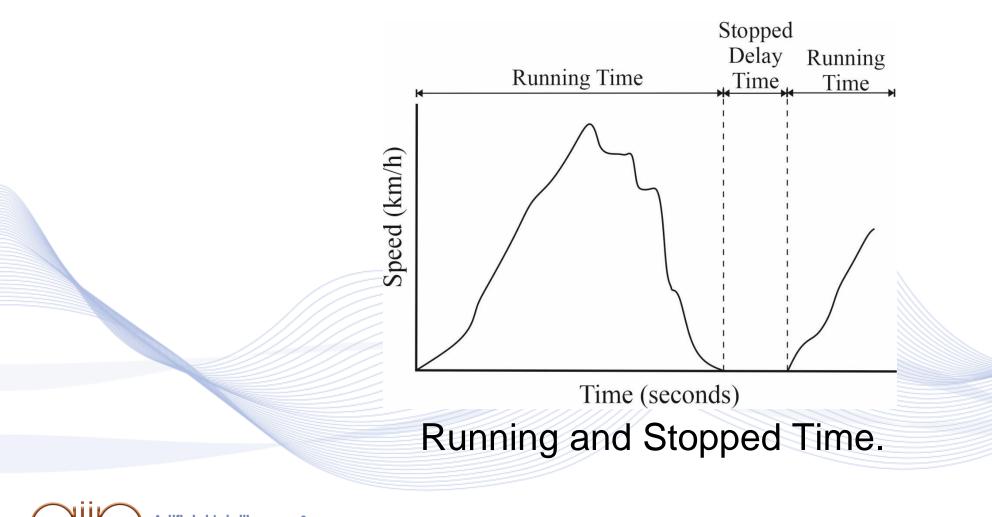
m

• Inverse Traffic Flow h is defined as time that elapses between the two passing vehicles.

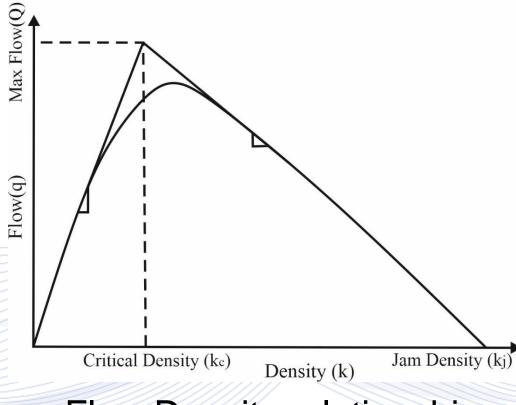
h =

Average Traffic Speed

Travel time is the time needed to go from point A to point B.


- Running time, the mean of transport is in motion.
- Stopped time, the mean of transport is stopped (or moving slow).

The Average Traffic Speed is calculated by measuring the travel time of vehicles over a short roadway segment, whose length d is known.



Average Traffic Speed

Flow Density relationship

Flow Density relationship.

Traffic Data Variation

- Time of the Day variation.
- Day of the Week variation.
- Season of the Year variation.
- Directional Variation.
- Geographic Variation.

Traffic motoring systems search for patterns that can describe such variations.

Traffic Counter

Traffic Counter is considered any device that is used for collecting the Traffic Data and calculating *Traffic Attributes*.

- **Portable** : can be moved very easily, usually there is no need for infrastructure invasion.
- Permanent: installed in the infrastructure (pavement invasion etc.)

Sensing technologies

- Inductive loops
- Pneumatic road tubes
- Magnetometer applications
- Radars (microwave, infared, ultrasonic, acoustic)
- Video Imaging

There are also Traffic monitoring systems, that use multiple sensing technologies, and perform *Data Fusion*.

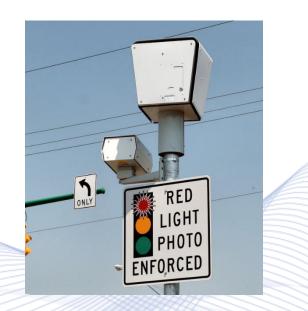
Pneumatic road tubes

Pneumatic Road Tubes (from [HAQ1998]).

Inductive loop detectors

Inductive loop detector on traffic light (from [WIKI]).

Video Imaging



- Imagery of a traffic scene is analyzed to determine changes between successive frames.
- Object Detection and Tracking algorithms are used in order to detect the objects of interest.
- Once the 2D localization and 3D localization of the objects is performed, the Traffic Attributes and their Data Products can be calculated.

Traffic Sensors/Cameras

Stationary camera on traffic signal.

Traffic Attributes calculation

- Video imaging Traffic counters needed to:
 - Count the number of objects of interest.
 - Calculate their speed.
 - Identify their trajectory.
- Most common approaches used by Traffic Counters are:
 - Traffic attributes by detection.
 - Traffic attributes by clustering.
 - Traffic attributes by regression.

Traffic attributes by detection

- Supervised methods which use previously trained detectors to detect objects of interest.
 - Monolithic detection.
 - Part-based detection.
 - Shape-matching detection.

Monolithic detection

• Detect *the regions* \mathcal{R}_{1n_t} , ..., \mathcal{R}_{nn_t} that contain the *n* objects of interest that exist in the current frame \mathcal{F}_{n_t} of the video.

п

$$\int \mathcal{R}_{n_t} \subset \mathcal{F}_{n_t}$$

• Calculate the coordinates of the *centroids* $\mathbf{x}_{1n_t}, \dots, \mathbf{x}_{nn_t}$ of each region \mathcal{R}_{in_t} the current frame \mathcal{F}_{n_t} .

$$\mathbf{x}_{in_t} = [n_1, n_2, n_t]^T$$
, for $i = 1, ..., N$

Object Detection and Tracking

- The most common methodologies that are used for Detecting the regions of the objects of interest are the *Convolutional Neural Networks*.
 - R-CNN, Fast R-CNN, Faster R-CNN
- **Tracking** is the process of locating a moving object over time, and the most common methods used by Traffic Counters are:
 - Feature Point based Tracking

KCE Tracker

formation And

Region Similarity based Tracking

19

Object Tracking

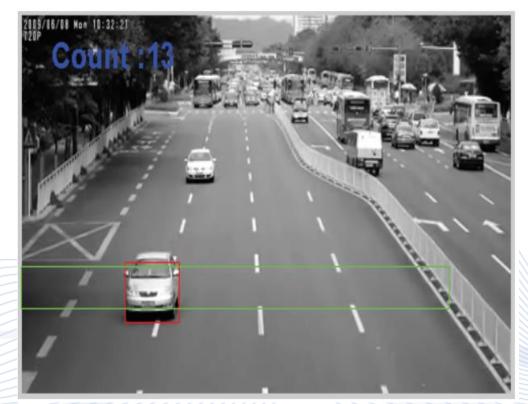
 Again, the only difference with Monolithic detection algorithms is that they are trained to detect the *perimeters* S_{int} of the objects of interest based on their shapes.

$$\mathcal{S}_{in_t} \subset \mathcal{R}_{in_t}$$

 e.g., for pedestrian Traffic Flow calculation, the shape of the human body is very unique. Thus, such methods, can be applied quite successfully.

Counting Objects

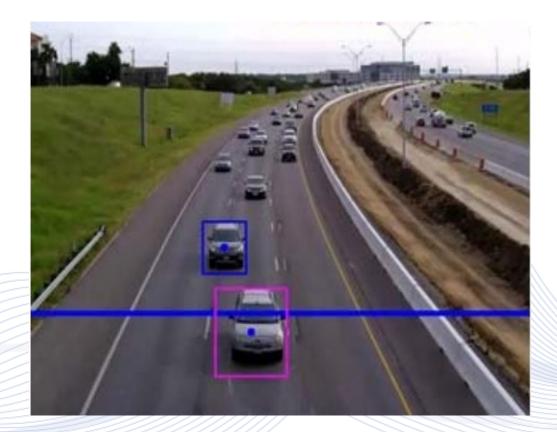
- Define *m* Tracking Regions $\mathcal{T}_1, \dots, \mathcal{T}_m$, $\bigcup_{i=1}^{m} \mathcal{T}_i \subset \mathcal{F}$ • Define *w* Count Regions $\mathcal{C}_1, \dots, \mathcal{C}_w$, $\bigcup_{w} \mathcal{C}_i \subset \bigcup_{m} \mathcal{T}_j$
- The position of \mathcal{T}_i , \mathcal{C}_i remain constant over the discrete time n_t .


 $\tilde{j=1}$

 $\widetilde{i=1}$

• *m*, *w* are selected according to the needs of the Traffic Counter.

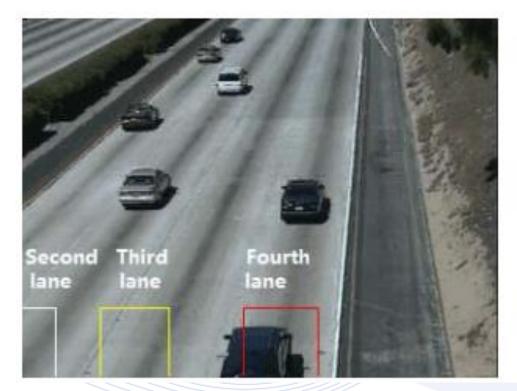
Directional Traffic Flow



Vehicle Tracking and counting (from [BHA2014]).

Directional Traffic Flow




Vehicle Tracking and counting (from [BOU2018]).

Lane Traffic Flow


Multi-lane counting (from [ZHU2013]).

Traffic Density

a) Lane detection; b) Counting results (from [TORO2015]).

Road Occupancy

\mathcal{T}_i (dotted yellow line), detected \mathcal{R}_{jn_t} (red) (from [YAB2016]).

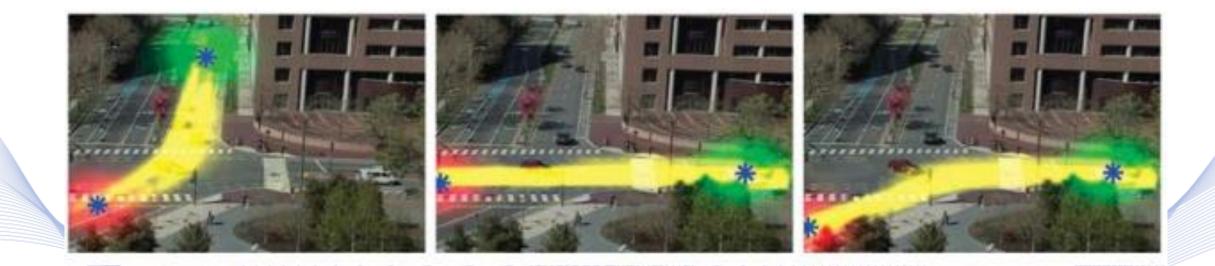
Counting based on trajectories **CML**

Instead of counting objects in Count Regions, Traffic Counters can count the number of objects by detecting their *Trajectories* \mathcal{J}_i .

$$\mathcal{J}_{i} = \left\{ \mathbf{x}_{in_{t}} \right\}_{n_{t} = n_{t_{in}}}^{n_{t_{out}}} \mathbf{x}_{it} \in \mathcal{R}_{it}$$

• \mathbf{x}_{in_t} the centroid of region \mathcal{R}_{in_t}

Artificial Intelliaence &


nformation Analysis Lab

• i = 1, ..., n, the number of tracked objects.

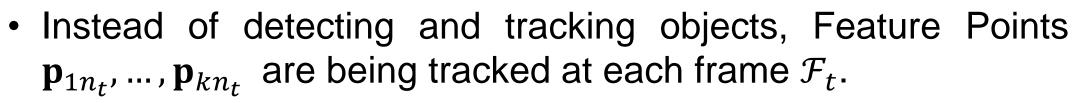
• $n_{t_{in}}$, $n_{t_{out}}$, the first and the last frame of tracked object.

Sources, Sinks of trajectories

Source (red) ,Sink (green) areas and points(blue) S_j, \mathcal{E}_k , ($\mathbf{x}_{i(n_{t_{in}})}, \mathbf{x}_{i(n_{t_{out}})}$) (from [ZHA2013]).

Information Analysis Lab

Directional Traffic Flow from trajectories


• The Directional Traffic Flow can be calculated via:

$$q_{jk} = f \frac{c_{jk}}{N_{n_t}}$$

- j = 1, ..., m the number of source areas.
- k = 1, ..., k the number of Sink areas.
- N_{n_t} the number of monitoring frames
- *f* the framerate $\left[\frac{1}{sec}\right]$.

Traffic Attributes by clustering

• For each feature point \mathbf{p}_{in_t} define:

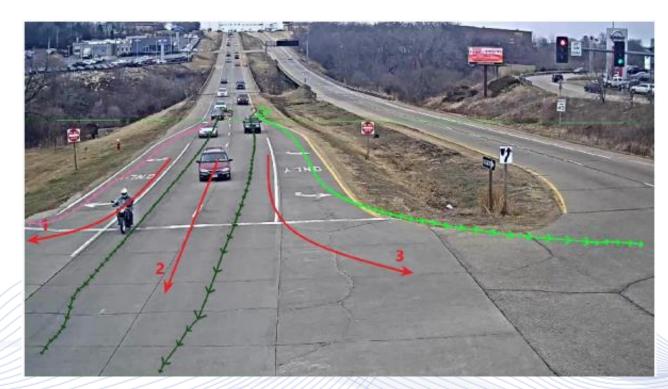
 $\mathbf{X}_{in_t} = [\mathbf{p}_{in_t}, \mathbf{v}_{in_t}, n_t]$

• $\mathbf{v}_{in_t} = [v_{ixn_t}, v_{iyn_t}]$, the velocity at frame n_t .

• $\mathbf{p}_{in_t} = [x_{in_t}, y_{in_t}]$, the discrete coordinates of the point.

Artificial Intelligence & Information Analysis Lab

Traffic Attributes by clustering


Clustering feature points into vehicles (from [ZHA2013]).

Counting by classification

Information Analysis Lab

Typical $\mathcal{L}_{1,2,3}$ (red arrows) and detected $\mathcal{J}_{1,2,3,4}$ (colored based on classification results) (from [LIU2020]).

Average Traffic Speed

• Once the trajectories \mathcal{J}_i has been identified the average **Space Mean Speed** and average **Time Mean Speed** can be calculated after performing the following transformations: $f_1: \mathcal{J}_i = \{\mathbf{x}_{in}, \dots, \mathbf{x}_{in}, \dots, \mathbf{x}_{it}, \dots,$

$$f_1: \mathcal{J}_i = \{\mathbf{X}_{in_{t_{in}}}, \dots, \mathbf{X}_{in_{t_{out}}}\} \rightarrow \{\mathbf{X}_{it_{in}}, \dots, \mathbf{X}_{it_{out}}\}$$
$$f_2: \{\mathbf{X}_{it_{in}}, \dots, \mathbf{X}_{it_{out}}\} \rightarrow \{\mathbf{V}_{it_{in}}, \dots, \mathbf{V}_{it_{out}}\}$$

- $X_{it} = [X_i, Y_i, Z_i, t]^T$, world coordinates of \mathbf{x}_{in_t} at real time t.
- $V_{it} = [U_{ixt}, U_{iyt}, U_{izt}, t]$, velocity of X_{it} at real time t.

Event Detection

- The function of the speed of vehicles over time can also be used for identifying events in highways
- The concept is that the trajectories \mathcal{J}_i of moving vehicles and their velocities is being calculated.
- Finally, search for abnormal behaviors in the diagram $V_i(t)$, comparing it to the other vehicles that are being tracked.
- The abnormal behaviors are detected using heuristic methods in the diagrams of the velocities of the present vehicles.

Event Detection

Identify stalling car (from [XU2018]).

Counting by regression

- Instead of detecting and then counting the objects, Supervised algorithms can be used to directly learn the number of objects by mapping global image characteristics.
- Such methods, require large number of labeled training images and they are not common.
- The only Traffic Attribute that can calculate is the Traffic Flow.

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.
[SZE2011] R.Szelinski, "Computer Vision", Springer 2011
[HAR2003] Hartley R, Zisserman A., "Multiple view geometry in computer vision". Cambridge university press; 2003.
[DAV2017] Davies, E. Roy. "Computer vision: principles, algorithms, applications, learning". Academic Press, 2017
[TRU1998] Trucco E, Verri A. "Introductory techniques for 3-D computer vision", Prentice Hall, 1998.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.

[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

