

Pedestrian Detection summary

G.Giannoulis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.6.1

Pedestrian Detection

- Handling Pedestrians in self-driving cars
 - Self-driving car architecture
 - Pedestrian's state estimator
 - Crosswalk state estimator
- CNN pedestrian detection and tracking
 - Pedestrian detection
 - Pedestrian Tracking
- Pedestrian Trajectory Estimation

Part 1: Handling Pedestrians in selfdriving cars

Introduction

- The development of intelligent autonomous cars is of great interest.
- A particular and challenging problem is to handle pedestrians, for example.
 - Crossing or walking along the road.
 - In cases that a pedestrian is standing on the pavement near a crosswalk without intending to cross it.

Introduction

- Self-driving cars rely on several sensors ,LiDAR, radar, or cameras and with the pedestrian's position, velocity, and orientation can facilitate the behavior selection decision making.[1]
- This work improves on current pedestrian handling systems by incorporating a pedestrian tracking system, which aims to predict the near-future pedestrians' states.[11]

• The self-driving car handling a pedestrian in a crosswalk.

Artificial Intelligence & Information Analysis Lab

Self-driving car architecture

 The perception and decision making systems are shown as a collection of modules of different colors.

The Perception System

- The Mapper module constructs occupancy grid maps that represent obstacles of the environment, operates in [28]:
 - Offline mode :
 - Receives as input data from multiple sensors,odometer, LiDAR, IMU, and GNSS.
 - Estimates the self-driving-car's states along the path and the values of the offline map cells.
 - Online mode:
 - Receives as input the offline map, the sensors' data ,odometer, LiDARs, and IMU and the car's state, and computes the online map.

Artificial Intelligence & Information Analysis Lab

The Decision-Making system

- The Path Planner creates a path from the current state of the self-driving car to a local goal state.
 - Receives the car's state and a Road Definition Data File (RDDF) file as input.
 - RDDF is composed of a sequence of car's states.
 - Extracts a path from the RDDF, which consists from the current state of the car to a goal state a few meters ahead.

Additions functions

- The added functionalities presented in this paper are shown in green:
 - **PSE**, is part of the MOT module and provides Pedestrians' States Estimator.
 - **CSE**, is part of the Path Planner module and provides the Crosswalk State Estiamtor.
 - **APG**, part of the Path Planner module and provides Alternative Paths.

Pedestrian's state estimator

Artificial Intelligence & Information Analysis Lab

Pedestrian's state estimator

• Pedestrian tracking system.

VML

Pedestrian's state estimator

Artificial Intelligence & Information Analysis Lab

Crosswalk state estimator

(a)

(b)

a) A crosswalk it is represented as the red circle.

b) The detection of the pedestrian in the map in the camera image.

Artificial Intelligence & Information Analysis Lab

(VML

Crosswalk state estimator

- Scenario I (dashed circle) when the pedestrian is outside the crossing area (solid circle):
 - PI is true if the movement orientation is within ±30 ° of the line that connects the pedestrian to the centre of the crosswalk.

VML

Crosswalk state estimator

- Scenario II when the pedestrian is inside the crossing area (solid circle):
 - PI is true if :(i) the pedestrian is in the car's path or (ii) if velocity is equal or greater than 0.3 m/s and the pedestrian is not moving in the approximate direction (±30°) of the road,not moving parallel to the road.

Alternative Paths Generator

- (APG) Provides many alternatives of paths, are computed using Frenét Frames.[12]
 - If there are pedestrians in the road near the path of the car, it has to select another path that is at a safe distance of the pedestrians.
 - Frenét Frames in tracking theory for modeling the path generation as the problem of generating a sequence of moving frames using a frame as reference.

Results

Information Analysis Lab

• The real-world experiments near crosswalks.

Part 2: CNN pedestrian detection and tracking

Faster R-CNN

 The Region Proposal Network works by passing a sliding window over the CNN feature map and at each window, outputting k potential bounding boxes and scores for how good each of those boxes is expected to be.

 Faster R-CNN works so well for object detection, we extend it to also carry out pixel level segmentation [1,7].

RoiAlign

 Combines the classifications and bounding boxes from Faster R-CNN to generate segmentations[1]:

Pedestrians Tracking

- The developed framework uses CNNs both to detect pedestrians within the frames and track across the frames.
- A simplied architecture of the deep CNN:

 FC-8 layer is the last layer before the classification, from which the features are extracted.

Evaluation of the

Artificial Intelligence &

nformation Analysis Lab

detector and the tracker

• First 30 seconds of the video was used at a reduced frame rate of 8 frames per second:

- Shows the detections in video sequence that are 8 frames.
- Shows the tracking results, the number denoting each pedestrian is generated randomly in the first frame.

102

Part 3: Pedestrian Trajectory Estimation

Artificial Intelligence & Information Analysis Lab

Pedestrian detection for Bus station dataset1.

(a) the normal trajectory, (b) the abnormal trajectory.

(b)

• Pedestrian detection for Bus station dataset2

Artificial Intelligence & Information Analysis Lab

Normal and abnormal trajectory in Bus station dataset2.

(c)

• Pedestrian detection for Airport.

(a) normal trajectory

(b) the abnormal trajectory

(b)

Table 6

Results of pedestrian trajectory identification on Airport dataset.

Methods	Accuracy of normal trajectory understanding				Accuracy of abnormal trajectory understanding	
	N1	N2	N3	N4	TPR	FPR
NBC	74.3%	77.6%	74.3%	80.3%	31.4%	1.6%
SVM	73.3%	84.2%	79.3%	77%	31.4%	1.6%
kNN	79.6%	82%	80%	81.3%	42.9%	1.5%
$SR-l^1$	81.6%	83.6%	81.3%	83%	82.8%	0.4%
SR-12	80.3%	82.3%	79.6%	80%	77.1%	0.6%
SR-1 ^{0.5}	85.6%	86.3%	88.3%	85%	85.7%	0.3%
Our method	89.6%	86.3%	89.3%	87.6%	88.6%	0.2%

Artificial Intelligence & Information Analysis Lab

• Pedestrian detection for Square dataset.

• Normal and abnormal trajectory classes in Square.

(b)

(a)

(c)

Table 7

Results of pedestrian normal trajectory identification on Square dataset.

Methods	Accuracy o understan	of normal tra ding	Accuracy of abnormal trajectory understanding		
	N1	N2	N3	TPR	FPR
NBC	77.5%	79.5%	78.8%	47.5%	1.6%
SVM	80.8%	77.8%	81.3%	42.5%	1.7%
kNN	82%	80.3%	79.3%	45%	1.6%
SR-l ¹	81.5%	82.8%	82.3%	82.5%	0.4%
SR-l ²	79.8%	82%	80.8%	80%	0.6%
SR-1 ^{0.5}	83.7%	82.8%	80.7%	85%	0.3%
Our method	88%	88.3%	89.2%	90%	0.2%

• Pedestrian detection for Railway station dataset

Artificial Intelligence & Information Analysis Lab

(a) Normal trajectory

(b) Abnormal trajectory

(b)

Table 8

Results of pedestrian trajectory identification on Railway station dataset.

Methods	Accuracy of normal trajectory understanding				Accuracy of abnormal trajectory understanding	
	N1	N2	N3	N4	TPR	FPR
NBC	74.5%	71.9%	76%	76.9%	32.5%	1.4%
SVM	77.5%	74.3%	75.2%	79.2%	31.3%	1.5%
kNN	81%	78.1%	79.6%	83.1%	52.5%	1.2%
SR-11	76.5%	76%	82%	81.5%	73.8%	0.9%
SR-12	78%	76.8%	78%	80.8%	61.3%	1.2%
SR-1 ^{0.5}	80.5%	81.3%	83.2%	84.6%	75%	1.1%
Our method	82.5%	84.4%	87.2%	83.1%	78.8%	0.9%

Artificial Intelligence & Information Analysis Lab

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.
[SZE2011] R.Szelinski, "Computer Vision", Springer 2011
[HAR2003] Hartley R, Zisserman A., "Multiple view geometry in computer vision". Cambridge university press; 2003.
[DAV2017] Davies, E. Roy. "Computer vision: principles, algorithms, applications, learning". Academic Press, 2017
[TRU1998] Trucco E, Verri A. "Introductory techniques for 3-D computer vision", Prentice Hall, 1998.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.

[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

