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Neural Speech 

Recognition
• Introduction

• Neural Speech Recognition Datasets

• Neural Speech Recognition Methods

• Deep Neural Networks (DNN)

• Recurrent Neural Networks (RNN)

• Convolutional Neural Networks (CNN)

• Transformers
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Automatic Speech 

Recognition
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Automatic Speech 

Recognition
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Applications

• Workplace: increase efficiency of  simple tasks 
• Dictate the information you want to be incorporated into a document

• Print documents on request

• Smart assistants: 
• Apple’s Siri, Amazon’s Alexa, Google Assistant, Microsoft’s Cortana

• Behavior /emotion recognition



Automatic Speech 

Recognition
•
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Automatic Speech 

Recognition
• Pre-Processing: The pre-processing step aims to improve the audio

signal by reducing the signal-to-noise ratio, reduce the noise and filter

the signal

• Feature extraction : Features are usually the predefined number of

coefficients or values that are obtained by applying various methods

on the input speech signal. This step should be robust to different

factors, such as noise and echo effect. Most commonly used feature

extraction methods are Mel-frequency cepstral coefficients (MFCCs),

and discrete wavelet transform (DWT)
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Automatic Speech 

Recognition
• Classification Model: this model aims to predict the text

corresponding to the input speech signal. The classification model

takes the extracted features from the previous stage and generates

the output text.

• Language Model: consists of various types of grammatical rules and

semantics of a language. Language models are necessary for

recognizing the output token from the classifier and is also used to

make corrections on the output text.
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ASR categories

[Malik2021] ASR categories 8



Datasets

CallHome English, Spanish and German databases. 

• They contain  conversational data, high number of  out-of-vocabulary 

words 

• Challenging databases with foreign words and telephone channel 

distortion
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Datasets

TIMIT

• broadband recordings from American English, where  each speaker 

reads 10 phonetically rich sentences. 

• Time-aligned orthographic, phonetic and word transcriptions

• 16kHz speech waveform file for each utterance. 

• Training set of audios from 462 speakers

• Validation set of 50 speakers 

• Test set of 24 speakers
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Datasets

Wall Street Journal

• contains audio from speakers that read  texts from Wall Street Journal 

newspapers

• Subsets of 5000 and 20000 words
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Datasets

LibriSpeech

• A corpus of approximately 1000 hours of 16kHz speech of English 

language

• The dataset is derived from read audio-books from the LibriVox 

project
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Feature extraction

•
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Recurrent Neural Networks

• RNN methods

• Speech recognition with deep recurrent neural networks

• Encoder-Decoder RNN-Transducer

• Streaming end-2-end speech recognition for mobile devices

• Attention RNN methods

• Attention-based recurrent sequence generator (ARSG)

• Listen-Attend-Spell (LAS)

• Hybrid CTC and attention
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Recurrent Neural Networks

Recurrent Neural Networks (RNN).

• RNNs have good performance on sequential data, as they exploit

temporal data relations.

• They are based on the concept of state variables, which store

system status.

• Output(hidden state) is fed back into next timestep

• RNNs  model time-series signals and capture model dependencies 

between different time-steps of the input
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Speech recognition with 

deep recurrent neural 

networks
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[Graves2013] Results on TIMIT dataset with different 
settings



RNN-Transducer

Overview of RNN-Transducer
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Encoder-Decoder RNN-

Transducer
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[Rao2017] Overview of encoder-decoder RNN-T



Streaming e2e speech 

recognition for mobile 

devices
• RNN-T with 8 layers of uni-directional LSTM cells

• Time-reduction layer to speed up training and inference. 

• Memory caching techniques to save about 50 – 60%  of the prediction 

network computations. 

• Multithreading has a speedup of 28% compared against  single-

threaded execution. 

• Parameters are quantized from 32-bit floating-point precision into 8-bit 

to reduce memory consumption and operate in real-time.
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Streaming e2e speech 

recognition for mobile 

devices

20[He2019] Network for ASR on mobile devices 



Attention RNNs

• Encoder-Decoder architecture as in machine translation 

• Encoder transforms input text into a sequence of vectors (rather than 

a single vector)

• Decoder use an attention method at each output step to assign 

different weights to each vector in this sequence

• Does not require alignment of data
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Attention-based 

recurrent sequence 

generator (ARSG)

[Chorowski2015] ARSG Method
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Listen-Attend-Spell 

(LAS)

[Chan2016] Listen-Attend-Spell 

(LAS) overview 
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Hybrid CTC and 

attention model
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[Hori2018] Overview of the method



Convolutional Neural 

Networks
• Methods

• 1D-CNN for speech recognition

• Fully Convolutional method for speech recognition

• Residual Convolutional CTC Networks for Automatic Speech Recognition

• Jasper: An End-to-End Convolutional Neural Acoustic Model

• Sequence-to-Sequence Speech Recognition with Time-Depth Separable 

Convolutions

• ContextNet 
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Convolutional Neural 

Networks
• Common method for computer vision

• Also adopted for speech recognition

• Usually have alternative pooling and convolutional layers, with fully 

connected layers in the end

• 1D CNNs: Speech signal as input

• 2D CNNs: Input signal is transformed to 2D similar to images
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Convolutional Neural 

Networks

[Zhang2019]Example of 2D CNN and input of time-frequency signal
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1D-CNN for speech 

recognition

28[Abdel2014] LWS illustration



Fully Convolutional method 

for speech recognition

[Zeghidour2018] Illustration of fully convolutional network
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Jasper: An End-to-End CNN 

Acoustic Model

• End-to-end ASR system with convolutional layers

• Input: mel-filterbank features obtained from 20 msec windows with a 

10msec overlapping

• CNN has residual and dense blocks

• Tested with different types of normalization and activation functions

• Each block is optimized to fit on a single GPU kernel for faster 

inference
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Jasper: An End-to-End 

CNN Acoustic Model

[Li2019] Overview of Jasper method
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Speech Recognition with

Time-Depth Separable 

Convolutions

[Hannun2019] Time-separable CNN
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ContextNet 

[Han2020] SE module
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Transformers

• Methods

• Speech Transformer

• Transformer Transducer

• Conformer

• Semantic Masked Transformer
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Transformers

• With the introduction of Transformer networks machine translation and 

speech recognition have seen significant improvements. 

• Transformer models that are designed for speech recognition are 

usually based on the encoder-decoder architecture similarly to 

seq2seq models.

• They are based on the self-attention mechanism instead of recurrence 

that is adopted by RNNs.
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Speech Transformer

• Transforms the speech feature sequence to the corresponding 

character sequence. 

• The feature sequence which is longer from the output character 

sequence is constructed from 2-dimensional spectrograms with time 

and frequency dimensions. 

• CNNs are used in the input to exploit the structure locality of 

spectrograms and mitigate the length mismatch by striding along time.
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Speech Transformer

• In the Speech Transformer, 2D attention is used in order to attend at 

both the frequency and the time dimensions. 

• The queries, keys and values are extracted from CNNs and fed to the 

2 self-attention modules.

37



Speech Transformer

[Dong2018] Speech Transformer
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Speech Transformer

[Dong2018] 2D attention module from Speech-Transformer
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Transformer Transducer

•
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Semantic Mask for 

Transformer for ASR
• Transformer encoder –decoder architecture

• Mel-scale features with dimension equal to 83

• VGG-like input convolutions for local relationships

[WangC2020] CNN layer 41



Semantic Mask for 

Transformer for ASR

42[WangC2020] Semantic mask



Semantic Mask for 

Transformer for ASR
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[WangC2020] Model architecture



Conformer

• is a variant of the original Transformer that combines CNNs and 

transformers in order to model both local and global speech 

dependencies by using a more efficient architecture and fewer 

parameters.

• The main module of the Conformer contains two feedforward layers 

(FFN), one convolutional layer (CNN) and a multi head attention 

module (MHA). 
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Conformer

[Gulati2020] Conformer method
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Conformer

[Gulati2020] CNN block of the Conformer
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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