

Multiple Drone Media Production summary

N. Heise (DW), V. Nousi, I. Karakostas, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.5.1

Multiple Drone Media Production **VML**

- Drone Cinematography
- Framing Shot Types
- UAV / Camera Motion Types
- Experimental media production 'Around Wannsee'
- Experimental media production evaluation

Drone Cinematography

- Unmanned Aerial Vehicles (UAVs, or "drones") have made their way in the media and entertainment industry.
 - Movies
 - TV: sports, newsgathering, documentaries
 - Advertising.
- Drones allow filmmakers to capture shots that were impossible, extremely difficult or costly to capture so far:
 - Wide shots of remote or hard-to-reach landscapes
 - Follow-along close up views of sports or other action
 - Impressive fly-throughs, fly-bys and fly-overs.
- Essentially drones provide a level of camera motion freedom that was so far available only in animation.

Framing Shot Types

- Framing Shot Types are more or less those of traditional cinematography.
- Most are defined based on the percentage of the video frame width / height covered by the single target / subject.

	FRAMING SHOT TYPE	Percentage of frame width/height covered by target
	Extreme Long Shot (ELS)	<5%
	Very Long Shot (VLS)	5-20%
	Long Shot (LS)	20-40%
	Medium Shot (MS)	40-60%
	Medium Close Up (MCU)	60-75%
	Close Up (CU)	>75%
islutellisence &		

Framing Shot Types

Artificial Intelligence & Information Analysis Lab

• Example UAV shot types when shooting boat targets from the side.

UAV / Camera Motion Types

- Four groups of UAV / camera motion types were defined.
 - <u>Static shots (6).</u> No UAV motion, target may or may not be present:
 - Static Shot (SS)
 - Static Shot of Still Target (SSST)
 - Static Shot of Moving Target (SSMT)
 - Static Aerial Pan (SAP)
 - Static Aerial Tilt (SAT).

UAV / Camera Motion Types

Static Aerial Tilt (SAT)

- UAV hovers.
- Camera gimbal rotates slowly around the pitch axis in order to capture the scene context.

Source: Youtube: "5 Drone Moves Every Flier Should Know", <u>https://www.youtube.com/watch?v=</u> 1hz-lkx406c

Experimental media production 'Around Wannsee'

Experimental media production **VML** 'Around Wannsee'

Experimental media production (VML 'Around Wannsee'

Experimental media production 'Around Wannsee'

Experimental media production evaluation

Mission planner

| The Mission planner was useful for preparing the production.

11 responses

Scale: 1 (fully agree) to 4 (totally disagree)

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

