Motion Estimation summary

S. Papadopoulos, Prof. loannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 3.4.1

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Artificial Intelligence \&

2D motion

- Two-dimensional (2D) motion or projected motion is the perspective projection of the 3D motion on the image plane.
- Object point \mathbf{P} at time t moves to point \mathbf{P}^{\prime} at t^{\prime} and its perspective projection in the image plane from
 \mathbf{p} to \mathbf{p}^{\prime}.

2D motion

- The 2D displacement $t^{\prime}=t+\ell \Delta t$ can be defined for all points $\mathbf{x}_{t}=[x, y, t]^{T} \in \mathbf{R}^{3}$ by the 2D displacement vector field $\mathbf{d}_{c}\left(x_{t} ; \ell \Delta t\right)$ as a function of the continuous spatiotemporal variables $[x, y]^{T}$ and t.
- The sampled 2D displacement field over a sampling is given by:

$$
\mathbf{d}\left(n_{1}, n_{2}, n_{t} ; \ell\right)=\left.\mathbf{d}_{p}\left(\mathbf{x}_{t} ; \ell \Delta t\right)\right|_{\mathbf{x}_{t}=\mathbf{V n},} \quad\left(n_{1}, n_{2}, n_{t}\right) \in Z^{3}
$$

where \mathbf{V} is a sampling matrix of the grid Λ^{3}.

2D motion

- The 3D instantaneous velocity field $[d X / d t, d Y / d t, d Z / d t]^{T}$ produces the projected velocity vector $\mathbf{v}_{\mathbf{p}}(x, y, t)$ at time t.
- Discrete 2D velocity vector field $\mathbf{v}\left(n_{1}, n_{2}, n_{t}\right)=\mathbf{v}_{\mathbf{p}}\left(\boldsymbol{x}_{t}\right)$, for $\mathbf{x}_{t}=\mathbf{V n} \in \Lambda^{3}$ and $\mathbf{n}=\left[n_{1}, n_{2}, n_{t}\right]^{T} \in \mathbf{Z}^{3}$.
- Correspondence vector denotes the displacement between the corresponding points $\mathbf{x}=[x, y]^{T}$ on the video frame at time t and $\mathbf{x}^{\prime}=\left[x^{\prime}, y^{\prime}\right]^{T}$ at time t^{\prime}.

2D motion

- Optical flow vector: the derivative of the correspondence vector: $\left[v_{x}, v_{y}\right]^{T}=[d x / d t, d y / d t]^{T}$.
- It describes the spatiotemporal changes of luminance $f_{a}(x, y, t)$.
- Motion speed: magnitude of the motion vector.
- The correspondence or optical flow vectors determine the apparent motion.

2D motion

a) Motion field; b) motion speed.

2D motion

- 2D motion can be generated by:
- Object(s) motion
- Global 2D motion can be generated by:
- Camera motion (pan, tilt)
- Camera zoom
- 2D apparent motion can be generated by a motion of the illumination source.

2D motion

正

Global optical flow generated by: a) camera pan and b) zoom.

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Artificial Intelligence \&

3D Motion Models

- 3D solid object motion can be described by the affine transformation:

$$
\mathbf{X}^{\prime}=\mathbf{R} \mathbf{X}+\mathbf{T}
$$

where \mathbf{T} is a 3×1 translation vector:

$$
\mathbf{T}=\left[\begin{array}{l}
T_{X} \\
T_{Y} \\
T_{Z}
\end{array}\right]
$$

and \mathbf{R} is a 3×3 rotation matrix (various forms).

3D Motion Models

- In Cartesian coordinates, \mathbf{R} can be described:
- either by the Euler rotation angles about the three coordinate axes X, Y, Z.
- or by a rotation axis and a rotation angle about this axis.
- The matrices describing the clockwise rotation around each axis in the three dimensional space, are given by:

$$
\mathbf{R}=\mathbf{R}_{z} \mathbf{R}_{Y} \mathbf{R}_{X} .
$$

- Their order does matter.
- \mathbf{R} is orthonormal, satisfying $\mathbf{R}^{T}=\mathbf{R}^{-1}$ and $\operatorname{det}(\mathbf{R})= \pm 1$.

3D Motion Models

Euler rotation angles.

$$
\mathbf{R}_{Z}=\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

3D Motion Models

Object rotation about a rotation axis.

2D Motion Models

- Projective mapping transformation for no camera or object translation along the Z axis, or planar object:

$$
x^{\prime}=\frac{a_{1}+a_{2} x+a_{3} y}{1+a_{7} x+a_{8} y}, \quad y^{\prime}=\frac{a_{4}+a_{5} x+a_{6} y}{1+a_{7} x+a_{8} y} .
$$

- Parallel lines in the 3D space are represented by straight lines, converging to a vanishing point, on the image plane
- Two successive projective mappings can be synthesized in one projective mapping.

2D Motion Models

- Affine mapping transformation. The projected 2D motion of several camera motions as well as an arbitrary 3D motion of a planar object can be approximated by an affine transformation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right]
$$

- Deforms a triangle to another by shifting the triangle corners.

2D Motion Models

- 2D affine mapping transformation: it describes 2D rotation, translation and scaling.
- It can be used for 2D image registration.

Subtractive radiography.

2D Motion Models

- 2D affine mapping transformation for image mosaicing.

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Artificial Intelligence \&

Estimation of 2D correspondence vectors

- The correspondence problem can be studied:
- As forward motion estimation:
- the motion vector is defined from frame t to $t+1$;
- displacement vectors $\mathbf{d}(x, y)=[d x(x, y), d y(x, y)]^{T}$ should satisfy:

$$
f(x, y, t)=f(x+d x(x, y), y+d y(x, y), t+1)
$$

Estimation of 2D correspondence vectors

號

Forward and backward 2D motion estimation.

Estimation of 2D correspondence vectors

- For video compression, backward motion estimation is preferred.
- Problems associated with the uniqueness of object point matching over successive video frames:
- Occlusion: no correspondence can be found between occluded and un-occluded object or background region, due to object motion.
- Partial or total occlusion. Self-occlusion.

Estimation of 2D correspondence vectors

者

Object occlusion (right) and de-occlusion (left).

Estimation of 2D correspondence vectors

- Aperture problem: only local spatial information (within the camera aperture) is used for motion estimation.

Quality metrics for motion estimation

- Peak Signal to Noise Ratio (PSNR): Metric for testing the quality of motion estimator results, measured in $d B$:

$$
P S N R=10 \log _{10} \frac{N \times M}{\sum[f(x, y, t)-f(x+d x(x, y), y+d y(x, y), t-1)]^{2}}
$$

- $N \times M$: video frame size in pixels.
- Video luminance scaled in the range [0,1].
- $d x, d y$: the displacement components resulting from motion estimation at pixel $\mathbf{p}=[x, y]^{T}$.

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Artificial Intelligence \&

Block matching

Block matching matches image blocks in consecutive video frames.

Block displacement d can be estimated by minimizing the displaced section difference for selecting the optimal displacement $\mathbf{d}=[d x, d y]^{T}$:

$$
\min _{d x, d y} E(\mathbf{d})=\sum_{n_{1}} \sum_{n_{2}}\left\|f\left(n_{1}, n_{2}, t\right)-f\left(n_{1}+d x, n_{2}+d y, t-1\right)\right\| .
$$

- n_{1}, n_{2} are pixel coordinates.
- L_{1}, L_{2}, L_{p} norms can be used for displaced frame difference estimation.

Block matching

Sparse and dense motion fields.

Block matching

- Supposing a $N \times N$ video frame and a $m \times m$ pixel block \mathcal{B} centered at \mathbf{x}_{0} at frame t :
- The search area at frame $t-1$ for the $E(\mathbf{d})$ minimum is a $\left(2 d_{\max }+1\right) \times\left(2 d_{\max }+1\right)$ block.
- Block B is moved by $\pm d_{\text {max }}$ horizontally and vertically around x_{0} and the minimum $E(\mathbf{d})$ in $\left(2 d_{\max }+1\right)^{2}$ positions is calculated.

Block matching

- $d_{\max }=6$ pixels.
- Displacement from $\mathbf{x}_{0}=$ $[0,0]^{T}$ to $\mathrm{x}_{0}^{\prime}=[4,-6]^{T}$.

Block matching

Three step search:

- $1^{\text {st }}$ step: Eight pixels around \mathbf{x}_{0} are checked.
- $2^{\text {nd }}$ step: Eight pixels around the pixel of minimum $E(\mathbf{d})$ of step 1 are searched.
- Search step size reduces at each step.

Block matching

In 1D search, $E(\mathbf{d})$ minimum is searched first along the horizontal and then along the vertical direction:

- 1st step. Search along the horizontal direction.
- 2nd step. Based on the results of step 1, the minimum is searched for

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Artificial Intelligence \&

Phase correlation

- Relative image blocks displacement is calculated using a normalized cross-correlation function calculated on the 2D spatial or Fourier domain.
- Cross-correlation between two video frames of size $N_{1} \times N_{2}$ at times t and $t-1$:

$$
\begin{gathered}
r_{t, t-1}\left(n_{1}, n_{2}\right)= \\
\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} f\left(k_{1}, k_{2}, t\right) f\left(n_{1}+k_{1}, n_{2}+k_{2}, t-1\right)= \\
f\left(n_{1}, n_{2}, t\right) * * f\left(-n_{1},-n_{2}, t-1\right)
\end{gathered}
$$

** denotes a 2D convolution.

Phase correlation

- Taking the Fourier on both sides, we get the expression of complex cross-correlation spectrum:

$$
R_{t, t-1}\left(\omega_{x}, \omega_{y}\right)=F_{t}^{*}\left(\omega_{x}, \omega_{y}\right) F_{t-1}\left(\omega_{x}, \omega_{y}\right)
$$

* denotes complex conjugation.
- Phase of the cross-correlation spectrum:

$$
\tilde{R}_{t, t-1}\left(\omega_{x}, \omega_{y}\right)=\frac{F_{t}^{*}\left(\omega_{x}, \omega_{y}\right) F_{t-1}\left(\omega_{x}, \omega_{y}\right)}{\left|F_{t}^{*}\left(\omega_{x}, \omega_{y}\right) F_{t-1}\left(\omega_{x}, \omega_{y}\right)\right|}
$$

Phase correlation

- Effects of using the 2D DFT:
- Boundary problems,
- Spectrum leakage,
- Support area of displacement estimators.

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Artificial Intelligence \&

Optical flow equation methods

- The continuous spatiotemporal video luminance $f_{a}(x, y, t)$, not $f_{a}(x, y, t)$ does not change along the object motion trajectory.
- For $\mathbf{x}_{t}=[x, y, t]^{T}$ on motion trajectory, the total derivative $\frac{d f_{a}\left(\mathbf{x}_{t}\right)}{d t}=0$ leads to optical flow equation (OFE):

$$
\frac{\partial f_{a}\left(\mathbf{x}_{t}\right)}{\partial x} v_{x}(\mathbf{x}, t)+\frac{\partial f_{a}\left(\mathbf{x}_{t}\right)}{\partial y} v_{y}(\mathbf{x}, t)+\frac{\partial f_{a}\left(\mathbf{x}_{t}\right)}{\partial t}=0 .
$$

- $\mathbf{x}=[x, y]^{T}, \mathbf{x}_{t}=[x, y, t]^{T}, v_{x}(\mathbf{x}, t)=d x / d t, v_{y}(\mathbf{x}, t)=$

Optical flow equation methods

- OFE has two unknown factors, $v_{x}(\mathbf{x}, t)$ and $v_{y}(\mathbf{x}, t)$ for each (\mathbf{x}, t), thus another equation is needed.
- The two velocity vector components are located on a straight line in the space $\left(v_{x}, v_{y}\right)$.
- OFE can be expressed as:

$$
\frac{\partial f_{a}\left(\mathbf{x}_{t}\right)}{\partial t}+\nabla f_{a}\left(\mathbf{x}_{t}\right) \mathbf{v}^{T}\left(\mathbf{x}_{t}\right)=0
$$

where $\mathbf{v}\left(\mathbf{x}_{t}\right)=\left[v_{x}\left(\mathbf{x}_{t}, t\right), v_{y}\left(\mathbf{x}_{t}, t\right)\right]^{T}$ and $\nabla f_{a}\left(\mathbf{x}_{t}\right)=\left[\frac{\partial f_{a}\left(\mathbf{x}_{t}\right)}{\partial x}, \frac{\partial f_{a}\left(\mathbf{x}_{t}\right)}{\partial y}\right]^{T}$.

Optical flow equation methods

Line of optical flow equation.

Adaptive OFE methods

- Directional motion field smoothing constraint:

$$
E_{2}^{2}(\mathbf{v}(\mathbf{x}, t))=\left(\boldsymbol{\nabla} v_{x}\right)^{T} \mathbf{W}\left(\boldsymbol{\nabla} v_{x}\right)+\left(\boldsymbol{\nabla} v_{y}\right)^{T} \mathbf{W}\left(\boldsymbol{\nabla} v_{y}\right) .
$$

- W: a weight matrix punishing changes in the motion field, depending on the spatial image luminance changes:

$$
\mathbf{W}=\frac{\mathbf{F}+\alpha \mathbf{I}}{\operatorname{trace}(\mathbf{F}+\alpha \mathbf{I})} .
$$

- I: the identity matrix, α : a scale factor.
- \mathbf{F} : matrix containing spatial derivatives of $f_{a}\left(\mathbf{x}_{t}\right)$.

Partial Differentiation in Motion Estimation

Numerical differentiation for spatiotemporal signals (digital video) $f\left(n_{1}, n_{2} . n_{t}\right)$:
$\widehat{f}_{x}=\frac{1}{4}\left\{f\left(n_{1}+1, n_{2}, n_{t}\right)-f\left(n_{1}, n_{2}, n_{t}\right)+f\left(n_{1}+1, n_{2}+1, n_{t}\right)-\right.$ $f\left(n_{1}, n_{2}+1, n_{t}\right)+f\left(n_{1}+1, n_{2}, n_{t}+1\right)-f\left(n_{1}, n_{2}, n_{t}+1\right)+$ $\left.f\left(n_{1}+1, n_{2}+1, n_{t}+1\right)-f\left(n_{1}, n_{2}+1, n_{t}+1\right)\right\}$.

Motion Estimation

- 2D motion
- 3D motion models
- 2D motion models
- Estimation of 2D correspondence vectors
- Block matching
- Phase correlation
- Optical Flow Equation Methods
- Neural Optical Flow Estimation

Neural Optical Flow estimation

- Optical flow estimation by using Convolutional Neural Networks (CNN).
- High accuracy, dense flow field, fast implementations.
- Supervised methods:
- Highest accuracy;
- Ground truth for real world video sequences is required.
- Unsupervised methods:
- Lower, but comparable accuracy;

Neural Optical Flow estimation

Flownet: Supervised NN optical flow estimation.

- Foundation stone for almost all later supervised networks.
- FlowNetS (Simple):
- A single network branch.
- Refinement module upscales conv6 output, using outputs from various intermediate stages.
- Two consecutive input frames, concatenated in the channel dimension.

Neural Optical Flow estimation

- convolutional pipeline
\square refinement module

[DOS2015].

Neural Optical Flow estimation

FlowNet 2.0 [ILG2017].

Neural Optical Flow estimation

LightFlowNet. M : descriptor matching, S : sub-pixel refinement, R : a regularization module [HUI2018].

Neural Optical Flow estimation

SPyNet:

- 3-Level Pyramid Network.
- Better performance in many metrics than FlowNetC.
- More than twice as fast as FlowNetC.
- It uses the coarse-to-fine spatial pyramid structure to learn residual flow at each pyramid level.

Neural Optical Flow estimation

SPyNet 3-Level Pyramid Network [RAN2017].

Neural Optical Flow estimation

Qualitative comparison of neural optical flow estimators [RAN2017].
Artificial Intelligence \&
Information Analysis Lab

Object detection and Tracking

Motion estimation estimates motion vectors on entire video frames.

- Object tracking relies on:
- Object detection on a video frame.
- Tracking of this object (essentially estimating its motion) over subsequent video frames.

Object Detection and Tracking

$1^{\text {st }}$ frame
$6^{\text {th }}$ frame

$11^{\text {th }}$ frame

$16^{\text {th }}$ frame

- Problem statement:
- To detect an object (e.g. human face) that appear in each video frame and localize its Region-Of-Interest (ROI).
- To track the detected object over the video frames.

Bibliography

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

