

Introduction to UAV Multicopters

I. Karakostas, I. Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.5.1

- Unmanned Aerial Vehicles (UAVs)
- UAV Categories
- UAV subsystems
- How multicopters fly
- Flight modes
- Applications

Unmanned Aerial Vehicles

- Unmanned Aerial Vehicles (UAVs) can be:
 - \circ Remote controlled
 - Fly semi-autonomously based on a predetermined flight path
- Computer Vision has many applications in UAVs:
 - Target tracking for fully autonomous flight
 - Crowd detection (safety)
 - o etc.

History of Unmanned Vehicles

- 1782 First unmanned remote controlled hot air ballon.
- 1860 Remote controlled ship (N. Tesla).
- 1896 Camera equipped UAVs are used for target surveillance.
- 1910 UAVs are used for military purposes.
- 1993 UAVs are employed in meteorology.
- 2014 General purpose commercial UAVs start to appear.
- 2016 UAVs become very popular.
- 2017 Legislation regarding UAVs.

Commercial UAV Applications

- Recreation
- Photography / Video
- Research and Science
- Construction inspection
- Photogrammetry
- Agriculture
- Search and rescue
- Etc.

UAV Categories

- Fixed wing UAVs (airplanes)
- Helicopters Multicopters

 Vertical Take-Off and Landing fixed wing unmanned aerial systems

Multicopters

- Multicopters are unmanned aerial vehicles.
- Usually they employ 3, 4, 6 or 8 motors in various layouts.
- The size of a multicopter can vary from tiny to extremely huge depending on the application

(VML

General drone architecture

UAV Anatomy

Artificial Intelligence & Information Analysis Lab

Batteries

- Lithium Polymer.
- LiPo batteries are also employed in smartphones, tablets, laptops etc.
- Should be handled with care.
- Voltage:
 - $2.7 3.0 V \rightarrow empty$
 - 4.2 V \rightarrow fully charged
 - 3.7 V \rightarrow storage voltage

Electric Motors

- (+) Precise control low weight (compared to i.c.)
- (+) Low noise levels
- (+) They don't require less maintenance compared to i.c. engines
- (+) Can be used indoors
- (-) Batteries (weight)
- (-) Limited flight time

VML

Electric Motors

• Technical specifications

Diameter Rpm/Volt
2212 850KV

12N14P

Stator Rotor el/magnets Magnets

Propellers

- Key features
 - Blade length: Smaller length \rightarrow more agile system.
 - Pitch: Distance per revolution.
 - Material:
 - \circ Carbon fiber
 - Plastic
 - Aluminum
- Should always be checked pre-flight.

Sensors - Flight Assists

- Accelerometers
- Inertia Measurement Units (IMU)
- Roll/Pitch/Yaw sensors
- Compass GPS
- Space perception sensors collision avoidance:
 - Proximity sensors
 - o Cameras
 - Ultrasonic sensors

Flight Controller

Artificial Intelliaence &

nformation Analysis Lab

- Responsible for the communication between all of the UAV subsystems.
- Controls the speed of the electrical motors in cooperation with the ESC.
- Aids piloting by taking advantage of the UAV sensor measurements.
- Usually is employed with gyroscope, compass, GPS, etc.
- Most of the flight controllers can be tuned and modified with respect to the application.

Piloting a UAV

- Using a remote controller (RC)
- Via a software interface (PC)

(VML

How multicopters fly

- Multicopters use propeller motors to create thrust to give the aircraft lift
- The motors rotate in pairs
 - e.g. in a quadcopter two of the motors rotate CW and the other two rotate CCW
- This configuration cause the torque from each motor to cancel by the corresponding motor rotating the opposite direction

Information Analysis Lab

RC controls

Flight modes

- Full Auto
- Assisted manual mode
- Altitude hold mode (ATTI mode)
- Manual mode

Telemetry

- Flight Status:
 - Battery (voltage).
 - Distance from take-off location.
 - Horizontal and vertical speed.
 - Altitude and height difference from take-off point.
 - Orientation.
 - Flight time, etc.
 - Telemetry is displayed:
 - OSD telemetry: On a separate screen.
 - TX telemetry: On the remote controller.

In app telemetry: Displayed within a smartphone application
 Artificial Intelligence & Information Analysis Lab

Telemetry

Artificial Intelligence & Information Analysis Lab

Legislation

• UAV categories (Greece)

	CAT A0	CAT A1	CAT A2
Maximum Take-Off Weight	< 1 kg	>1to <4 kg	>4to <25 kg
License – Recreational use	X	X	\checkmark
License – Professional use	\checkmark	\checkmark	\checkmark

- Pilot license.
- Fixed wing or other than multicopter UAVs require a special pilot license.

Legislation

- Additional license is required for beyond visual line of sight or extended visual line of sight flights.
- Flying above crowd is not allowed without special license and permission.
- Footage that may be obtained by the UAV camera should comply with GDPR
- Flights during the night are not allowed without special permission and license.
- Restrictions apply when flight nearby airpots, public infrastructures, etc.
- Flying without special permission from the corresponding authorities is not allowed in archeological sights, monuments, Natura protected areas, etc.

Applications

- Media production
- Infrastructure inspection
- 3D building reconstruction
- 3D landscape mapping

UAV architecture for media production

Flight Control Unit with main sensors, RTK GPS, Thales LTE & Wi-Fi module, back-up radio for commands

Batteries

2x 14000 mAh drone batteries 1x 4500 mAh payload battery

Drone platform

Frame, arms, landing gers, propulsion systems, ESCs Hexacopter

Audio-Visual Payload Audio Visual camera (BlackMagic Micro Cinema), motorized 14-42 mm lens, 3 axis gimbal

Flight Payload

Navigational camera, LIDAR, onboard computers (Intel NUC, Nvidia TX2)

Artificial Intelligence & Information Analysis Lab

UAV for media production

Artificial Intelligence & Information Analysis Lab

UAV for media production

- The UAV platform mid level
- Arms, ESCs, motors and power management
- Aprox 1.6m motor to motor,
 1.8 m diameter with propellers

VML

Components and

specifications

- UAV Platform
 - Maximum take-off weight: 13kg
 - Flight time: around 20 mins
 - Size: 1,8m with propellers

- Payload
 - Blackmagic camera with raw recording

GPS

LTE

FPV camera

Frame

Flight control unit + On-board computers

LIDAR

Gimbal

AV Camera

Battery

Possible

Parachute

- 3-axis gimbal
- 2 onboard computer (Intel NUC & Nvidia TX2)
- Navigational camera
- LTE communication board

(VML

Target Detection/Tracking

3D building reconstruction

Vladaton monastery

Copyright Hellenic Ministry of Culture and Sports (L. 3028/2002)

Artificial Intelligence & Information Analysis Lab

3D building reconstruction

Copyright Hellenic Ministry of Culture and Sports (L. 3028/2002)

3D landscape reconstruction

Cliff images

3D landscape reconstruction

3D Cliff surface reconstruction

Infrastructure inspection

- Learning methods for aerial inspection:
 - Methods for detection/localization of electric lines, rods, etc.

Manipulation while holding/perching

Thank you very much for your attention!

More material/lectures in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

