

Introduction to Autonomous Systems

Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.5

Autonomous Systems

Definitions

- Applications
- Technologies
 - Mission Planning
 - Mission Control Perception
 - Intelligence
 - Embedded computing
 - Autonomous systems swarms
 - Communications

Autonomous System definitions

- Greek words 'αυτο' (auto, own) and 'νόμος' (law, rule)
- A system that operates using own rules/laws
- A system that operates independently:
 - without reference to other entities
 - without reporting to any authority.

Autonomous System definitions

A fully autonomous system can:Gain information about the environment.

- Work for an *extended period without human intervention*.
- Move either all or part of itself throughout its operating environment without human assistance.
- Avoid situations that are harmful to people, property, or itself unless those are part of its design specifications.

Autonomous System definitions

Sensorial signals (video, acoustic, tactile, radio signals) should be processed by an AS in real time to:

- *interpret the external situation* in which it operates;
- relate such a situation to its *internal state*, by observing it with other proprioceptive sensors, so that it becomes self-aware;
- to use representations to help its own control blocks to drive its actuators;
- to be able to explain at sub-symbolic and symbolic level the reasons of its own choices.

Autonomous Systems

- Definitions
- Applications
 - Cars
 - Drones
 - Marine systems
 - Robots
- Technologies

Autonomous system applications

Autonomous cars

Autonomous system applications

Autonomous car sensors and perception

Autonomous system applications Drone swarms

Autonomous system applications Undewater vehicles

(VML

Autonomous system applications Merchant ships

Autonomous system applications Robots

Autonomous System technologies

Artificial Intelligence &

Information Analysis Lab

Basic elements of an Autonomous Surface Vessel [LIU2016].

15

Autonomous System technologies **(VML**

Autonomous Surface Vessel structure systems [LIU2016].

Autonomous System technologies

Autonomous car structure

Information Analysis Lab

Autonomous System technologies

- Mission Planning and Control
- Perception and Intelligence
- Embedded computing
- Swarm systems
- Communications
- Societal technologies

Autonomous system mission

- Autonomous car mission
 - List of navigation actions
 - Motion along a 2D trajectory (path)
- Autonomous drone AV Shooting Mission: list of actions
 - Shooting Actions: drone + camera

e.g., Lateral Tracking, Fly-Over, Orbit, ...

Navigation Actions: drone action only, does not involve shooting

e.g., Take-off, Land, Go-to-waypoint, ...

Autonomous system mission planning

- Find the best (2D) trajectory from start to destination
- Planning constraints:
 - Road map (e.g., Google maps)
 - Regulatory restrictions (one way streets)
 - Traffic load
- Use of semantic (2D) maps

Autonomous system mission planning

Autonomous system mission planning

- Planning of:
 - Drone flight
 - Payload (e.g., camera) actions
- Use of semantic 3D maps

VML

Mission example: Giro d'Italia

Path Planner

- This submodule is used by:
 - High-level Planner to estimate drone paths and flying times.
 - Onboard Scheduler to compute a path to a landing position in case of emergency.
- Navigation map implemented as a grid. Obtained from Semantic Map.
 - Semantic annotations are indicated as KML features.
 - Geodesic coordinates translated into Cartesian.
 - No-fly poligons become occupied cells in grid.
- Safe path computed using A* search algorithm. Fast for simple solution spaces.

Path Planner Example

- Path from one corner to the other. Buildings labeled as no-fly zones (obstacles represented as red crosses in the grid).
- Solved in 66 ms.

Information Analysis Lab

Autonomous vehicle control

ASV planar motion [LIU2016].

Autonomous vehicle control is based on:

- Kinematic vehicle model
- dynamic vehicle model.
 They are drastically vehicle-dependent.

Autonomous Surface Vessel (ASV):

- kinematic (motion) model:
 - $\dot{\eta} = \mathbf{R}(\psi)\mathbf{v}.$
- dynamic model [FOS1994]:

 $\mathbf{M}\dot{\mathbf{v}} + \mathbf{C}(\mathbf{v})\mathbf{v} + \mathbf{D}(\mathbf{v})\mathbf{v} + \mathbf{g}(\eta) = \tau + \tau_{\mathbf{E}_{26}}$

Autonomous car control

- Car dynamic modelling
- Interfacing car perception to car control
- Levels of car control automation

Level	Name	Driver	DEM2	DDTF3
0	No automation	HD4	HD	HD
1	Driver assistance	HD & system	HD	HD
2	Partial automation	System	HD	HD
3	Conditional automation	System	System	HD
4	High automation	System	System	System
5	Full automation	System	System	System

Autonomous car control

Autonomous car control

- Steering control
- Braking control
- Power control

Drone Mission Planning and Control Architecture

VML

Drone Control Objectives – Trajectory Tracking

Track a trajectory. Realistic model. Robustness to disturbances. Bounded actuation. Large basin of attraction.

Drone Controller

Onboard Drone control Architecture

VML

Car collision avoidance

- Sensors for:
- Vehicle detection/localization
- Pedestrian detection
- Real-time car trajectory replanning for collision avoidance.

Drone collision avoidance

VML

- Collision hull defined as a cylinder (yellow).
- Horizontal conflict when reserved cylinder (green) overlaps with others.
- Vertical conflict when blocking cylinder overlaps with others.
- Cylinders allow drones to brake on time and maneuver to avoid collision.

AVS collision avoidance

Autonomous surface vessel Collision avoidance: Autosea project

Example of AVS collision avoidance [AUT].

Autonomous System technologies

- Mission Planning and Control
- Perception and Intelligence
- Embedded computing
- Swarm systems
- Communications
- Societal technologies

Autonomous car sensors

• Front/roof cameras

Autonomous car sensors

• Front/roof Lidars

3D localization sensors: GPS

- Other Satellite systems: GLONASS (Russia), BeiDou (China), Galileo (EU).
- RTK-GPS uses measurements of the phase of the signal carrier wave, in addition to the information content of the signal and relies on a single reference ground station (or interpolated virtual station) to provide real-time corrections, providing up to cm-level accuracy.

Drone Sensors: IMU

• Inertial Measurement Unit (IMU):

- It measures and reports a body's specific force, angular motion rate and, sometimes, the magnetic field surrounding the body.
 - It uses a combination of accelerometers, gyroscopes and, sometimes, also magnetometers.

•

NON I

Drone Sensors: Laser altimeter

Laser altimeter:

- It measures the altitude (height) above a fixed ground level.
- It emits laser pulses which travel to the ground surface, where they are reflected.
- Part of the reflected radiation returns to the laser altimeter, is detected, and stops a time counter started when the pulse was sent out.
- The distance is then easily calculated by taking the speed of light into consideration.

2D maps

- Google maps.
- OpenStreetMaps.
- Semantic annotated information:
 - (roads, POIs, landing sites) in KML format in
 - Google Maps.
 - roads in OSM (XML) in case of OpenStreetMaps.
- Google Maps JavaScript API.
- OpenStreetMaps API.

3D maps

- Formats:
 - 3D triangle mesh.
 - 3D Octomap.
- Octomap:

Octree in memory: 130 MB Octree file: 50 MB (2 MB .bt) 3D Grid: 649 MB

- The octomap is a fully 3D model representing the 3D environment, where the UAV navigates.
- It provides a volumetric representation of space, namely of the occupied, free and unknown areas.
- It is based on octrees and using probabilistic occupancy estimation.

Geometrical mapping

Lidar mapping

Repeatibility

				I THE FREE THE THE THE THE THE THE
	Dataset	Mean Error (m)	Median Error (m)	Min Error (m)
	1	0,1377	0,1073	0,00098
	2	0,1053	0,0769	0,00045
	3	0,0847	0,0578	0,00083
	4	0,1074	0,0792	0,00078
	5	0,1722	0,1560	0,00130

Geometrical mapping

Validation with a TOTAL STATION

UAV Object detection & tracking

Advanced autonomous car Intelligence

- Self-awareness
- Driver status modelling/recognition
- Affective computing
- Attention
- Human (e.g., pedestrian) intention prediction

ML

Autonomous System technologies

- Mission Planning and Control
- Perception and Intelligence
- Embedded computing
- Swarm systems
- Communications
- Societal technologies

GPU and multicore CPU architectures. Algorithm mapping

- NVIDIA embedded processing boards
- NVIDIA Jetson TX2
- NVIDIA Jetson Xavier
- GPU and multicore CPU architectures
 - » Multicore CPUs
 - GPUs
- Algorithm mapping:

Convolutions

GPU and multicore CPU architectures. Algorithm mapping

- NVIDIA embedded processing boards
- NVIDIA Jetson TX2
- NVIDIA Jetson Xavier
- GPU and multicore CPU architectures
 - Multicore CPUs
 - GPUs
- Algorithm mapping:

Convolutions

Processing Units

- Multicore (CPU):
 - MIMD.
 - Focused on latency.
 - Best single thread performance.
- Manycore (GPU):
 - SIMD.
 - Focused on throughput. Best for embarrassingly parallel tasks.

NVIDIA Jetson Xavier

CITIVICIT.

- Al Computer for autonomous machines
- Designed for robots, drones and other
- Multiple operating modes (10/15/30 W)
- Comparison to TX2:

Greater than 10x the energy efficiency.

More than 20x the performance

CUDA

- Compute Unified Device Architecture (CUDA) is a parallel programming framework.
- Developed by Nvidia.
- Started as an attempt to give C/C++ programs access to GPU resources.
- Microarchitectures are name after famous physicists (Kepler, Maxwell, Pascal, Turing, Volta).

Autonomous System technologies

- Mission Planning and Control
- Perception and Intelligence
- Embedded computing
- Swarm systems
- Communications
- Societal technologies

Autonomous Systems swarms

Autonomous Systems swarms

- Lane-less highways
- Collision avoidance
- Fluid dynamics principles

Drone swarms

Leader-following for drone formation control

• Main idea: Trailer-like behavior for the followers.

In inertial frame: Translated identical paths

In trailer frame: Different paths, no superposition

> 9 4

SA1 - Constant relative positions

Autonomous System technologies

- Mission Planning and Control
- Perception and Intelligence
- Embedded computing
- Swarm systems
- Communications
- Societal technologies

Autonomous System Communications

VML

• Video streaming

Drone Swarm Communication infrastructure

- Drone2Drone Communication.
- Drone2Ground communication.
- Live broadcasting.

Drone Communications Infrastructure

Objective: Secured and resilient transparent IP access to drones / ground station (LTE and WiFi).

5G Communications Infrastructure

- Internet of Vehicles
- Massive deployment, throughput
- Ultra low latency networks
- Robustness
- Edge/cloud computing

Autonomous System Communications

Communication infrastructure

VML

Video streaming

Drone Digital Video Streaming Problem 1: Network

Considerations:

Wireless communication with receiver - weak & subject to failure (distance, obstacles, other wireless networks etc).

Good quality video is massive in terms of Mbps required to transfer it

1 second of 720p (1280x720) **8-bit video** requires 65.92MBytes – prohibitive. Video **compression** must be used prior to streaming:

H264 & H265 coding are great candidates...

... but they inevitably introduce delays (compression + decompression)

Lossy: must find trade-off between latency & quality.

Which network protocol should be used?

Real-time Transport Protocol (**RTP**) with User Datagram Protocol (**UDP**) TCP is also standardized for use with RTP, but favors reliability instead of timeliness.

Drone Digital Video Streaming Problem 1: Network

Compression takes place on-board the drone NVIDIA's Jetson TX2 module offers. hardware accelerated image/video compression.

Also a 256-core Pascal @ 1300MHz GPU with capability comparable to an Intel Xeon E5-2960 v4 CPU in **Deep** Learning tasks.

Drone Digital Video Streaming Problem 2: Synchronization

Scenario 2: multiple drones - one ground station.

VML

Solutions & Tools: Gstreamer

Gstreamer is written in C, but offers bindings in multiple languages: <u>https://gstreamer.freedesktop.org/bindings/</u> Recommended: original C or C++ or Python. Sample streamer + receiver are provided in Python: They show how to access pipeline elements & modify them, intercept buffers etc <u>https://lazka.github.io/pgi-docs/#Gst-1.0</u> python bindings Gstreamer official documentation: <u>https://gstreamer.freedesktop.org/documentation/</u> Useful elements for custom streams: appsrc and appsink.

Autonomous System technologies

- Mission Planning and Control
- Perception and Intelligence
- Embedded computing
- Swarm systems
- Communications
- Societal technologies:
 - Security
 - Safety
 - Privacy protection

Privacy Protection

- An issue of ethics and security
- Post-production stage
- Approaches
 - Face de-detection (Face detector obfuscation)
 - Naïve approach
 - SVD-DID
 - Face de-identification (face recognizer obfuscation)
 - Gaussian blur
 - Hypersphere projection

Application on drone videos

Information Analysis Lab

125

Face recognition/deidentification/privacy protection

UAV flight regulations in EU

- UAVs < 2kg are allowed within a 50m flight radius without professional pilot license.
- Pilot license and drone insurance are required for all professional applications.
- UAVs > 2kg of weight may be required to carry emergency parachutes (France).
 - UAVs exceeding 15kg of weight might require special license or even be prohibited (Germany).

Other UAV safety issues

• Potential Landing Site Detection

• Crowd detection and avoidance

Mission simulations

- Simulations in Gazebo
- Simulations in Unreal Engine and AirSim
- Simulations for training data generation

Pilot Study - Test Content

Object Models

O1 Motorcycles

O2 Sports Car

Artificial Intelligence & Information Analysis Lab

Background Environment

B2 Industrial City

Test Sequence Example II: S2

VIDEO: Scenario 2 with drone height of 1, 2, 6, 10 and 14m.

Bibliography

[REG2019] C. Regazzoni, I.Pitas, "Perspectives in Autonomous Systems Research", Signal Processing Magazine, vol. 36, no. 5, pp. 147-148, 2019 [LIU2016] Liu, Z., Zhang, Y., Yu, X., & Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, 71–93.2016. [FOS1994] Fossen, T. I. Guidance and control of ocean vehicles : Vol. 199. New York: Wiley No. 4 [SIE2011] R. Siegwart et al, "Introduction To Autonomous Mobile Robots", MIT Press, 2011. [AUT] https://www.ntnu.edu/autosea/ [MAD 2019a] I. Mademlis, A. Torres-Gonzalez, J. Capitan, R. Cunha, B. Guerreiro, A. Messina, F. Negro, C. Le Barz, T. Goncalves, A. Tefas, N. Nikolaidis and I. Pitas, "A Multiple-UAV Software Architecture for Autonomous Media Production", Proceedings of the 27th European Signal Processing Conference (EUSIPCO), Satellite Workshop: Signal Processing, Computer Vision and Deep Learning for Autonomous Systems, A Coruna, Spain, 2019 [MAD2019b] I. Mademlis, P. Nousi, C. Le Barz, T. Goncalves and I.Pitas, "Communications for Autonomous Unmanned Aerial Vehicle Fleets in Outdoor Cinematography Applications", Proceedings of the 27th European Signal Processing Conference (EUSIPCO), Satellite Workshop: Signal Processing, Computer Vision and Deep Learning for Autonomous Systems, A Coruna, Spain, 2019

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

