

Hidden Markov Models summary

D.Makrygiannis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr

Version 3.1

- Markov Chains
- Hidden Markov Chains
- HMMs applications
 - Speech recognition
 - Name-entity recognition
 - Human Action Recognition
 - Gesture recognition

A **Markov chain** is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous one.

Markov chains are distinguished from the fact that no matter how the process arrived at its present state, the possible future states are fixed.

Markov chain

The distribution over states can be written as $x^{(n+1)} = x^{(n)}P$ where:

- x is the state as stochastic row vector
- **P** is the probabilities as transition matrix
- n is the current time period

Markov chain

Example:

Information Analysis Lab

- Markov Chains
- Hidden Markov Chains
- HMMs applications
 - Speech recognition
 - Name-entity recognition
 - Human Action Recognition
 - Gesture recognition

Markov chain introduces a non-deterministic process that generates output observation symbols in any given state. This model is known as a **Hidden Markov Model** and can be

defined as a double-stochastic process with an underlying stochastic process.

More specifically:

Hidden Markov Models (HMMs) are a class of probabilistic graphical **model** that allows the prediction of a sequence of unknown (**hidden**) variables from a set of observed variables

A Hidden Markov model is defined by:

- 1. A finite set of states $\Omega = \{s_1, \dots, s_k\}$
- 2. A finite signal alphabet $\Sigma = \{\sigma_1, \dots, \sigma_m\}$.
- 3. Initial probabilities P(s) (for every $s \in \Omega$) defining the probability of starting in state s
- 4. Transition probabilities $P(s_i | s_j)$ (for every $(s_i, s_j) \in \Omega^2$) defining the probability of going from state s_j to state s_i
- 5. Emission probabilities $P(\sigma | s)$ (for every $(\sigma, s) \in \Sigma \times \Omega$) defining the probability of emitting symbol σ in state s

Hidden Markov Models-Viterbi

VML

Hidden Markov Models-Viterbi

This problem is solved through the Viterbi algorithm.

Hidden Markov Models-Forward-backward algorithm

Given a model Φ and a sequence of observations, what is the probability of the model that generates the observations?

Hidden Markov Models-The training problem

Training problem answers the question: Given a model structure and a set of sequences, find the model that best fits the data.

- For this problem the following 3 algorithms can be used:
 - MLE (maximum likelihood estimation)
 - Viterbi training(DO NOT confuse with Viterbi decoding)
 - Baum Welch = forward-backward algorithm

Hidden Markov Models- Baum-Welch algorithm

The Baum-Welch algorithm works in the following way:

 \rightarrow For each sequence in the training set of sequences:

- Calculate forward probabilities with the forward algorithm
- Calculate backward probabilities with the backward algorithm
- Calculate the contributions of the current sequence to the transitions of the model & the contributions of the current sequence to the emission probabilities of the model.

Hidden Markov Models- Baum-Welch algorithm

- Calculate the new model parameters (start probabilities, transition probabilities, emission probabilities)
- Calculate the new log likelihood of the model
- Stop when the change in log likelihood is smaller than a given threshold or when a maximum number of iterations is passed.

The HMMs topologies-ergodic

The ergodic model has no restrictions on the transition matrix. Each state is accessible from any other state with a simple transition

Ergodic topology

The HMMs topologies-left-toright

The left-to-right models are used to depict processes characterized by variable properties over time, such as human voice signals.

Left-to-right topology

- Markov Chains
- Hidden Markov Chains
- HMMs applications
 - Speech recognition
 - Name-entity recognition
 - Human Action Recognition
 - Gesture recognition

HMMs for speech recognition

The overall block diagram of an automatic speech recognition system [NAJ2010]

HMMs for speech recognition

HMMs for Nameentity recognition

Architecture for an HMM based NE extraction system [SAR2015]

Human Action Recognition with HMMs

RGB videos to time series conversion

Human Action Recognition with HMMs

Supervised learning

VML

HMMs for gesture recognition

Information Analysis Lab

HMMs for gesture recognition

Overview of the hand gesture recognition process [WANG2012]

Artificial Intelligence &

Information Analysis Lab

Hand contour [WANG2012]

VML

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

