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Markov chain @ML

A Markov chain is a stochastic model describing a sequence of
possible events in which the probability of each event depends
only on the state attained in the previous one.

Markov chains are distinguished from the fact that no matter

how the process arrived at its present state, the possible future
States are fixed.
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Markov chain @ML

The distribution over states can be written as x(" * 1) = x(Mp
where:

* X Is the state as stochastic row vector
* P is the probabillities as transition matrix
* nis the current time period
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Markov chain @ML

Example:

Labeling the states
{1 =jump, 2 = sit down, 3 = walk}

the transition matrix Is:
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Markov Chain representation
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Hidden Markov Models @ML

Markov chain iIntroduces a non-deterministic process that
generates output observation symbols in any given state.

This model I1s known as a Hidden Markov Model and can be
defined as a double-stochastic process with an underlying

stochastic process.
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Hidden Markov Models @ML

More specifically:

Hidden Markov Models (HMMs) are a class of probabilistic
graphical model that allows the prediction of a sequence of
unknown (hidden) variables from a set of observed variables

|| Artificial Intelligen ;
Informatio AIy Lb



Hidden Markov Models @ML

A Hidden Markov model is defined by:
1. A finite set of states Q = {s4, ..., Sx}
2. A finite signal alphabet 2 = {gy, ..., 0,,}.

3. Initial probabilities P(s) (for every s € Q) defining the probabillity of
starting In state s

4. Transition probabilities P(s; | s;) (for every (s;, s;) € Q°) defining the
probability of going from state s; to state s;

5. Emission probabilities P(o |s) (for every (o,s) € 2 X Q) defining
the probability of emitting symbol ¢ Iin state s
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Hidden Markov Models- C\ZML
Viterbi

Given a model ® and a sequence of observations, what is the most
likely state sequence in the model that produces the observations?
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Hidden Markov Models- C\ZML
Viterbi

This problem is solved through the Viterbi algorithm.

Optimal state sequence:
viterbi(i,s) © max,P(0y,...0;,Si_1 =5',5; = S)
viterbi(1,s) = P(s)P(a;|s)
viterbi(i,s) = maxgviterbi(i — 1,s)P(s|s")P(q;|s)
maxsviterbi(n,s) = max,, s, P(0y,...,0n, ..., 51, - Sn)
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Hidden Markov Models- C
Forward-backward algorithm vk

Given a model ® and a sequence of observations, what is the probability
of the model that generates the observations?
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Hidden Markov Models- C\ZML
The training problem

Training problem answers the guestion: Given a model structure and a
set of sequences, find the model that best fits the data.

 For this problem the following 3 algorithms can be used:
« MLE (maximum likelihood estimation)
 Viterbi training(DO NOT confuse with Viterbi decoding)
« Baum Welch = forward-backward algorithm
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Hidden Markov Models- Baum-Welch @ML
algorithm

The Baum-Welch algorithm works in the following way:
—For each sequence in the training set of sequences:

e (Calcu
e (Calcu
e (Calcu

ate forward probabilities with the forward algorithm
ate backward probabilities with the backward algorithm

ate the contributions of the current sequence to the transitions of

the model & the contributions of the current sequence to the emission
probabilities of the model.
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Hidden Markov Models- Baum-Welch @ML
algorithm

e C(Calculate the new model parameters (start probabilities, transition
probabilities, emission probabilities)

e (Calculate the new log likelihood of the model

* Stop when the change in log likelihood is smaller than a given threshold
or when a maximum number of iterations is passed.
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The HMMs topologies-ergodic @ML

The ergodic model has no @ }@
restrictions on the transition <
maitrix. Each state is
accessible from any other T l % T l
state with a simple transition
OO
<
NG

Ergodic topology
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The HMMs topologies-left-to- C\ZML
right

The left-to-right models
are used to depict
processes characterized
by variable properties
over time, such as
human voice signals.

Left-to-right topology
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HMMs for speech recognition VML

P
— Ay P
>
d : P2 M
—.u‘:;z:ance Preprocessing [ ‘]-::atm:c e A —pq "o
Extraction >
0=(00,...0p) ; i = arg max (P(0|4,)
L, A |
P(O|4,)

The overall block diagram of an automatic speech
recognition system [NAJ2010]
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HMMs for Name-
entity recognition

Architecture for an HMM based NE extraction system
[SAR2015]
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Human Action Recognition VML
with HMMs

RGB videos to time series conversion

2D/3D skeletons

Pose estimation Time series

model

RGB videos
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Human Action Recognition @M"
with HMMs

Supervised learning

Training Testing

-
— S

7 P,

Choose model with the
highest probability
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HMMSs for gesture recognition
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A dynamic gesture instance [WANG2012]
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HMMs for gesture recognition

Image input
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Overview of the hand gesture recognition process [WANG2012]
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Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmlsweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr
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