Graph Signal Processing summary

N. Kilis, Prof. Ioannis Pitas, Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 3.4.3

Outline

- Linear 1D convolution
- Cyclic 1D convolution
- Graph Basics
- Graph Matrix Representations
- Graph Fourier-like Basis
- Graph Signals
- Graph Signal Diffusion
- Spatial Graph Convolution
- Generalizing Convolutions to Graphs
- Spectral Graph Convolution
- Filtering
- Spatial domain
- Spectral domain
- Spatial - Spectral connection
- Graph Signal Sampling
- Graph Signals and Stationarity

Linear 1D convolution

The one-dimensional (linear) convolution of:

- an input signal x of length L and
- a convolution kernel h (filter mask, finite impulse response) of length M is defined as:

$$
y(n)=h(n) * x(n) \triangleq \sum_{i=0}^{M-1} h(i) x(n-i)
$$

- For a convolution kernel centered around 0 and $M=2 v+1$, convolution takes the form:

$$
y(n)=h(n) * x(n)=\sum_{i=-v}^{v} h(i) x(n-i)
$$

Linear 1D convolution
 h(i)

x(i) flipped

h(i)

$x(n-i)$, for $n>6$

product $h(i) \times(n-i)$

convolution $y(n)$

Cyclic 1D convolution

- One-dimensional cyclic convolution of length N :

$$
\begin{gathered}
y(k)=x(k) \circledast h(k)=\sum_{i=0}^{N-1} h(i) x\left(\left((k-i)_{N}\right)\right) \\
(k)_{N}=k \bmod N
\end{gathered}
$$

- It is of no use in modeling linear systems.
- Important use: Embedding linear convolution in a fast cyclic convolution $y(n)=x(n) \circledast h(n)$ of length $N \geq L+$ $M-1$ and then performing a cyclic convolution of length N.

Cyclic 1D convolution

Clock-wise

$$
\begin{aligned}
& y(0)=1 \times 3+2 \times 4+0 \times 5 \\
& y(1)=1 \times 5+2 \times 3+0 \times 4
\end{aligned}
$$

Anticlock-wise

$$
y(2)=1 \times 4+2 \times 5+0 \times 3
$$

Cyclic convolution of $x(n)=\{1,2,0\}$ and $h(n)=\{3,5,4\}$.

Cyclic 1D convolution

$x[n]$, with length $M=3$

n
$h[n]$, with length $L=7$

x-zero-padded[n], with length $L+M-1=9$

Zero-padding.

Cyclic 1D convolution

- Cyclic convolution calculation using 1D Discrete Fourier Transform (DFT):

$$
\mathbf{y}=I D F T(D F T(\mathbf{x}) \otimes \operatorname{DFT}(\mathbf{h}))
$$

A Fiffcal Fastumealculation of DFT, IDFT through FFT algorithm.

Graph Basics

Graph definition: $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$

- \mathcal{V} : set of nodes,
- \mathcal{E} : set of edges,
- \mathcal{W} : set of edge weights.
- N : number of nodes
- E : number of edges

Graph types:

- Directed / Undirected or Symmetric,
- Weighted / Unweighted.

Graph Matrix Representations

Graph-Shift Operator (GSO):

$$
\mathbf{S} \in \mathbb{R}^{N \times N}, \quad S_{i j} \neq 0 \text { if } i=j \text { and/or }(i, j) \in \mathcal{E} .
$$

- It enables matrix representations of graphs.
- It captures the local graph structure.
- If the graph is symmetric, \mathbf{S} is also symmetric.

Graph Signals

- Vertex signal:

$$
x_{i}: \mathcal{V} \rightarrow \mathbb{R}
$$

- Vectorial vertex signal:

$$
\mathbf{x}_{i}: \mathcal{V} \rightarrow \mathbb{R}^{n}
$$

- Graph signals (single-valued vertex signals) can be described by a vector:

$$
\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]^{T} \in \mathbb{R}^{N},
$$

residing on the vertex set \mathcal{V} of graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$.

Graph Signal Diffusion

- Diffusion of a Graph Signal: y = Sx.
- Component i of \mathbf{y} is affected by the set of nodes $j \in \mathcal{N}_{i}$ for $\mathbf{S}=\mathbf{W}$:

$$
y_{i}=\sum_{j \in \mathcal{N}_{i}} W_{i j} x_{j}
$$

- Stronger weights contribute more the diffusion.

- Local operation where components are mixed with components of neighboring nodes.

Graph Signal Diffusion

- Diffusion sequence \rightarrow Recursive application of Diffusion:

$$
\begin{gathered}
\mathbf{x}^{(k+1)}=\mathbf{S} \mathbf{x}^{(k)} \\
\mathbf{x}^{(0)}=\mathbf{x} .
\end{gathered}
$$

- We can also write the diffusion sequence as the power sequence:

$$
\mathbf{x}^{(k)}=\mathbf{S}^{(k)} \mathbf{x}
$$

$$
\mathbf{x}^{(0)}=\mathbf{x}=\mathbf{S}^{(0)} \mathbf{x} \quad \mathbf{x}^{(1)}=\mathbf{S} \mathbf{x}^{(0)}=\mathbf{S}^{(1)} \mathbf{x} \quad \mathbf{x}^{(2)}=\mathbf{S} \mathbf{x}^{(1)}=\mathbf{S}^{(2)} \mathbf{x}
$$

- Always implement the recursive version. Power version only for analysis.

Two ways to define Convolution

Spatial / Vertex domain:

- A Graph is a set of nodes connected by edges.
- We define how to aggregate the information of one node through its neighbors.
- Spatial Graph Convolution.

Spectral domain:

- A Graph is a discrete manifold [GEOM].
- Discretize manifold and do Spectral Convolution using the Laplacian matrix.
- Spectral Graph Convolution.

Spatial Graph Convolution

- The nodes do not have a well-defined position, but only an arbitrary index.
- Heterogeneous neighborhoods:
- Can not deal with nodes that have a different number of neighbors.

1-D Spatial Graph Convolution

- Graph-Shift matrix = Adjacency matrix of a graph:

$$
\mathbf{S}=\mathbf{A}=\left[\begin{array}{cccccc}
1 & 2 & 3 & \ldots & \ldots & N \\
0 & 0 & 0 & \ldots & \ldots & 1 \\
1 & 0 & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 0 & \ldots & \ldots & 1 & 0
\end{array}\right] \ldots
$$

Time series \rightarrow Shift operator/Adjacency matrix \rightarrow Graph representation
Graph:

- Nodes = time samples,
- (Directed) Edges = successive nature of time samples.

1-D Spatial Graph Convolution

- The DFT and the traditional frequency grid is obtained by the adjacency matrix of the circulant graph:

$$
\mathbf{S}=\mathbf{A}=\left[\begin{array}{cccccc}
1 & 2 & 3 & \ldots & \ldots & N \\
0 & 0 & 0 & \ldots & \ldots & 1 \\
1 & 0 & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & . . & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & \ldots & \ldots & 1 & 0
\end{array}\right] \cdots
$$

1-D Spatial Graph Convolution

- Any circulant graph (directed or not) in principle leads to the DFT as the matrix that diagonalizes the Graph-Shift operator:

$$
\mathbf{S}=\mathbf{A}=\left[\begin{array}{llllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

1-D Spatial Graph Convolution

Graph-Shift:

- local operation,
- we can replace nodes' signal values \rightarrow weighted linear combination at neighbors \mathcal{N}_{i} :

$$
x_{i, \text { out }}=\sum_{j \in N_{i}} S_{i j} x_{j, \text { in }}, \quad i=1, \ldots, N .
$$

Graph Signal Processing (GSP) framework:

1. Signal shift operator
2. Graph theory adjacency matrix

1-D Spatial Graph Convolution

- For an undirected Graph:

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& \mathbf{S}=\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

1-D Spatial Graph Convolution

- Graph Shifted Signal:

$$
\mathbf{x}^{\prime}=\mathbf{S} \mathbf{x}=\left[\begin{array}{c}
x_{2}+x_{3}+x_{4} \\
x_{1} \\
x_{1}+x_{4} \\
x_{1}+x_{3}
\end{array}\right]
$$

Generalizing Convolutions to Graphs

- Convolutions are operations on graphs.
- First two trivial observations of natural Graphs:

1. Discrete time:

- Graphs that support time signals.
- Directed Line Graph.

2. Discrete space:

- Graphs that support space signals.
- Grid Graph.

- Grid Graph.

Generalizing Convolutions to Graphs

- Filter output:

$$
\begin{gathered}
\rightarrow \bigcirc \rightarrow \rightarrow \bigcirc \rightarrow \rightarrow \bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \\
\mathbf{x}_{\text {out }}=\underbrace{}_{w_{0} \mathbf{S}^{\mathbf{x}} \mathbf{x}_{\text {in }}+w_{1} \mathbf{S}^{1} \mathbf{x}_{\text {in }}+w_{2} \mathbf{S}^{2} \mathbf{x}_{i n}+\cdots=\sum_{k=0}^{K-1} w_{k} \mathbf{S}^{k} \mathbf{x}_{i n}=\mathbf{H}(\mathbf{S}) \mathbf{x}_{\text {in }},} \\
\mathbf{H (S) \triangleq \triangleq \sum _ { k = 0 } ^ { K - 1 } w _ { k } \mathbf { S } ^ { k } .} .
\end{gathered}
$$

Generalizing Convolutions to Graphs

- Filter output:

Generalizing Convolutions to Graphs

- The same holds for Grid Graphs.
- Discrete space:
- Implementation of a convolutional filter with coefficients w_{k} and order K.
- Linear combination of diffuse versions of the input signal.
- Filter output:

$$
\mathbf{x}_{\text {out }}=w_{0} \mathbf{S}^{0} \mathbf{x}_{\text {in }}+w_{1} \mathbf{S}^{1} \mathbf{x}_{\text {in }}+w_{2} \mathbf{S}^{2} \mathbf{x}_{\text {in }}+\cdots=\sum_{k=0}^{K-1} w_{k} \mathbf{S}^{k} \mathbf{x}_{\text {in }}
$$

Generalizing Convolutions to Graphs

- Filter output:

Generalizing Convolutions to Graphs

- Filter output:

$$
\begin{aligned}
\mathbf{x}_{\text {out }}=w_{0} \mathbf{S}^{0} \mathbf{x}_{\text {in }} & +w_{1} \mathbf{S}^{1} \mathbf{x}_{\text {in }}+w_{2} \mathbf{S}^{2} \mathbf{x}_{\text {in }}+\cdots=\sum^{K-1} w_{k} \mathbf{S}^{k} \mathbf{x}_{\text {in }} \\
& +(X)
\end{aligned}
$$

Generalizing Convolutions to Graphs

- By analogy, the same holds for any Graph.
- Arbitrary Graph:
- Implementation of a convolutional filter with coefficients w_{k} and order K.
- Linear combination of diffuse versions of the input signal $\mathbf{x}_{i n}$ scaled by w_{k}.
- Filter output:

$$
\mathbf{x}_{\text {out }}=w_{0} \mathbf{S}^{0} \mathbf{x}_{\text {in }}+w_{1} \mathbf{S}^{1} \mathbf{x}_{\text {in }}+w_{2} \mathbf{S}^{2} \mathbf{x}_{\text {in }}+\cdots=\sum_{k=0}^{K-1} w_{k} \mathbf{S}^{k} \mathbf{x}_{\text {in }}
$$

Generalizing Convolutions to Graphs

- By analogy, the same holds for any Graph.
- Arbitrary Graph:
- Implementation of a convolutional filter with coefficients w_{k} and order K.
- Linear combination of diffuse versions of the input signal $\mathbf{x}_{i n}$ scaled by w_{k}.
- Filter output:

$$
\mathbf{x}_{\text {out }}=w_{0} \mathbf{S}^{0} \mathbf{x}_{\text {in }}+w_{1} \mathbf{S}^{1} \mathbf{x}_{\text {in }}+w_{2} \mathbf{S}^{2} \mathbf{x}_{\text {in }}+\cdots=\sum_{k=0}^{K-1} w_{k} \mathbf{S}^{k} \mathbf{x}_{\text {in }}
$$

Generalizing Convolutions to Graphs

- Graph Convolutional filters perform linear processing of graph signals.

Spectral Graph Convolution

We perform Spectral Graph Convolution in 4 steps:

1. Graph Laplacian
2. Graph Fourier Functions
3. Graph Fourier Transform
4. Convolution Theorem

Graph Laplacian

- Normalized Graph Laplacian is the main operator in Spectral Graph Theory:

$$
\begin{aligned}
& \mathbf{L}=\mathbf{I}-\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \\
& \mathbf{D}=\operatorname{diag}\left(\sum_{j \neq i} A_{i j}\right)
\end{aligned}
$$

- Physical interpretation:
- Smoothness of a Graph Signal:
- difference between x_{i} and node information in \mathcal{N}_{i}.
- Smooth signal \Rightarrow small Graph Laplacian.

$$
(\mathbf{L x})_{i}=x_{i}-\frac{1}{d_{i}} \sum_{j \in \mathcal{N}_{i}} A_{i j} x_{j}
$$

Graph Fourier Functions

- Eigen-decomposition of Graph Laplacian:

$$
\mathbf{L}=\mathbf{U}^{T} \boldsymbol{\Lambda} \mathbf{U}
$$

- The Laplacian eigenvectors are the Graph Fourier Functions:

$$
\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{N}\right] \in \mathbb{R}^{N \times N} .
$$

- Graph Fourier Functions:
- form an orthonormal basis:

$$
\mathbf{U}^{T} \mathbf{U}=\mathbf{I},
$$

- are related to graph geometry (e.g., communities, hubs, etc.).

Graph Fourier Functions

- The Laplacian eigenvalues are known as the Graph spectrum:

$$
\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \searrow & 0 \\
0 & 0 & \lambda_{N}
\end{array}\right]
$$

- For the normalized Graph Laplacian: $0 \leq \lambda_{1} \leq \cdots \leq \lambda_{N}=\lambda_{\max } \leq 2$.

Graph Fourier Transform

- Graph Fourier Transform (GFT):

$$
\hat{\mathbf{x}}=\mathcal{F}\{\mathbf{x}\} \triangleq \mathbf{U}^{T} \mathbf{x}
$$

- Analysis of \mathbf{x}, with Graph Fourier Functions, through the Graph Fourier Series:

$$
\mathbf{x}=\sum_{i=1}^{N}\left(\mathbf{x}^{\top} \mathbf{u}_{i}\right) \mathbf{u}_{i}=\mathbf{U} \hat{\mathbf{x}}
$$

Convolution theorem

- The Graph Frequency Response is a polynomial of graph frequencies:

$$
\begin{gathered}
\hat{h}(\lambda) \triangleq \sum_{k=0}^{K-1} w_{k} \lambda^{\kappa} \\
\hat{h}_{i}=\hat{h}\left(\lambda_{i}\right), \quad i=1, \ldots, N .
\end{gathered}
$$

Convolution theorem

- The spectral graph filter is given by:

$$
\hat{\mathbf{h}}=\mathbf{U}^{T} \mathbf{h}=\left[\hat{h}\left(\lambda_{1}\right), \ldots, \hat{h}\left(\lambda_{N}\right)\right]^{T} .
$$

- Where $\lambda_{1}, \ldots, \lambda_{N}$ are the eigenvalues.

Filtering - Spatial domain

Gaussian-Filtered
(Std. Dev. $=3.5$)
Graph-Filtered
(Std. Dev. $=1.5$)

Image source [SHU2013].

Filtering - Spectral domain

- $\mathbf{H}(\mathbf{S})$ can be designed independently of the graph.
- For every graph same characteristics, i.e. low-pass, over all possible graph frequencies ($\lambda_{1}, \ldots, \lambda_{N}$).
- No perfect rectangular shape, but a polynomial curve is possible.
- With the same filter coefficients:
- magnify $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and attenuate $\lambda_{4}, \lambda_{5}, \lambda_{6}$ for one graph with 6 nodes and
- magnify $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and attenuate λ_{4} for another graph with 4 nodes.

FIR Graph Filters

- The Graph Frequency Response is a polynomial of graph frequencies:

$$
\begin{gathered}
\hat{h}(\lambda) \triangleq \sum_{k=0}^{K-1} w_{k} \lambda^{\kappa} \\
\hat{h}_{i}=\hat{h}\left(\lambda_{i}\right), \quad i=1, \ldots, N .
\end{gathered}
$$

- Same polynomial that defines the Graph Filter (but on a scalar λ).
- Independent of the Graph (depends only on the filter coefficients).
- Role of Graph: determine the eigenvalues on which the response is instantiated.

Spatial - Spectral connection

- If smooth in Spectral domain:

- Then localized in Spatial domain:
- Related publication [SHU2016]

Graph Signal Sampling

- Sample a signal at discrete points in time/space.
- Reconstruction: Ability to recover the original signal from the samples.
- Applications:
- Sensor network (measure only a subset of sensors),
- Social network (estimate interests from a subset of users).

Graph Signal Sampling

- Traditional DSP:
- How to sample? Regular sampling.
- What properties enable recovery? Smooth signals, low frequency.
- How to reconstruct? Low pass filtering.

Band-limited Signal

Reconstruction

Graph Signal Sampling

- In Graph Sampling:
- Measure a subset (\mathcal{S}) of nodes,
- Reconstruct the whole graph signal.

- How to sample? No obvious regular sampling (lack of node ordering).
- What properties enable recovery? Graph Frequency needed.
- How to reconstruct? Filtering needed.

Graph Signal Sampling

- Optimal set of labels to observe?
- There are vertex and spectral domain solutions.
- Example method:
- Minimize the distance from any node that you did not observe, to a node that you observed.
- More cross-links \Rightarrow higher variation in lowest eigenvector of $\mathbf{L}\left(\mathcal{S}^{c}\right) \Rightarrow$ robust sampling.

Bibliography

號

[GEOM] http://geometricdeeplearning.com/ (Geometric Deep Learning on Graphs and Manifolds)
[SHU2013] D. I. Shuman, et al. "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains." IEEE signal processing magazine 30.3 (2013): 83-98.
[SHU2016] D. I. Shuman, B. Ricaud, and P. Vandergheynst. "Vertex-frequency analysis on graphs." Applied and Computational Harmonic Analysis 40.2 (2016): 260-291.
[DEF2016] M. Defferrard, X. Bresson, and P. Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." arXiv preprint arXiv:1606.09375 (2016).

Bibliography

[PIT2016] I. Pitas (editor), "Graph analysis in social media", CRC Press, 2016.
[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000. [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

