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Linear 1D convolution

The one-dimensional (linear) convolution of:

• an input signal 𝑥 of length 𝐿 and

• a convolution kernel ℎ (filter mask, finite impulse response) of

length 𝑀 is defined as:

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 ≜ ෍

𝑖=0

𝑀−1

ℎ 𝑖 𝑥 𝑛 − 𝑖 .

• For a convolution kernel centered around 0 and 𝑀 = 2𝑣 + 1,

convolution takes the form:

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 = ෍

𝑖=−𝑣

𝑣

ℎ 𝑖 𝑥 𝑛 − 𝑖 .



Linear 1D convolution



Cyclic 1D convolution

• One-dimensional cyclic convolution of length 𝑁 :

𝑦 𝑘 = 𝑥 𝑘 ⊛ ℎ 𝑘 = ෍

𝑖=0

𝑁−1

ℎ 𝑖 𝑥 𝑘 − 𝑖 𝑁 ,

(𝑘)𝑁= 𝑘 mod 𝑁.

• It is of no use in modeling linear systems.

• Important use: Embedding linear convolution in a fast

cyclic convolution 𝑦 𝑛 = 𝑥 𝑛 ⊛ ℎ 𝑛 of length 𝑁 ≥ 𝐿 +
𝑀 − 1 and then performing a cyclic convolution of length 𝑁.



Cyclic convolution of 𝑥 𝑛 = {1, 2, 0} and ℎ 𝑛 = {3, 5, 4}.

Clock-wise

Anticlock-wise

Folded sequence

0 𝑠𝑝𝑖𝑛𝑠 1 𝑠𝑝𝑖𝑛 2 𝑠𝑝𝑖𝑛𝑠

1

20
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5 4
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5 4 3
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4

4
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0 0 02 22

1 1 1

𝑦 0 = 1 × 3 + 2 × 4 + 0 × 5

𝑦 1 = 1 × 5 + 2 × 3 + 0 × 4

𝑦 2 = 1 × 4 + 2 × 5 + 0 × 3

Cyclic 1D convolution



Zero-padding.

Cyclic 1D convolution



• Cyclic convolution calculation using 1D Discrete

Fourier Transform (DFT):

𝐲 = 𝐼𝐷𝐹𝑇 𝐷𝐹𝑇 𝐱 ⊗ 𝐷𝐹𝑇 𝐡 .

• Fast calculation of DFT, IDFT through FFT algorithm.

𝐷𝐹𝑇

𝐷𝐹𝑇

𝐼𝐷𝐹𝑇

𝑥(𝑛)

ℎ(𝑛)

𝑋(𝑘)

𝐻(𝑘)

Y(𝑘) 𝑦(𝑛)

Cyclic 1D convolution



Graph Basics

Graph definition: 𝒢(𝒱, ℰ,𝒲)

• 𝒱: set of nodes,

• ℰ: set of edges,

• 𝒲: set of edge weights.

• 𝑁: number of nodes

• 𝐸: number of edges

Graph types:

• Directed / Undirected or Symmetric,

• Weighted / Unweighted.
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Graph Matrix Representations
Graph-Shift Operator (GSO):

𝐒 ∈ ℝ𝑁×𝑁, 𝑆𝑖𝑗 ≠ 0 if 𝑖 = 𝑗 and/or (𝑖, 𝑗) ∈ ℰ.

• It enables matrix representations of graphs.

• It captures the local graph structure.

• If the graph is symmetric, 𝐒 is also symmetric.
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• Vertex signal:

𝑥𝑖: 𝒱 → ℝ.

• Vectorial vertex signal:

𝐱𝑖: 𝒱 → ℝ𝑛. 

• Graph signals (single-valued vertex signals) can be described by a vector:

𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁]
𝑇∈ ℝ𝑁, 

residing on the vertex set 𝒱 of graph 𝒢(𝒱, ℰ,𝒲).
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Graph Signals



Graph Signal Diffusion
• Diffusion of a Graph Signal: 𝐲 = 𝐒𝐱.

• Component 𝑖 of 𝐲 is affected by the set of nodes 𝑗 ∈ 𝒩𝑖 for 𝐒 = 𝐖:

𝑦𝑖 = ෍

𝑗∈𝒩𝑖

𝑊𝑖𝑗𝑥𝑗 .

• Stronger weights contribute more the diffusion.

• Local operation where components are mixed with components of

neighboring nodes.
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Graph Signal Diffusion
• Diffusion sequence → Recursive application of Diffusion:

𝐱(𝑘+1) = 𝐒𝐱(𝑘),

𝐱(0) = 𝐱.

• We can also write the diffusion sequence as the power sequence:

𝐱(𝑘) = 𝐒(𝑘)𝐱

𝐱(0) = 𝐱 = 𝐒(0)𝐱 𝐱(1) = 𝐒𝐱(0) = 𝐒(1)𝐱 𝐱(2) = 𝐒𝐱(1) = 𝐒(2) 𝐱

• Always implement the recursive version. Power version only for analysis.
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Spatial / Vertex domain:

• A Graph is a set of nodes connected by edges.

• We define how to aggregate the information of one node through its

neighbors.

• Spatial Graph Convolution.

Spectral domain:

• A Graph is a discrete manifold [GEOM].

• Discretize manifold and do Spectral Convolution using the Laplacian matrix.

• Spectral Graph Convolution.

Two ways to define Convolution



Spatial Graph Convolution
Limitations:

• Lack of node ordering:

• Can not match the template features with

the data features.

• The nodes do not have a well-defined

position, but only an arbitrary index.

• Heterogeneous neighborhoods:

• Can not deal with nodes that have a

different number of neighbors.
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• Graph-Shift matrix = Adjacency matrix of a graph:

𝐒 = 𝐀 =

1 2 3 … … 𝑁
0 0 0
1 0 0
0 1 0

… … 1
… … 0
… … 0

⋮ ⋮ ⋱
0 0 …
0 0 …

⋱ ⋱ ⋮
1 0 0
… 1 0

1
2
3…
…

𝑁

𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 → 𝑆ℎ𝑖𝑓𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟/𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝐺𝑟𝑎𝑝ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Graph:

• Nodes = time samples,

• (Directed) Edges = successive nature of time samples.
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1-D Spatial Graph Convolution



• The DFT and the traditional frequency grid is obtained by the adjacency matrix

of the circulant graph:

𝐒 = 𝐀 =

1 2 3 … … 𝑁
0 0 0
1 0 0
0 1 0

… … 1
… … 0
… … 0

⋮ ⋮ ⋱
0 0 …
0 0 …

⋱ ⋱ ⋮
1 0 0
… 1 0

1
2
3…
…

𝑁
𝑉1 𝑉2 𝑉𝑁−1 𝑉𝑁

1-D Spatial Graph Convolution
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• Any circulant graph (directed or not) in principle leads to the DFT as the matrix

that diagonalizes the Graph-Shift operator:

𝐒 = 𝐀 =

0 1
1 0

1 0
1 1

1 1
0 1

0 1
1 0

0 0
0 0

1 1
0 1

1 0
1 1

0 0
0 0

0 0
0 0

1 1
0 1

1 0
1 1

0 0
0 0

0 1
1 0

1 0
1 1

1 1
0 1

0 1
1 0

𝑉1

𝑉2

𝑉3

𝑉4

𝑉7

𝑉6

𝑉5

𝑉8

1-D Spatial Graph Convolution
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Graph-Shift:

• local operation,

• we can replace nodes’ signal values → weighted linear combination at

neighbors 𝒩𝑖:

𝑥𝑖,𝑜𝑢𝑡 = ෍

𝑗∈𝒩𝑖

𝑆𝑖𝑗𝑥𝑗,𝑖𝑛 , 𝑖 = 1,… ,𝑁.

Graph Signal Processing (GSP) framework:

1. Signal shift operator

2. Graph theory adjacency matrix
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1-D Spatial Graph Convolution



• For an undirected Graph:

𝐱 =

𝑥1
𝑥2
𝑥3
𝑥4

𝐒 = 𝐀 =

0 1
1 0

1 1
0 0

1 0
1 0

0 1
1 0
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1-D Spatial Graph Convolution



• Graph Shifted Signal:

𝐱′ = 𝐒𝐱 =

𝑥2 + 𝑥3 + 𝑥4
𝑥1

𝑥1 + 𝑥4
𝑥1 + 𝑥3
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1-D Spatial Graph Convolution
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• Convolutions are operations on graphs.

• First two trivial observations of natural Graphs:

1. Discrete time:

• Graphs that support time signals.

• Directed Line Graph.

2. Discrete space:

• Graphs that support space signals.

• Grid Graph.
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Generalizing Convolutions

to Graphs



• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛 = 𝐇(𝐒) 𝐱𝑖𝑛,

𝐇(𝐒) ≜ ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘 .
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Generalizing Convolutions

to Graphs



• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛 = 𝐇(𝐒) 𝐱𝑖𝑛,

𝐇(𝐒) ≜ ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘 .
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Generalizing Convolutions

to Graphs



• The same holds for Grid Graphs.

• Discrete space:

• Implementation of a convolutional filter with coefficients 𝑤𝑘 and order 𝐾.

• Linear combination of diffuse versions of the input signal.

• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛
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Generalizing Convolutions

to Graphs
• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛
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Generalizing Convolutions

to Graphs
• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛



• By analogy, the same holds for any Graph.

• Arbitrary Graph:

• Implementation of a convolutional filter with coefficients 𝑤𝑘 and order 𝐾.

• Linear combination of diffuse versions of the input signal 𝐱𝑖𝑛 scaled by 𝑤𝑘.

• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛
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Generalizing Convolutions

to Graphs



• By analogy, the same holds for any Graph.

• Arbitrary Graph:

• Implementation of a convolutional filter with coefficients 𝑤𝑘 and order 𝐾.

• Linear combination of diffuse versions of the input signal 𝐱𝑖𝑛 scaled by 𝑤𝑘.

• Filter output:

𝐱𝑜𝑢𝑡 = 𝑤0𝐒
0𝐱𝑖𝑛 +𝑤1𝐒

1𝐱𝑖𝑛+ 𝑤2𝐒
2𝐱𝑖𝑛 +⋯ = ෍

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱𝑖𝑛
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Generalizing Convolutions

to Graphs



• Graph Convolutional filters perform linear processing of graph signals.
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𝐒𝟎𝐱𝑖𝑛 𝐒𝟏𝐱𝑖𝑛 𝐒 𝟐𝐱𝑖𝑛 𝐒𝟑𝐱𝑖𝑛

𝑤0𝐒
𝟎𝐱𝑖𝑛 𝑤1𝐒

𝟏𝐱𝑖𝑛 𝑤2𝐒
𝟐𝐱𝑖𝑛 𝑤3𝐒

𝟑𝐱𝑖𝑛

𝑤0 𝑤1 𝑤2 𝑤3

𝐱𝑜𝑢𝑡

Generalizing Convolutions

to Graphs

𝐒 𝐒 𝐒𝐱𝑖𝑛



Spectral Graph Convolution

We perform Spectral Graph Convolution in 4 steps:

1. Graph Laplacian

2. Graph Fourier Functions

3. Graph Fourier Transform

4. Convolution Theorem

32



Graph Laplacian

• Normalized Graph Laplacian is the main operator in Spectral Graph Theory:

𝐋 = 𝐈 − 𝐃−
1
2𝐀𝐃−

1
2

𝐃 = diag(෍

𝑗≠𝑖

𝐴𝑖𝑗)

• Physical interpretation: 

• Smoothness of a Graph Signal: 

• difference between 𝑥𝑖 and node information in 𝒩𝑖.

• Smooth signal ⇒ small Graph Laplacian.

(𝐋𝐱)𝑖= 𝑥𝑖 −
1

𝑑𝑖
෍

𝑗∈𝒩𝑖

𝐴𝑖𝑗𝑥𝑗 .
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𝑥𝑖

𝑥𝑗

𝑥𝑗

𝑥𝑗

𝑥𝑗
𝑥𝑗

𝑥𝑗



Graph Fourier Functions
• Eigen-decomposition of Graph Laplacian:

𝐋 = 𝐔𝛵𝚲𝐔.

• The Laplacian eigenvectors are the Graph Fourier Functions:

𝐔 = 𝐮1, … , 𝐮𝑁 ∈ ℝ𝑁×𝑁.

• Graph Fourier Functions:

• form an orthonormal basis:

𝐔𝛵𝐔 = 𝚰,

• are related to graph geometry (e.g., communities, hubs, etc.).
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Graph Fourier Functions

• The Laplacian eigenvalues are known as the Graph spectrum:

𝚲 = diag 𝜆1, … , 𝜆𝑁 =
𝜆1 0 0
0 ⟍ 0
0 0 𝜆𝑁

• For the normalized Graph Laplacian: 0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑁 = 𝜆𝑚𝑎𝑥 ≤ 2.
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• Graph Fourier Transform (GFT):

ො𝐱 = ℱ{𝐱} ≜ 𝐔𝛵𝐱.

• Analysis of 𝐱, with Graph Fourier Functions, through the Graph Fourier Series:

𝐱 =෍

𝑖=1

𝑁

(𝐱𝑇𝐮𝑖)𝐮𝑖 = 𝐔ො𝐱 .
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Graph Fourier Transform



Convolution theorem
• The Graph Frequency Response is a polynomial of graph frequencies:

෠ℎ 𝜆 ≜ ෍

𝑘=0

𝐾−1

𝑤𝑘 𝜆
𝜅

෠ℎ𝑖 = ෠ℎ 𝜆𝑖 , 𝑖 = 1,… ,𝑁.
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Convolution theorem
• The spectral graph filter is given by:

መ𝐡 = 𝐔𝛵𝐡 = ෠ℎ(λ1), … , ෠ℎ(λ𝛮)
𝑇
.

• Where λ1,…, λ𝛮 are the eigenvalues.
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Filtering – Spatial domain

Image source [SHU2013].
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Filtering – Spectral domain
• 𝐇(𝐒) can be designed independently of the graph.

• For every graph same characteristics, i.e. low-pass, over all possible graph

frequencies (𝜆1, … , 𝜆𝑁).

• No perfect rectangular shape, but a polynomial curve is possible.

• With the same filter coefficients:

• magnify 𝜆1, 𝜆2, 𝜆3 and attenuate 𝜆4, 𝜆5, 𝜆6 for one graph with 6 nodes and

• magnify 𝜆1, 𝜆2, 𝜆3 and attenuate 𝜆4 for another graph with 4 nodes.
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෠ℎ(𝜆)

𝜆𝜆6𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

෠ℎ(𝜆)
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FIR Graph Filters
• The Graph Frequency Response is a polynomial of graph frequencies:

෠ℎ 𝜆 ≜ ෍

𝑘=0

𝐾−1

𝑤𝑘 𝜆
𝜅

෠ℎ𝑖 = ෠ℎ 𝜆𝑖 , 𝑖 = 1,… ,𝑁.

• Same polynomial that defines the Graph Filter (but on a scalar 𝜆).

• Independent of the Graph (depends only on the filter coefficients).

• Role of Graph: determine the eigenvalues on which the response is

instantiated.
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Spatial – Spectral connection

• If smooth in Spectral domain:

• Then localized in Spatial domain:

• Related publication [SHU2016].
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Graph Signal Sampling
• Sample a signal at discrete points in time/space.

• Reconstruction: Ability to recover the original signal from the samples.

• Applications:

• Sensor network (measure only a subset of sensors),

• Social network (estimate interests from a subset of users).
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Graph Signal Sampling
• Traditional DSP:

• How to sample? Regular sampling.

• What properties enable recovery? Smooth signals, low frequency.

• How to reconstruct? Low pass filtering.
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Band-limited Signal

Τ−𝜋 𝑀

Down-sampling

Reconstruction

𝑀 𝑀

Τ𝜋 𝑀

Τ−𝜋 𝑀 Τ𝜋 𝑀

Reconstructed
Signal



Graph Signal Sampling
• In Graph Sampling:

• Measure a subset (𝒮) of nodes,

• Reconstruct the whole graph signal.

• How to sample? No obvious regular sampling (lack of node ordering).

• What properties enable recovery? Graph Frequency needed.

• How to reconstruct? Filtering needed.
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Reconstruction

𝐱

𝒮𝑐 𝒮𝑐𝒮 𝒮

𝑀
𝐱’



Graph Signal Sampling
• Optimal set of labels to observe?

• There are vertex and spectral domain solutions.

• Example method:

• Minimize the distance from any node that you did not observe, to a node

that you observed.

• More cross-links ⇒ higher variation in lowest eigenvector of 𝐋 (𝒮𝑐) ⇒ robust

sampling.

46𝒮𝑐 𝒮

𝒮𝑐

𝒮
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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