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• Graph Convolutions

• Empirical Risk Minimization with Graph

Signals

• Learning with Graph Convolutional

Filters

• Learning with Graph Perceptrons

• GCN Types

• GCN general architecture

• Two ways to define Convolution:

1. Spectral Graph Convolution

• Simple Spectral GCN, Spline GCN,

LapGCN, ChebNet, CayleyNet

2. Spatial Graph Convolution

• Simple Spatial GCN, GraphSage,

GIN, MoNet, GAT, GatedGCN

• GCN from scratch with numpy

• Spatio-Temporal GCN
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Graph Convolutions

Graph definition: 𝒢(𝒱, ℰ,𝒲)

• 𝒱: set of nodes,

• ℰ: set of edges,

• 𝒲: set of edge weights.

• 𝑁: number of nodes

• 𝐸: number of edges

Graph types:

• Directed / Undirected or Symmetric,

• Weighted / Unweighted.
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Graph Convolutions
Graph-Shift Operator (GSO):

𝐒 ∈ ℝ𝑁×𝑁, 𝑆𝑖𝑗 ≠ 0 if 𝑖 = 𝑗 and/or (𝑖, 𝑗) ∈ ℰ.

• It enables matrix representations of graphs.

• It captures the local graph structure.

• If the graph is symmetric, 𝐒 is also symmetric.
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Graph Convolutions
• Various algebraic choices of 𝐒:

• Adjacency matrix: 𝐒 = 𝐀,

• Graph Laplacian matrix (Directed Graphs):

𝐒 = 𝐋𝑖𝑛 = 𝐃𝑖𝑛 − 𝐀, 𝐒 = 𝐋𝑜𝑢𝑡 = 𝐃𝑜𝑢𝑡 −𝐀

𝐃𝑖𝑛 𝑖𝑖 =

𝑗=1

𝑁

𝐀𝑗𝑖 , 𝐃𝑜𝑢𝑡 𝑖𝑖 =

𝑗=1

𝑁

𝐀𝑖𝑗

• Symmetric Graph Laplacian (Undirected Graphs):

𝐒 = 𝐋 = 𝐃 − 𝐀, 𝐃 = 𝐃𝑖𝑛 = 𝐃𝑜𝑢𝑡

• The choice matters in practice, however the analysis results hold for any

selection.
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• Vertex signal:

𝑥𝑖: 𝒱 → ℝ.

• Vectorial vertex signal:

𝐱𝑖: 𝒱 → ℝ𝑛.

• Graph signal:

For notation simplification, it can be described by a vector:

𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁]
𝑇∈ ℝ𝑁, 

residing on the vertex set 𝒱 of graph 𝒢(𝒱, ℰ,𝒲).
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Graph Convolutions
• Diffusion of a Graph Signal: 𝐲 = 𝐒𝐱.

• Component 𝑖 of 𝐲 is affected by the set of nodes 𝑗 ∈ 𝒩𝑖:

𝑦𝑖 = 

𝑗∈𝒩𝑖

𝑊𝑖𝑗𝑥𝑗

• Stronger weights contribute more the diffusion.

• Local operation where components are mixed with components of

neighboring nodes.
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Graph Signal Diffusion
• Diffusion sequence → Recursive application of Diffusion:

𝐱(𝑘+1) = 𝐒𝐱(𝑘),

𝐱(0) = 𝐱.

• We can also write the diffusion sequence as the power sequence:

𝐱(𝑘) = 𝐒(𝑘)𝐱

𝐱(0) = 𝐱 = 𝐒(0)𝐱 𝐱(1) = 𝐒𝐱(0) = 𝐒(1)𝐱 𝐱(2) = 𝐒𝐱(1) = 𝐒(2) 𝐱

• Always implement the recursive version. Power version only for analysis.
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• Implementation of a convolutional filter with coefficients 𝑤𝑘 and order 𝐾.

• 𝐱𝑖𝑛 , 𝐱𝑜𝑢𝑡 ∈ ℝ𝑁: input, output signals of a convolution filter (each signal value 

residing on a graph node).

• Linear combination of diffuse versions of the input signal 𝐱𝑖𝑛 scaled by 𝑤𝑘.
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• Graph Convolutional filters perform linear processing of graph signals.
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𝐒𝟎𝐱𝑖𝑛 𝐒𝟏𝐱𝑖𝑛 𝐒𝟐𝐱𝑖𝑛 𝐒𝟑𝐱𝑖𝑛

𝑤0𝐒
𝟎𝐱𝑖𝑛 𝑤1𝐒

𝟏𝐱𝑖𝑛 𝑤2𝐒
𝟐𝐱𝑖𝑛 𝑤3𝐒

𝟑𝐱𝑖𝑛

𝑤0 𝑤1 𝑤2 𝑤3

𝐱𝑜𝑢𝑡

Graph Convolutions

𝐒 𝐒 𝐒𝐱𝑖𝑛



Empirical Risk Minimization 

with Graph Signals
Machine Learning (ML) on graphs is equivalent to Empirical Risk

Minimization (ERM) on graph signals.

• In ERM, we are given:

• A training set 𝒟 with observation graph signal pairs 𝐱𝑖 , 𝐲𝑖 ∈ 𝒟, 𝑖 = 1,… , 𝒟

of equal length: 𝐱𝑖 , 𝐲𝑖 ∈ ℝ𝑁, residing on the nodes of graph 𝒢(𝒱, ℰ,𝒲).

• A loss function 𝐽(𝐲, ො𝐲) to evaluate the similarity between 𝐲 and ො𝐲,

• A function class 𝒇 ∈ 𝒞, ො𝐲 = 𝒇(𝐱; 𝛉), the degree of freedom available to the

designer.
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Empirical Risk Minimization 

with Graph Signals
• Learning:

• find the optimal parameter vector 𝛉 of a function 𝒇∗ 𝐱; 𝛉 ∈ 𝒞 that

minimizes 𝐽(𝐲, ො𝐲) averaged over 𝒟:

𝒇∗ = argmin
𝒇∈𝒞



𝐱,𝐲 ∈ 𝒟

𝐽(𝐲, 𝒇(𝐱; 𝛉)) .
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Learning with Graph 

Convolutional Filters
• Graph Filter of order 𝐾 supported by 𝐒:

• In this case, the learnable parameter vector 𝛉 is the graph convolution kernel 

coefficient vector 𝐰 = [𝑤0, …, 𝑤𝐾−1]:

𝐰∗ = argmin
𝐰



𝐱,𝐲 𝜖𝒟

𝐽 𝐲, 𝒇 𝐱; 𝐒,𝐰 .
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𝐱 𝒛 𝐱; 𝐒,𝐰𝒛(𝐱; 𝛉) = 

𝑘=0

𝐾−1

𝑤𝑘𝐒
𝑘𝐱



Learning with Graph Perceptrons

• A GCN composed of several Graph Perceptrons (𝐖 = 𝐰1
𝑇| … |𝐰𝐿

𝑇 𝑇):

𝐂∗ = argmin
𝐂



𝐱,𝐲 𝜖𝒟

𝐽 𝐲, 𝒇 𝐱; 𝐒,𝐖 .
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𝒛1 𝐱0; 𝐒,𝐰1
𝒛1 𝐱 = 

𝑘=0

𝐾−1

𝑤1𝑘𝐒
𝑘𝐱0 𝐱1 = 𝑓(𝒛1)

𝒛𝐿 𝐱; 𝐒,𝐰𝐿
𝒛𝐿 𝐱 = 

𝑘=0

𝐾−1

𝑤𝐿𝑘𝐒
𝑘𝐱𝐿−1 𝒙𝐿 = 𝑓(𝒛𝐿)

𝐱

𝐲 = 𝒇 𝐱; 𝐒,𝐖



Learning with Graph Perceptrons

15

Sigmoid:

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Tanh:

𝑓 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥

ReLU:
𝑓 𝑥 = 𝑚𝑎𝑥(0, 𝑥)

Plots are generated by Desmos : https://www.desmos.com/calculator

Example of activation functions

Activation functions.

https://www.desmos.com/calculator


GCN Types
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• An isotropic filter treats all neighbors equally,

with no particular bias towards certain

neighbors.

• Isotropic GCNs:

• Use same matrix 𝐖(𝑙), for neighborhood 𝒩𝑖.

• Anisotropic GCNs:

• Different neighbors of node 𝑖, (𝑉1, 𝑉2,𝑉3, 𝑉4)

are treated differently (𝑊𝑖1
(𝑙)

, 𝑊𝑖2
(𝑙)

, 𝑊𝑖3
(𝑙)

, 𝑊𝑖4
(𝑙)

).

𝐖(𝑙)𝑉1, 𝑥1
(𝑙)

𝑉2, 𝑥2
(𝑙)

𝑉4, 𝑥4
(𝑙)

𝑉3, 𝑥3
(𝑙)

𝑊𝑖2
(𝑙)

𝑉1, 𝑥1
(𝑙)

𝑉2, 𝑥2
(𝑙)

𝑉4, 𝑥4
(𝑙)

𝑉3, 𝑥3
(𝑙)

𝑊𝑖1
(𝑙)

𝑊𝑖3
(𝑙)

𝑊𝑖4
(𝑙)

𝑖, 𝑥𝑖
(𝑙)

𝑖, 𝑥𝑖
(𝑙)



GCN Types
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• Isotropic GCNs:

• ChebNet

• CayleyNet

• Simple Spatial GCN

• GraphSage

• GIN

• Anisotropic GCNs:

• MoNet

• GAT

• GatedGCN

𝐖(𝑙)𝑉1, 𝑥1
(𝑙)

𝑉2, 𝑥2
(𝑙)

𝑉4, 𝑥4
(𝑙)

𝑉3, 𝑥3
(𝑙)

𝑊𝑖2
(𝑙)

𝑉1, 𝑥1
(𝑙)

𝑉2, 𝑥2
(𝑙)

𝑉4, 𝑥4
(𝑙)

𝑉3, 𝑥3
(𝑙)

𝑊𝑖1
(𝑙)

𝑊𝑖3
(𝑙)

𝑊𝑖4
(𝑙)

𝑖, 𝑥𝑖
(𝑙)

𝑖, 𝑥𝑖
(𝑙)



GCN general architecture
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Input layer

GCN layer

Task layer

1. Input layer:

• Linear embedding of input node features.

• Linear embedding of input edge features.

2. GCN layer:

• Application of a GCN architecture, 𝐿 times.

3. Task layer:

• Graph prediction layer.

• Node prediction layer.

• Edge prediction layer.



GCN general architecture
• Input layer:

• Input node feature vectors 𝐱𝑖,𝑖𝑛.

• Input edge features 𝐞𝑖𝑗,𝑖𝑛.

• Embedding layer of input node/edge features:

𝐱𝑖
(𝑙=0)

= 𝐱𝑖,𝑖𝑛 ∈ ℝ𝑛, 𝑖 = 1,… ,𝑁.

𝐞𝑖𝑗
(𝑙=0)

= 𝐞𝑖𝑗,𝑖𝑛 ∈ ℝ𝑛′ , 𝑖 = 1,… ,𝑁 and 𝑗 = 1,… , 𝐸.

• For notation simplicity, we assume 𝑛′ = 𝑛.

• Output matrix with 𝑛 features for 𝑁 nodes: 𝐗(𝑙=0) ∈ ℝ𝑁×𝑛.

• Output matrix with 𝑛 features for 𝐸 edges: 𝐄(𝑙=0) ∈ ℝ𝐸×𝑛.
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GCN general architecture
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• GCN layer:

• Input node and edge features embedded into a 𝑛-dimensional space:

𝐗(𝑙=0) ∈ ℝ𝑁×𝑛.

𝐄(𝑙=0) ∈ ℝ𝐸×𝑛.

• 𝐿 GCN layers (𝑙 = 1,… , 𝐿). Their structure is defined subsequently.

• 𝐿-th layer GCN output:

𝐗(𝑙=𝐿) ∈ ℝ𝑁×𝑛.

𝐄(𝑙=𝐿) ∈ ℝ𝐸×𝑛.
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Spatial / Vertex domain:

• A graph is considered as a set of nodes connected by edges.

• Information on one node is aggregated from through its neighbors.

• Spatial Graph Convolution.

Spectral domain:

• A graph is a discrete manifold [GEOM].

• Discretize manifold and do Spectral Convolution using the Laplacian matrix.

• Spectral Graph Convolution.

Two ways to define Convolution



Simple Spectral GCN
• Proposed by [BRU2013].

• Spectral Graph Convolutional layer:

𝐗(𝑙+1) = 𝑓 𝐇 𝐋 𝑙 𝐗 𝑙 = 𝑓 𝐔𝐇 𝚲 𝑙 𝐔Τ𝐗 𝑙 ,

𝐇 𝚲 𝑙 = diag[መ𝐡] =

ℎ(λ1) 0 0
0 ⟍ 0

0 0 ℎ(λ𝛮)

.

• Goal: Learn 𝐇 𝚲 𝑙 via Backpropagation.
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SplineGCN
• Proposed by [HEN2015].

• Spectral Graph Convolutional layer:

𝐗(𝑙+1) = 𝑓 𝐇 𝐋 𝑙 𝐗 𝑙 = 𝑓 𝐔𝐇 𝚲 𝑙 𝐔Τ𝐗 𝑙 ,

𝐇 𝚲 𝑙 = diag[𝐁መ𝐡(𝑙)],

𝐇 𝚲 𝑙 ∈ ℝ𝑁×𝑁 𝐁 ∈ ℝ𝑁×𝑆 መ𝐡 𝑙 ∈ ℝ𝑆.
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• If smooth in Spectral domain:

• Then localized in Spatial domain:

• Related publication [SHU2016].
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SplineGCN



LapGCN
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• Obtain exactly localized filters with 𝑘-hop support:

𝐇 𝐋 ≜ 

𝑘=0

𝐾−1

𝑤𝑘𝐋
𝑘

1-hop neighborhood (𝐋1) 2-hop neighborhood (𝐋2)



ChebNets
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• A filter can be parametrized as the truncated expansion:

𝐇 ሚ𝐋 = σ𝑘=0
𝐾−1𝑤𝑘𝑇𝑘 ሚ𝐋 .

• Where 𝑤𝑘 are the Chebyshev coefficients and

• 𝑇𝑘 ሚ𝐋 ∈ ℝ𝑁×𝑁 is the Chebyshev polynomial evaluated at the scaled Laplacian

matrix:

ሚ𝐋 ≜ 2𝜆𝑚𝑎𝑥
−1𝐋 − 𝐈.



CayleyNets

• Proposed by [LEV2018].

• Choose an orthonormal basis like the Cayley rationals:

• Benefits:

• Same properties like ChebNets.

• Localized in frequency (with spectral zoom).

• Provide a richer class of filters for the same order 𝐾.

• Limitations:

• Isotropic model.
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Template matching in graphs
Limitations:

• Lack of node ordering:

• Can not match the template features with

the data features.

• The nodes do not have a well-defined

position, but only an arbitrary index.

• Heterogeneous neighborhoods:

• Can not deal with nodes that have a

different number of neighbors.
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Spatial Graph Convolution

Absence of node ordering solution:

• Use the same template matrix for all neighbors.

Heterogeneous neighborhoods solution:

• Compute the average value of all neighbors.
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Matrix representation: 𝐗(𝑙+1) = 𝑓 𝐃−1𝐀𝐗(𝑙)𝐖(𝑙)

𝐱𝑖
(𝑙+1)

= 𝑓𝐺𝐶𝑁(𝐱𝑖
(𝑙)
, {𝐱𝑗

(𝑙)
: 𝑗 → 𝑖})

Simple Spatial GCN

𝑖, 𝐱𝑖
(𝑙)

𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

𝑖, 𝐱𝑖
(𝑙+1)

𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

Layer 𝑙 Layer 𝑙+1

𝐖(𝑙)
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Matrix representation: 𝐗(𝑙+1) = 𝑓 𝐃−1𝐀𝐗(𝑙)𝐖(𝑙)

𝐱𝑖
(𝑙+1)

= 𝑓𝐺𝐶𝑁(𝐱𝑖
(𝑙)
, {𝐱𝑗

(𝑙)
: 𝑗 → 𝑖})

Simple Spatial GCN

𝑖, 𝐱𝑖
(𝑙)

𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

𝑖, 𝐱𝑖
(𝑙+1)

𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

Layer 𝑙 Layer 𝑙+1

𝐖(𝑙)

Different families of NNs



GraphSage
• Proposed by [HAM2017].

• A modification of Simple Spatial GCN:

𝐱𝑖
(𝑙+1)

= 𝑓
1

𝑑𝑖


𝑗∈𝒩𝑖

𝐴𝑖𝑗𝐖
(𝑙) 𝐱𝑖𝑗

(𝑙)

For connected nodes: 𝐴𝑖𝑗 values are equal to 1.

𝐱𝑖
(𝑙+1)

= 𝑓
1

𝑑𝑖


𝑗∈𝒩𝑖

𝐖(𝑙) 𝐱𝑖𝑗
(𝑙)
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Graph Isomorphism Networks
• Proposed by [XU2018].

• The architecture of GINs can discriminate Graphs that are not isomorphic:

𝐱𝑖
(𝑙+1)

= 𝑓 𝐖2
(𝑙)
𝑓 𝐵𝑁 𝐖1

(𝑙)
𝐱𝑖
(𝑙)

𝐱𝑖
(𝑙) = 1 + 𝜀 𝐱𝑖

(𝑙)
+ 

𝑗∈𝒩𝑖

𝐱𝑖
(𝑙)

• 𝐖1
(𝑙)

∈ ℝ𝑛×𝑛, 𝐖2
(𝑙)

∈ ℝ𝑛×𝑛.

• 𝑓: 𝑅𝑒𝐿𝑈 activation function.

• 𝐵𝑁: Batch Normalization.

• 𝜀 : can be either a learnable parameter or a fixed scalar.
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Graph Isomorphism Networks

• Graph isomorphism example:

• Limitations:

• Isotropic model.
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GNN Types
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• How can we can get back anisotropy?

• Natural edge features (if available).

• Anisotropic mechanism independent

of node parametrization.

• Proposed methods:

• Edge degrees: MoNets

• Edge gates: GatedGCNs

• Attention mechanism: GATs

𝑖, 𝐱𝑖
(𝑙)

𝐖(𝑙)𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

𝑖, 𝐱𝑖
(𝑙)

W𝑖2
(𝑙)

𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

W𝑖1
(𝑙)

W𝑖3
(𝑙)

W𝑖4
(𝑙)



MoNet
• Proposed by [MON2017].

• MoNets exploit the Graph degree to learn a Bayesian Gaussian

Mixture Model (GMM):

𝐱𝑖
(𝑙+1)

= 𝑓(

𝑘=1

𝐾



𝑗∈𝒩𝑖

𝑒𝑖𝑗
(𝑘,𝑙)

𝐖1
(𝑘,𝑙)

𝐱𝑗
(𝑙)
)

• Where:

• 𝑓: 𝑅𝑒𝐿𝑈 activation function,

• 𝐖1
(𝑘,𝑙)

∈ ℝ𝑛×𝑛.
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𝑖, 𝐱𝑖
(𝑙)

𝑉1, 𝐱1
(𝑙)

𝑉2, 𝐱2
(𝑙)

𝑉4, 𝐱4
(𝑙)

𝑉3, 𝐱3
(𝑙)

𝑒𝑖1
(𝑘,𝑙)

𝑒𝑖2
(𝑘,𝑙)

𝑒𝑖4
(𝑘,𝑙)

𝑒𝑖3
(𝑘,𝑙)



Graph Attention Networks
• Proposed by [VEL2017].

• GATs exploit the attention mechanism to increase the impact of some

neighbors in the Graph neighborhoods with a multi-headed

architecture:

𝐱𝑖
(𝑙+1)

= 𝐶𝑜𝑛𝑐𝑎𝑡 𝑘=1
𝐾 (𝑓 

𝑗∈𝒩𝑖

𝑒𝑖𝑗
𝑘,𝑙

𝐖1
𝑘,𝑙

𝐱𝑗
𝑙

)

• Where:

• 𝑓: 𝐸𝐿𝑈 activation function.

• 𝐶𝑜𝑛𝑐𝑎𝑡 𝑘=1
𝐾 : 𝐾 independent attention mechanisms, whose features

are concatenated.
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𝑉3, 𝐱3
(𝑙)

𝑒𝑖1
(𝑘,𝑙)

𝑒𝑖2
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𝑒𝑖4
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Gated Graph ConvNets
• Proposed by [BRE2017].

• GatedGCNs employ a gating mechanism on the edges (soft attention):

𝐱𝑖
(𝑙+1)

= 𝐱𝑖
(𝑙)
+ 𝑓 𝐵𝑁 𝐖1

𝑙
𝐱𝑖

𝑙
+ 

𝑗∈𝒩𝑖

𝐞𝑖𝑗
𝑙
⊗𝐖2

𝑙
𝐱𝑗

𝑙

• Where:

• 𝑓: 𝑅𝑒𝐿𝑈 activation function.

• 𝐵𝑁: Batch Normalization.
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GCN from scratch with numpy
1. Message passing:

• Matrix multiplication of the Adjacency matrix and the feature vector:

• Mask out all the values, except the ones that the examined node has a

connection with.

• Final result:

• new feature vector (same shape as the original),

• each value now represents the sum of the connected neighborhoods

of each node.
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GCN from scratch with numpy
1. Message passing:

• Matrix multiplication of the Adjacency matrix and the feature vector:

• Message: Feature vectors,

• Aggregation function : Summation.

• Alternative aggregation function (Average):

𝐃−1𝐀 = 𝐀𝑎𝑣𝑔
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GCN from scratch with numpy
• Self connections – modified Adjacency matrix:

෩𝐀 = 𝐀 + 𝐈

• Normalized Adjacency matrix (scale with each node’s degree):

𝐀 = ෩𝐃−1/2෩𝐀෩𝐃−1/2 𝐀𝑖,𝑗 =
෨𝐴𝑖,𝑗

෨𝑑𝑖 ෨𝑑𝑗

• Diffusion mechanism visualized with an animation.

41



GCN from scratch with numpy
2. GCN from scratch:

• Message passing (multiplication with the Adjacency matrix of the Graph):

GCNLayer forward: self._X = (A @ X).T

• Computation of a linear projection with 𝐖 followed by an activation function:

𝐗(𝑙+1) = 𝑓 𝐀𝐗(𝑙)𝐖(𝑙)

• Backpropagation : independent of the Graph (same as in other NNs).
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Spatio-Temporal GCN
• Proposed by [YAN2018].

• Applied in skeleton-based Human Action Recognition from video frames:

• Important topic in Computer Vision,

• Identification of actions that take place in a video:

• Primitive action, elementary body part motion (e.g., Hand raising).

• Action, incorporates multiple temporally organized primitive actions (e.g.,

Running).

• Activity, high-level motion that includes several actions (e.g., Playing

tennis).

• Other applications: Robotics, Medicine, Supervised physical training,

Human-computer interaction.
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Spatio-Temporal GCN
• Human skeleton:

• Keypoints: Nodes in the Graph,

• Connections: Edges in the Graph.

• Representation with graphs:

• Invariant to view point and appearance.
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• Human skeleton as ST-GCN input:

1. Data: Skeleton Spatial Coordinates,

2. Graphical connections: Adjacency matrix.

• Input data tensor: 𝐵 × 𝐶 × 𝑇 × 𝑉 ×𝑀 . 

• 𝐵 = batch size,

• 𝐶 = number of channels,

• 𝑇 = number of video frames,

• 𝑉 = number of nodes,

• 𝑀 = number of skeletons in a frame.
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• Feed the input data tensor into a PyTorch Conv2d module:

• Need to rearrange axis : (𝐵 ×𝑀) × 𝐶 × 𝑇 × 𝑉 , with batch size [𝐵 × 𝑀]. 

• Every batch consists of 𝐶 channels.

• Each channel is a matrix with 𝑇 rows and 𝑉 columns.
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𝐶

𝐵 ×𝑀

Spatio-Temporal GCN

𝑇

𝑉



• Spatial Convolution block:

• Uses [1 × 1] kernel, that ensures that features from a frame do not overlap

with other frames.

• Sums all the values from the 𝐶 channels and returns a single value for each 

node.

• The spatial convolution output is then multiplied with the Adjacency matrix.
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Spatio-Temporal GCN
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• The multiplication output is fed into a Temporal Convolution block.

• The Temporal Convolution uses a [𝑡1 × 1] kernel:
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Spatio-Temporal GCN

𝑡1

𝑇

𝑉



Spatio-Temporal GCN
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• Deal with absence of node ordering, introduced by [NIE2016]:

• Partition Strategies to create subsets:

• Uni-labeling, all nodes in a neighborhood are treated the same.

• Distance based, 1st subset: root node, 2nd subset: 1-hop neighborhood.

• Spatial location based , 1st subset: root node, 2nd subset: centripetal nodes

(closer to center than root), 3rd subset: centrifugal nodes (further away).



Spatio-Temporal GCN
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Spatio-Temporal GCN
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• A sub-graph example of 4 joints and 3 frames:

[𝑡1 × 1]



Spatio-Temporal GCN
• The ST-GCN layer is also equipped with:

• A Residual mechanism,

• Dropout,

• Non-linearity.
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Non-linearity
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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