Graph Convolutional Networks

summary

N. Kilis, Prof. Ioannis Pitas,

Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 5.7.4
Date: 10/7/2021

Graph Convolutional Networks

- Two ways to define Convolution:

1. Spectral Graph Convolution

- Simple Spectral GCN, Spline GCN, LapGCN, ChebNet, CayleyNet

2. Spatial Graph Convolution

- Simple Spatial GCN, GraphSage, GIN, MoNet, GAT, GatedGCN
- GCN from scratch with numpy
- GCN general architecture

Graph Convolutions

Graph definition: $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$

- \mathcal{V} : set of nodes,
- \mathcal{E} : set of edges,
- \mathcal{W} : set of edge weights.
- N : number of nodes
- E : number of edges

Graph types:

- Directed / Undirected or Symmetric,
- Weighted / Unweighted.

Graph Convolutions

Graph-Shift Operator (GSO):

$$
\mathbf{S} \in \mathbb{R}^{N \times N}, \quad S_{i j} \neq 0 \text { if } i=j \text { and/or }(i, j) \in \mathcal{E}
$$

- It enables matrix representations of graphs.
- It captures the local graph structure.
- If the graph is symmetric, \mathbf{S} is also symmetric.

Graph Convolutions

- Various algebraic choices of \mathbf{S} :
- Adjacency matrix: $\mathbf{S}=\mathbf{A}$,
- Graph Laplacian matrix (Directed Graphs):

$$
\begin{aligned}
\mathbf{S}=\mathbf{L}_{\text {in }}=\mathbf{D}_{\text {in }}-\mathbf{A}, & \mathbf{S}=\mathbf{L}_{\text {out }}=\mathbf{D}_{\text {out }}-\mathbf{A} \\
{\left[\mathbf{D}_{\text {in }}\right]_{i i}=\sum_{j=1}^{N} \mathbf{A}_{j i}, } & {\left[\mathbf{D}_{\text {out }}\right]_{i i}=\sum_{j=1}^{N} \mathbf{A}_{i j} }
\end{aligned}
$$

Symmetric Graph Laplacian (Undirected Graphs):

$$
\mathbf{S}=\mathbf{L}=\mathbf{D}-\mathbf{A}, \quad \mathbf{D}=\mathbf{D}_{\text {in }}=\mathbf{D}_{\text {out }}
$$

- The choice matters in practice, however the analysis results hold for any selection.

Graph Convolutions

- Vertex signal:

$$
x_{i}: \mathcal{V} \rightarrow \mathbb{R}
$$

- Vectorial vertex signal:

$$
\mathbf{x}_{i}: \mathcal{V} \rightarrow \mathbb{R}^{n}
$$

- Graph signal:

For notation simplification, it can be described by a vector:

$$
\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]^{T} \in \mathbb{R}^{N},
$$

residing on the vertex set \mathcal{V} of graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$.

Graph Convolutions

- Diffusion of a Graph Signal: y = Sx.
- Component i of \mathbf{y} is affected by the set of nodes $j \in \mathcal{N}_{i}$:

$$
y_{i}=\sum_{j \in \mathcal{N}_{i}} W_{i j} x_{j}
$$

- Stronger weights contribute more the diffusion.

- Local operation where components are mixed with components of neighboring nodes.

Graph Signal Diffusion

- Diffusion sequence \rightarrow Recursive application of Diffusion:

$$
\begin{gathered}
\mathbf{x}^{(k+1)}=\mathbf{S} \mathbf{x}^{(k)} \\
\mathbf{x}^{(0)}=\mathbf{x} .
\end{gathered}
$$

- We can also write the diffusion sequence as the power sequence:

$$
\mathbf{x}^{(k)}=\mathbf{S}^{(k)} \mathbf{x}
$$

$$
\mathbf{x}^{(0)}=\mathbf{x}=\mathbf{S}^{(0)} \mathbf{x} \quad \mathbf{x}^{(1)}=\mathbf{S} \mathbf{x}^{(0)}=\mathbf{S}^{(1)} \mathbf{x} \quad \mathbf{x}^{(2)}=\mathbf{S} \mathbf{x}^{(1)}=\mathbf{S}^{(2)} \mathbf{x}
$$

- Always implement the recursive version. Power version only for analysis.

Graph Convolutions

- Implementation of a convolutional filter with coefficients w_{k} and order K.
- $\mathbf{x}_{\text {in }}, \mathbf{x}_{\text {out }} \in \mathbb{R}^{N}$: input, output signals of a convolution filter (each signal value residing on a graph node).
- Linear combination of diffuse versions of the input signal $\mathbf{x}_{i n}$ scaled by w_{k}.

Graph Convolutions

- Graph Convolutional filters perform linear processing of graph signals.

Empirical Risk Minimization with Graph Signals

Machine Learning (ML) on graphs is equivalent to Empirical Risk Minimization (ERM) on graph signals.

- In ERM, we are given:
- A training set \mathcal{D} with observation graph signal pairs $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \in \mathcal{D}, i=1, \ldots,|\mathcal{D}|$ of equal length: $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{N}$, residing on the nodes of graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$.
- A loss function $J(\mathbf{y}, \hat{\mathbf{y}})$ to evaluate the similarity between \mathbf{y} and $\hat{\mathbf{y}}$,
- A function class $\boldsymbol{f} \in \mathcal{C}, \hat{\mathbf{y}}=\boldsymbol{f}(\mathbf{x} ; \boldsymbol{\theta})$, the degree of freedom available to the designer.

Empirical Risk Minimization with Graph Signals

- Learning:
- find the optimal parameter vector $\boldsymbol{\theta}$ of a function $\boldsymbol{f}^{*}(\mathbf{x} ; \boldsymbol{\theta}) \in \mathcal{C}$ that minimizes $J(\mathbf{y}, \hat{\mathbf{y}})$ averaged over \mathcal{D} :

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{C}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathrm{y}) \in \mathcal{D}} J(\mathbf{y}, \boldsymbol{f}(\mathbf{x} ; \boldsymbol{\theta})) .
$$

Learning with Graph Convolutional Filters

- Graph Filter of order K supported by \mathbf{S} :

- In this case, the learnable parameter vector $\boldsymbol{\theta}$ is the graph convolution kernel coefficient vector $\mathbf{w}=\left[w_{0}, \ldots, w_{K-1}\right]$:

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} J(\mathbf{y}, \boldsymbol{f}(\mathbf{x} ; \mathbf{S}, \mathbf{w}))
$$

Learning with Graph Perceptrons

- A GCN composed of several Graph Perceptrons ($\mathbf{W}=\left[\mathbf{w}_{1}^{T}|\ldots| \mathbf{w}_{L}^{T}\right]^{T}$):

Learning with Graph Perceptrons VML

Tanh:

$$
f(x)=\frac{e^{x}-e^{-x}}{e^{x}-e^{-x}}
$$

Example of activation functions

Sigmoid:

$$
f(x)=\frac{1}{1+e^{-x}}
$$

ReLU:

$$
f(x)=\max (0, x)
$$

Activation functions.

GCN Types

- An isotropic filter treats all neighbors equally, with no particular bias towards certain neighbors.
- Isotropic GCNs:
- Use same matrix $\mathbf{W}^{(l)}$, for neighborhood \mathcal{N}_{i}.
- Anisotropic GCNs:
- Different neighbors of node $i,\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ are treated differently $\left(W_{i 1}^{(l)}, W_{i 2}^{(l)}, W_{i 3}^{(l)}, W_{i 4}^{(l)}\right)$.

GCN Types

- Isotropic GCNs:
- ChebNet
- CayleyNet
- Simple Spatial GCN
- GraphSage
- GIN
- Anisotropic GCNs:
- MoNet
- GAT
- GatedGCN

GCN general architecture

1. Input layer:

- Linear embedding of input node features.
- Linear embedding of input edge features.

2. GCN layer:

- Application of a GCN architecture, L times.

3. Task layer.

- Graph prediction layer.
- Node prediction layer.
- Edge prediction layer.

GCN general architecture

- Input layer:

- Input node feature vectors $\mathbf{x}_{i, i n}$.
- Input edge features $\mathbf{e}_{i j, i n}$.

- Embedding layer of input node/edge features:

$$
\begin{gathered}
\mathbf{x}_{i}^{(l=0)}=\mathbf{x}_{i, i n} \in \mathbb{R}^{n}, \quad i=1, \ldots, N . \\
\mathbf{e}_{i j}^{(l=0)}=\mathbf{e}_{i j, i n} \in \mathbb{R}^{n^{\prime}}, i=1, \ldots, N \text { and } j=1, \ldots, E .
\end{gathered}
$$

- For notation simplicity, we assume $n^{\prime}=n$.
- Output matrix with n features for N nodes: $\mathbf{X}^{(l=0)} \in \mathbb{R}^{N \times n}$.
- Output matrix with n features for E edges: $\mathbf{E}^{(l=0)} \in \mathbb{R}^{E \times n}$.

GCN general architecture

- GCN layer:
- Input node and edge features embedded into a n-dimensional space:

$$
\begin{aligned}
& \mathbf{X}^{(l=0)} \in \mathbb{R}^{N \times n} . \\
& \mathbf{E}^{(l=0)} \in \mathbb{R}^{E \times n} .
\end{aligned}
$$

- L GCN layers $(l=1, \ldots, L)$. Their structure is defined subsequently.

- \quad-th layer GCN output:

$$
\begin{aligned}
& \mathbf{X}^{(l=L)} \in \mathbb{R}^{N \times n} . \\
& \mathbf{E}^{(l=L)} \in \mathbb{R}^{E \times n} .
\end{aligned}
$$

Two ways to define Convolution

Spatial / Vertex domain:

- A graph is considered as a set of nodes connected by edges.
- Information on one node is aggregated from through its neighbors.
- Spatial Graph Convolution.

Spectral domain:

- A graph is a discrete manifold [GEOM].
- Discretize manifold and do Spectral Convolution using the Laplacian matrix.
- Spectral Graph Convolution.

Simple Spectral GCN

- Proposed by [BRU2013].
- Spectral Graph Convolutional layer:

$$
\mathbf{X}^{(l+1)}=f\left(\widehat{\mathbf{H}}(\mathbf{L})^{(l)} \mathbf{X}^{(l)}\right)=f\left(\mathbf{U} \widehat{\mathbf{H}}(\boldsymbol{\Lambda})^{(l)} \mathbf{U}^{\mathrm{T}} \mathbf{X}^{(l)}\right)
$$

$$
\widehat{\mathbf{H}}(\boldsymbol{\Lambda})^{(l)}=\operatorname{diag}[\hat{\mathbf{h}}]=\left[\begin{array}{ccc}
\hat{h}\left(\lambda_{1}\right) & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \hat{h}\left(\lambda_{N}\right)
\end{array}\right]
$$

- Goal: Learn $\widehat{\mathbf{H}}(\boldsymbol{\Lambda})^{(l)}$ via Backpropagation.

SplineGCN

- Proposed by [HEN2015].
- Spectral Graph Convolutional layer:

$$
\begin{gathered}
\mathbf{X}^{(l+1)}=f\left(\widehat{\mathbf{H}}(\mathbf{L})^{(l)} \mathbf{X}^{(l)}\right)=f\left(\mathbf{U} \widehat{\mathbf{H}}(\boldsymbol{\Lambda})^{(l)} \mathbf{U}^{\mathrm{T}} \mathbf{X}^{(l)}\right), \\
\widehat{\mathbf{H}}(\boldsymbol{\Lambda})^{(l)}=\operatorname{diag}\left[\mathbf{B} \hat{\mathbf{h}}^{(l)}\right], \\
\widehat{\mathbf{H}}(\boldsymbol{\Lambda})^{(l)} \in \mathbb{R}^{N \times N} \quad \mathbf{B} \in \mathbb{R}^{N \times S} \quad \hat{\mathbf{h}}^{(l)} \in \mathbb{R}^{S} .
\end{gathered}
$$

SplineGCN

- If smooth in Spectral domain:

- Then localized in Spatial domain:
- Related publication [SHU2016]

LapGCN

- Obtain exactly localized filters with k-hop support:

$$
\widehat{\mathbf{H}}(\mathbf{L}) \triangleq \sum_{k=0}^{K-1} w_{k} \mathbf{L}^{k}
$$

1-hop neighborhood (\mathbf{L}^{1}) 2-hop neighborhood (\mathbf{L}^{2})

ChebNets

- A filter can be parametrized as the truncated expansion:

$$
\widehat{\mathbf{H}}(\tilde{\mathbf{L}})=\sum_{k=0}^{K-1} w_{k} T_{k}(\tilde{\mathbf{L}}) .
$$

- Where w_{k} are the Chebyshev coefficients and
- $T_{k}(\tilde{\mathbf{L}}) \in \mathbb{R}^{N \times N}$ is the Chebyshev polynomial evaluated at the scaled Laplacian matrix:

$$
\check{\mathbf{L}} \triangleq 2 \lambda_{\max }{ }^{-1} \mathbf{L}-\mathbf{I} .
$$

CayleyNets

- Proposed by [LEV2018].
- Choose an orthonormal basis like the Cayley rationals:
- Benefits:
- Same properties like ChebNets.
- Localized in frequency (with spectral zoom).
- Provide a richer class of filters for the same order K.
- Limitations:
- Isotropic model.

Template matching in graphs

Limitations:

- Lack of node ordering:
- Can not match the template features with the data features.
- The nodes do not have a well-defined position, but only an arbitrary index.
- Heterogeneous neighborhoods:
- Can not deal with nodes that have a different number of neighbors.

Spatial Graph Convolution

Absence of node ordering solution:

- Use the same template matrix for all neighbors.

Heterogeneous neighborhoods solution:

- Compute the average value of all neighbors.

Simple Spatial GCN

Matrix representation: $\quad \mathbf{X}^{(l+1)}=f\left(\mathbf{D}^{-1} \mathbf{A} \mathbf{X}^{(l)} \mathbf{W}^{(l)}\right)$

Simple Spatial GCN

Matrix representation: $\quad \mathbf{X}^{(l+1)}=f\left(\mathbf{D}^{-1} \mathbf{A X}^{(l)} \mathbf{W}^{(l)}\right)$

GraphSage

- Proposed by [HAM2017].
- A modification of Simple Spatial GCN:

$$
\mathbf{x}_{i}^{(l+1)}=f\left(\frac{1}{d_{i}} \sum_{j \in \mathcal{N}_{i}} A_{i j} \mathbf{W}^{(l)} \mathbf{x}_{i j}^{(l)}\right)
$$

For connected nodes: $A_{i j}$ values are equal to 1.

$$
\mathbf{x}_{i}^{(l+1)}=f\left(\frac{1}{d_{i}} \sum_{j \in \mathcal{N}_{i}} \mathbf{W}^{(l)} \mathbf{x}_{i j}^{(l)}\right)
$$

Graph Isomorphism Networks

- Proposed by [XU2018].
- The architecture of GINs can discriminate Graphs that are not isomorphic:

$$
\begin{gathered}
\mathbf{x}_{i}^{(l+1)}=f\left(\mathbf{W}_{2}^{(l)} f\left(B N\left(\mathbf{W}_{1}^{(l)} \tilde{\mathbf{x}}_{i}^{(l)}\right)\right)\right) \\
\tilde{\mathbf{x}}_{i}^{(l)}=(1+\varepsilon) \mathbf{x}_{i}^{(l)}+\sum_{j \in \mathcal{N}_{i}} \mathbf{x}_{i}^{(l)}
\end{gathered}
$$

- $\mathbf{W}_{1}^{(l)} \in \mathbb{R}^{n \times n}, \quad \mathbf{W}_{2}^{(l)} \in \mathbb{R}^{n \times n}$.
- $f: R e L U$ activation function.
- BN: Batch Normalization.
- ε : can be either a learnable parameter or a fixed scalar.

Graph Isomorphism Networks

- Graph isomorphism example:

- Limitations:
- Isotropic model.

GNN Types

- How can we can get back anisotropy?
- Natural edge features (if available).
- Anisotropic mechanism independent of node parametrization.
- Proposed methods:
- Edge degrees: MoNets
- Edge gates: GatedGCNs
- Attention mechanism: GATs

MoNet

- Proposed by [MON2017].
- MoNets exploit the Graph degree to learn a Bayesian Gaussian Mixture Model (GMM):

$$
\mathbf{x}_{i}^{(l+1)}=f\left(\sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} e_{i j}^{(k, l)} \mathbf{W}_{1}^{(k, l)} \mathbf{x}_{j}^{(l)}\right)
$$

- Where:
- $f:$ ReLU activation function,
- $\mathbf{W}_{1}^{(k, l)} \in \mathbb{R}^{n \times n}$.

Graph Attention Networks

- Proposed by [VEL2017].
- GATs exploit the attention mechanism to increase the impact of some neighbors in the Graph neighborhoods with a multi-headed architecture:

$$
\mathbf{x}_{i}^{(l+1)}=\operatorname{Concat}_{k=1}^{K}\left(f\left(\sum_{j \in \mathcal{N}_{i}} e_{i j}^{(k, l)} \mathbf{W}_{1}^{(k, l)} \mathbf{x}_{j}^{(l)}\right)\right)
$$

- Where:
- $f: E L U$ activation function.

- Concat ${ }_{k=1}^{K}: K$ independent attention mechanisms, whose features are concatenated.

Gated Graph ConvNets

- Proposed by [BRE2017].
- GatedGCNs employ a gating mechanism on the edges (soft attention):

$$
\mathbf{x}_{i}^{(l+1)}=\mathbf{x}_{i}^{(l)}+f\left(B N\left(\mathbf{W}_{1}^{(l)} \mathbf{x}_{i}^{(l)}+\sum_{j \in \mathcal{N}_{i}} \mathbf{e}_{i j}^{(l)} \otimes \mathbf{W}_{2}^{(l)} \mathbf{x}_{j}^{(l)}\right)\right)
$$

- Where:
- $f:$ ReLU activation function.
- BN: Batch Normalization.

GCN from scratch with numpy

1. Message passing:

- Matrix multiplication of the Adjacency matrix and the feature vector:
- Mask out all the values, except the ones that the examined node has a connection with.
- Final result:
- new feature vector (same shape as the original),
- each value now represents the sum of the connected neighborhoods of each node.

GCN from scratch with numpy

1. Message passing:

- Matrix multiplication of the Adjacency matrix and the feature vector:
- Message: Feature vectors,
- Aggregation function : Summation.
- Alternative aggregation function (Average):

$$
\mathbf{D}^{-1} \mathbf{A}=\mathbf{A}_{\text {avg }}
$$

GCN from scratch with numpy

- Self connections - modified Adjacency matrix:

$$
\widetilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}
$$

- Normalized Adjacency matrix (scale with each node's degree):

$$
\widehat{\mathbf{A}}=\widetilde{\mathbf{D}}^{-1 / 2} \widetilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-1 / 2} \quad \widehat{\mathbf{A}}_{i, j}=\frac{\tilde{A}_{i, j}}{\sqrt{\tilde{d}_{i} \tilde{d}_{j}}}
$$

- Diffusion mechanism visualized with an animation.

GCN from scratch with numpy

2. GCN from scratch:

- Message passing (multiplication with the Adjacency matrix of the Graph):

GCNLayer forward: self._X = (A @ X).T

- Computation of a linear projection with \mathbf{W} followed by an activation function:

$$
\mathbf{X}^{(l+1)}=f\left(\mathbf{A X}^{(l)} \mathbf{W}^{(l)}\right)
$$

- Backpropagation : independent of the Graph (same as in other NNs).

Spatio-Temporal GCN

- Proposed by [YAN2018].
- Applied in skeleton-based Human Action Recognition from video frames:
- Important topic in Computer Vision,
- Identification of actions that take place in a video:
- Primitive action, elementary body part motion (e.g., Hand raising).
- Action, incorporates multiple temporally organized primitive actions (e.g., Running).
- Activity, high-level motion that includes several actions (e.g., Playing tennis).
- Other applications: Robotics, Medicine, Supervised physical training, Human-computer interaction.

Spatio-Temporal GCN

- Human skeleton:
- Keypoints: Nodes in the Graph,
- Connections: Edges in the Graph.
- Representation with graphs:
- Invariant to view point and appearance.

25 keypoints

17 keypoints

16 keypoints

Spatio-Temporal GCN

- Human skeleton as ST-GCN input:

1. Data: Skeleton Spatial Coordinates,
2. Graphical connections: Adjacency matrix.

- Input data tensor: $[B \times C \times T \times V \times M]$.
- $B=$ batch size,
- $C=$ number of channels,
- $T=$ number of video frames,
- $V=$ number of nodes,
- $M=$ number of skeletons in a frame.

Spatio-Temporal GCN

- Feed the input data tensor into a PyTorch Conv2d module:
- Need to rearrange axis : [(B×M) $\times C \times T \times V]$, with batch size $[B \times M]$.
- Every batch consists of C channels.
- Each channel is a matrix with T rows and V columns.

Spatio-Temporal GCN

- Spatial Convolution block:
- Uses $[1 \times 1]$ kernel, that ensures that features from a frame do not overlap with other frames.

- Sums all the values from the C channels and returns a single value for each node.

- The spatial convolution output is then multiplied with the Adjacency matrix.

Spatio-Temporal GCN

- The multiplication output is fed into a Temporal Convolution block.
- The Temporal Convolution uses a $\left[t_{1} \times 1\right.$] kernel:

Spatio-Temporal GCN

- Deal with absence of node ordering, introduced by [NIE2016]:
- Partition Strategies to create subsets:
- Uni-labeling, all nodes in a neighborhood are treated the same.
- Distance based, $1^{\text {st }}$ subset: root node, $2^{\text {nd }}$ subset: 1-hop neighborhood.
- Spatial location based, $1^{\text {st }}$ subset: root node, $2^{\text {nd }}$ subset: centripetal nodes (closer to center than root), $3^{\text {rd }}$ subset: centrifugal nodes (further away).

(a)

(b)

(c)

(d)

Spatio-Temporal GCN

Spatio-Temporal GCN

- A sub-graph example of 4 joints and 3 frames:

Spatio-Temporal GCN

- The ST-GCN layer is also equipped with:
- A Residual mechanism,
- Dropout,
- Non-linearity.

Adjacency matrix

Bibliography

[ACTIV] https://en.wikipedia.org/wiki/Activation function
[GEOM] http://geometricdeeplearning.com/ (Geometric Deep Learning on Graphs and Manifolds).
[BRU2013] J. Bruna, et al. "Spectral networks and locally connected networks on graphs." arXiv preprint arXiv:1312.6203 (2013).
[HEN2015] M. Henaff, J. Bruna, and Y. LeCun. "Deep convolutional networks on graph-structured data." arXiv preprint arXiv:1506.05163 (2015).
[SHU2016] D. I. Shuman, B. Ricaud, and P. Vandergheynst. "Vertex-frequency analysis on graphs." Applied and Computational Harmonic Analysis 40.2 (2016): 260-291.

Bibliography

[DEF2016] M. Defferrard, X. Bresson, and P. Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." arXiv preprint arXiv:1606.09375 (2016).
[LEV2018] R. Levie, et al. "Cayleynets: Graph convolutional neural networks with complex rational spectral Iters." IEEE Transactions on Signal Processing 67.1 (2018): 97-109.
[SCA2008] F. Scarselli, et al. "The graph neural network model." IEEE transactions on neural networks 20.1 (2008): 61-80.
[KIPF2016] T. N. Kipf, and M. Welling. "Semi-supervised classiffication with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
[SUK2016] S. Sukhbaatar, A. Szlam, and R. Fergus. "Learning multiagent communication with backpropagation." arXiv preprint arXiv:1605.07736 (2016).

Bibliography

[HAM2017] W. L. Hamilton, R. Ying, and J. Leskovec. "Inductive representation learning on large graphs." arXiv preprint arXiv:1706.02216 (2017).
[XU2018] K. Xu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).
[MON2017] F. Monti, et al. "Geometric deep learning on graphs and manifolds using mixture model cnns." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[VEL2017] P. Velickovic, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).
[BRE2017] X. Bresson, and T. Laurent. "Residual gated graph convnets." arXiv preprint arXiv:1711.07553 (2017).

Bibliography

[YAN2018] S. Yan, Y. Xiong, and D. Lin. "Spatial temporal graph convolutional networks for skeleton-based action recognition." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.

Bibliography

[PIT2016] I. Pitas (editor), "Graph analysis in social media", CRC Press, 2016.
[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000. [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

