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Graph-Based Dimensionality 

Reduction
• Graph-based Clustering

• Locality Preserving Projections

• Locally Linear Embedding

• ISOMAP

• Laplacian Embedding

• Linear Discriminant Analysis

• Marginal Fisher Analysis

• Local Fisher Discriminant Analysis

• Semi-supervised Discriminant Analysis

• Laplacian Support Vector Machines
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Dimensionality Reduction

Problem:

• Let 𝑛 be the data (feature vector) dimensionality: 𝐱 ∈ ℝ𝑛 .

• If it is high,

• there are performance problems in data classification/clustering.

• there are high computational costs in data classification/clustering

• Solution:

• Feature vector Dimensionality Reduction (DR) to 𝑑 ≪ 𝑛.

• DR must capture/retain the discriminative information of the data.
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Dimensionality Reduction

• Applications:

• Removal of irrelevant and noisy features.

• Extraction of the most important features.

• Data Visualization.

• Data search and retrieval.

• Coupled use with various ML techniques:

• Data classification

• Data clustering
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Dimensionality Reduction

• Given a sample 𝐱 ∈ ℝ𝑛 , the ML model computes a new sample

representation ො𝐱 = 𝝓(𝐱; 𝛉).
• 𝝓:ℝ𝑛 → ℝ𝑑 is a function, mapping 𝐱 to a lower dimensionality space 𝑑,

𝑑 ≪ 𝑛,
• 𝛉 are the learnable parameters of the model.

• The representation ො𝐱 is meant:

• to capture relevant high level information from the initial sample 𝐱;
• provide abstraction from detail

• increase robustness to noise.



Dimensionality Reduction

• Unsupervised Methods

• Supervised Methods

• Semi-Supervised Methods
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Graph-based Clustering

Similarity graph, Adjacency/Similarity matrix:

• Let 𝒟 = {𝐱1, … , 𝐱𝑛} be the data set where 𝐱𝑖 ∈ ℝ
𝒏.

• Construct a graph 𝒢(𝒱, ℰ) where each graph vertex

corresponds to a point 𝐱𝑖 , 𝑖 = 1, … , 𝑁 .

• Graph is weighted connected and undirected.

• Graph 𝑁 × 𝑁 adjacency matrix 𝐀 ∈ 0,1 𝑁×𝑁.

• Similarity (weight) matrix 𝐖 = 𝑊𝑖𝑗 ∈ ℝ𝑁×𝑁.

7



Graph-based Clustering

a) Similarity graph; b) Similarity matrix.
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Graph-based Clustering

Nearest neighbor graphs
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a) 𝑘-nearest neighbors graph; b) 𝑒-neighborhood graph.



Unsupervised Learning

• no class labels only geometric data relationship 

• partition the graph vertex set into smaller clusters (graph 

clustering) 

• embed graph vertices in a low-dimensional feature space, while 

preserving geometrical data properties
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Semi-supervised Learning

• Some data have class - labels, the rest do not.

Classification approaches:

• Transductive: Use the geometric data relationships and the labels 

to assign labels to the unlabeled data items

• Inductive: Use the geometric data relationships and the labels to 

learn a function that maps new items or unlabeled data to classes.
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Supervised Learning

• All data have class – labels.

• Each graph vertex 𝐱𝑖 is accompanied by a

class label 𝒞𝑖 𝜖 𝒞 where 𝒞 = {𝒞1, 𝒞2, … , 𝒞𝑚}.

• Learn a mapping 𝑓 𝐱 : ℝ𝑛 ⟶ 𝒞.

• Once learned , this mapping can be used to map a

new test sample 𝐱 (not belonging to the training set

𝐕) to one of the classes in 𝒞.
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Locality Preserving 

Projections
• Locality Preserving Projections (LPP) finds a low-dimensional embedding of

the original data 𝐱𝑖 ∈ ℝ
𝑛 , so that nearby samples in the high-dimensional

space ℝ𝑛 remain placed nearby in the low dimensional space ℝ𝑑(𝑑 << 𝑛).

• It finds 𝐾 nearest neighbors of each sample 𝐱𝑖 based on Euclidean distances

• Constructs a neighborhood graph 𝒢(𝒱, 𝓔) and the graph weight matrix

𝐖 ∈ℝ𝑁×𝑁:

𝑊𝑖𝑗 = ቐ
1, 𝑖 ∈ 𝒩𝑗 or 𝑗 ∈ 𝒩𝑖

0, otherwise.

• 𝒩𝑖: neighborhood of 𝐱𝑖.
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• Difference from LPP is that LLE employs a weighted graph, while LPP

employs a unweighted graph.

• A local fitting step is performed. Each sample 𝐱𝑖 is approximated by its

neighbour 𝐱𝑗 , 𝑗 ∈ 𝒩𝑖 according to fitting weights 𝑤𝑖𝑗 by solving:

min
𝛴𝑗 ∈𝒩𝑖

𝐱𝑖 −
𝑗∈𝒩𝑖

𝑊𝑖𝑗 𝐱𝑗 − 𝐱𝑖
2

2

.

Locally Linear Embedding
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ISOMAP determines a low – dimensional embedding of the original data 𝐱𝑖
so that the pairwise geodesic distances between the data are preserved in

the low dimensional space. ISOMAP constructs a neighborhood graph

vertices. Then the elements of the graph weight 𝐖 are set to:

𝑤𝑖𝑗 = 𝐱𝑖 − 𝐱𝑗
2
.

The shortest path distances calculate the distance matrix 𝐃:

𝐃𝑖𝑗 = 𝑚𝑖𝑛 𝐱𝑗 − 𝐱𝑡1 2
+⋯+ 𝐱𝑡𝑘−1 − 𝐱𝑗 2

ISOMAP

15



• LE compute a low – dimensional embedding of the original data 𝐱𝑖 with the

property that nearby samples in the high-dimensional space ℝ𝑑 remain

placed nearby in the low dimensional space.

• After constructing the graph , the graph weight matrix 𝐖 is constructed as:

𝐖𝑖𝑗 = exp −
𝐱𝑖−𝐱𝑗 2

2

2σ
.

• After eigenanalysis, this method can exploit both local and global geometric

information, depending on the value of the parameter 𝜎.

• This is an advantage in the cases where a smooth low-dimensional

embedding is searched for.

Laplacian Embedding
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• This method is focused on the analysis of the geometry of general datasets

based on the definition of Markov chains. For a fixed value 𝜀,the isotropic

diffusion kernel can be defined as:

𝑘𝜀 𝐱𝑖 , 𝐱𝑗 = exp −
𝐱𝑖−𝐱𝑗 2

2

4𝜀
.

Diffusion Maps
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• Minimize within-class data scatter :

𝐒𝑤 = 

𝑘=1

𝑚



𝐱𝑖 ∈𝒞𝑘

(𝐱𝑖 − 𝛍𝑘)(𝐱𝑖 − 𝛍𝑘)
𝑇

• Maximize the between-class data scatter :

𝐒b = 

𝑘=1

𝑚

𝑁𝑚(𝐱𝑖 − 𝛍𝑚)(𝐱𝑖 − 𝛍𝑚)
𝑇

Linear Discriminant Analysis



• Similar as Marginal Analysis but here LFDA focuses more on local

relationships.

𝑊𝑖𝑗 = ൞

1 , 𝒞𝑖= 𝒞𝑗 and 𝑗 ∈ 𝒩𝑖

1 , 𝒞𝑖 = 𝒞𝑗 and 𝑖 ∈ 𝒩𝑗
0, otherwise.

• Penalty 𝐖 matrix :

𝑊𝑖𝑗
(𝑝)

= ൞

1 , 𝒞𝑖≠ 𝒞𝑗 and 𝑗 ∈ 𝒩𝑖

1 , 𝒞𝑖≠ 𝒞𝑗 and 𝑖 ∈ 𝒩𝑗
0, otherwise.

Marginal Fisher Analysis
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LDFA defines the within-class and between-class relationships by using

graph relationships. There is an intrinsic graph and a penalty graph.

The matrix 𝐖𝑖𝑗
(𝑤)

expresses local relationships between data belonging to

the same class.

𝐖𝑖𝑗
(𝑤)

= ൞

𝑆𝑖𝑗

𝑁𝐶𝑖
, 𝒞𝑖 = 𝒞𝑗

0 , otherwise

Local Fisher 

Discriminant Analysis
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The matrix 𝐖𝑖𝑗
(𝑏)

expresses local relationships between data placed at

the borders of different classes

𝑊𝑖𝑗
(𝑏)

= ൞
𝑆𝑖𝑗

1

𝑁
−

1

𝑁𝒞𝑖
, 𝒞𝑖 = 𝒞𝑗

0 , otherwise.

Local Fisher 

Discriminant Analysis
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Graph Embedding
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• Here the graph is undirected weighted where we assume that the

training samples 𝐱𝑖 reside on graph vertices and 𝐖 is the corresponding

graph weight matrix. Let us denote L𝑥 the graph Laplacian matrix

describing a certain criterion X.

𝐒𝑋 = 𝐗𝐋𝑇𝐗
𝑇



Semi-supervised 

Discriminant Analysis
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This method uses :

• discriminant information inferred from the labelled data

• Local geometrical information from both the labelled and the unlabelled data.

Weight matrix 𝐖 expresses the local relationship between unlabelled and

labelled data :

𝐖𝑖𝑗 = ቊ
𝑤𝑖𝑗 , 𝑖 ∈ 𝒩𝑗 and 𝑗 ∈ 𝒩𝑖

0 , otherwise



Laplacian Support Vector 

Machines
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The 𝐾 – nearest neighbour based on the heat kernel is usually employed. The

following regualizer is incorporated in the SVM formulation.

That leads to the following optimization problem:

min
w,b

𝐰 2
2 + c1

𝑖=1

N

ξ𝑖 +
c2
N2

𝐰𝑇(𝐗𝐋𝐗𝑇)

Where 𝐋 is the Laplacian matrix calculated by using both the labelled and the

unlabelled data.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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