

Geometric Spaces summary

M. Sotiroudi, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 1.1

Spaces

- Vector Spaces
- Affine Spaces
- Metric Spaces

A real vector space composed of two binary operations and a set $\mathcal{V}.\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}: (\mathbf{u}, \mathbf{v}) \rightarrow \mathbf{u} + \mathbf{v}$ and $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}: (\lambda, \mathbf{v}) \rightarrow \lambda \mathbf{v}$ such that [BAE2012]:

- For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}$, $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- For all $\mathbf{u}, \mathbf{v} \in \mathcal{V}, \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- There exists a zero vector $0 \in \mathcal{V}$, i.e., for any $\mathbf{u} \in \mathcal{V}$, $\mathbf{u} + 0 = \mathbf{u}$.
- All u ∈ V has a negative element, i.e., there exists -u ∈ V such that u + (-u) = 0.

Vector Spaces

- For all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u} \in \mathcal{V}, \alpha(\beta \mathbf{u}) = (\alpha \beta)\mathbf{u}$.
- For all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u} \in \mathcal{V}, (\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.
- For all $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathcal{V}, \alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- Multiplication by $1 \in \mathbb{R}$ is the identity, i.e., for all $\mathbf{u} \in \mathcal{V}$, $1\mathbf{u} = \mathbf{u}$.

The set \mathbb{R} of real numbers can be exchanged with the set \mathbb{C} of complex numbers and then we get the definition of a complex vector space. We can in fact replace \mathbb{R} with any field, e.g., the set \mathbb{Q} of rational numbers, the set of rational functions, or with finite fields such as $\mathbb{Z}_2 = \{0, 1\}$.

For a finite subset $\{v_1, \ldots, v_n\} \subseteq \mathbb{V}$ of a vector space the following three statements are equivalent.

- $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a minimal spanning set.
- $\{v_1, \ldots, v_n\}$ is a maximal linearly independent set.
- Each vector $\mathbf{v} \in \mathbb{V}$ can be expressed as a **one-of-a-kind** linear combination $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$.

If $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_n\}$ both satisfy these conditions then m = n.

Euclidean Vector Spaces and Symmetric Maps

Euclidean vector space is a real vector space V equipped with a positive definite, symmetric, bilinear mapping $V \times V \rightarrow \mathbb{R}$: $(\mathbf{u}, \mathbf{v}) \rightarrow \mathbf{u}^T \mathbf{v}$ called the *inner product*, we have the following:

- For all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$, $\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$.
- For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{V}$, $(\mathbf{u} + \mathbf{v})^T \mathbf{w} = \mathbf{u}^T \mathbf{w} + \mathbf{v}^T \mathbf{w}$.
- For all $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha(\mathbf{u}^T \mathbf{v}) = (\alpha \mathbf{u}^T) \mathbf{v}$.
- For all $\mathbf{u} \in \mathbb{V}$, $\mathbf{u}^T \mathbf{u} \ge 0$.
- For all $\mathbf{u} \in \mathbb{V}$, $\mathbf{u}^T \mathbf{u} = 0 \iff \mathbf{u} = 0$.

Vector Spaces

The norm of a vector $\mathbf{u} \in \mathbb{V}$ in Euclidean vector space $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ is defined as $\|\mathbf{u}\| = \sqrt{\mathbf{u}^T \mathbf{v}}$. The *Cauchy***–Schwartz** inequality is a crucial property of an arbitrary inner product.

If $(V, \langle \cdot, \cdot \rangle)$ is Euclidean vector space then the inner product satisfies the Cauchy–Schwartz inequality $\mathbf{u} \leq \mathbf{uv}, \mathbf{v} \leq \mathbf{uv}$, if and only if one of the vectors *is a positive multiple of the other*, equality is achieved.

Eigenvalues and Eigenvectors

The geometric multiplicity of *E* is the name given to its dimension. If $\mathbf{u}_1, \ldots, \mathbf{u}_m$ is a basis for \mathbb{V} , **A** is the matrix for *L* in this basis and a vector $\mathbf{v} \in \mathbb{V}$ has coordinates \mathbf{v} with respect to this basis then $L(\mathbf{v}) = \lambda \mathbf{v} \iff \mathbf{A}\mathbf{v} = \lambda \mathbf{v}$.

Spaces

- Vector Spaces
- Affine Spaces
- Metric Spaces

An affine space is a set \mathcal{X} that admits a free transitive action of a vector space \mathbb{V} [BAE2012]. That is, there is a map $\mathcal{X} \times \mathbb{V} \rightarrow \mathcal{X}$: $(\mathbf{x}, \mathbf{v}) \rightarrow \mathbf{x} + \mathbf{v}$, called *translation* by the vector \mathbf{v} , such that:

- The inclusion of vectors is referred to as the structure of translations, for all $x \in \mathcal{X}$ and $u, v \in \mathbb{V}, x + (u + v) = (x + u) + v$.
- The identity is represented by the zero vector for all $\mathbf{x} \in \mathcal{X}$,

Affine Maps

Specifically, we have the following proposal. Let f be an affine map between two affine spaces (X, U) and (Y, V). Then there is a unique *linear map* $L: U \to V$ such that $f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + L(\mathbf{v})$ for all $\mathbf{x} \in X$ and $\mathbf{u} \in U$.

Spaces

- Vector Spaces
- Affine Spaces
- Metric Spaces

A metric space (\mathcal{X}, d) is a set \mathcal{X} equipped with a map d [BAE2012]: $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that meets the following three criteria:

- Symmetry, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
 - The triangle inequality, for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$.
- Positivity, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$: $d(\mathbf{x}, \mathbf{y}) \ge 0, d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$.

Let (\mathcal{X}, d) be a metric space. The **open ball** with radius r > 0 and center $\mathbf{x} \in \mathcal{X}$ is the set $B(\mathbf{x}, r) = \{\mathbf{y} \in \mathcal{X} | d(\mathbf{x}, \mathbf{y}) < r\}$.

Assume that X is a metric space. A subset $\mathcal{U} \subseteq X$ is called an *open* set if there for all points $\mathbf{x} \in \mathcal{U}$ exists an open ball $B(\mathbf{x}, r) \subseteq \mathcal{U}$.

An open set to the left with space for a ball around each point. Every ball around a point on the boundary is not found in a non open set to the right.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

