Geometric Spaces summary

M. Sotiroudi, Prof. Ioannis Pitas
Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 1.1

Spaces

- Vector Spaces
- Affine Spaces
- Metric Spaces

Vector Spaces

A real vector space composed of two binary operations and a set $\mathcal{V} . \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}:(\mathbf{u}, \mathbf{v}) \rightarrow \mathbf{u}+\mathbf{v}$ and $\mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}:(\lambda, \mathbf{v}) \rightarrow \lambda \mathbf{v}$ such that [BAE2012]:

- For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V},(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
- For all $\mathbf{u}, \mathbf{v} \in \mathcal{V}, \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
- There exists a zero vector $0 \in \mathcal{V}$, i.e., for any $\mathbf{u} \in \mathcal{V}, \mathbf{u}+0=\mathbf{u}$.
- All $\mathbf{u} \in \mathcal{V}$ has a negative element, i.e., there exists $-\mathbf{u} \in \mathcal{V}$ such that $\mathbf{u}+(-\mathbf{u})=0$.

Vector Spaces

- For all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u} \in \mathcal{V}, \alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.
- For all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u} \in \mathcal{V},(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.
- For all $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathcal{V}, \alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
- Multiplication by $1 \in \mathbb{R}$ is the identity, i.e., for all $\mathbf{u} \in \mathcal{V}, 1 \mathbf{u}=\mathbf{u}$.

The set \mathbb{R} of real numbers can be exchanged with the set \mathbb{C} of complex numbers and then we get the definition of a complex vector space. We can in fact replace \mathbb{R} with any field, e.g., the set \mathbb{Q} of rational numbers, the set of rational functions, or with finite fields such as $\mathbb{Z}_{2}=\{0,1\}$.

Vector Spaces

For a finite subset $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subseteq \mathbb{V}$ of a vector space the following three statements are equivalent.

- $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a minimal spanning set.
- $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a maximal linearly independent set.
- Each vector $v \in \mathbb{V}$ can be expressed as a one-of-a-kind linear combination $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$.

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ both satisfy these conditions then $m=n$.

Vector Spaces

Euclidean Vector Spaces and Symmetric Maps

Euclidean vector space is a real vector space \mathbb{V} equipped with a positive definite, symmetric, bilinear mapping $\mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}:(\mathbf{u}, \mathbf{v}) \rightarrow$ $\mathbf{u}^{T} \mathbf{v}$ called the inner product, we have the following:

- For all $\mathbf{u}, \mathbf{v} \in \mathbb{V}, \mathbf{u}^{T} \mathbf{v}=\mathbf{v}^{T} \mathbf{u}$.
- For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{V},(\mathbf{u}+\mathbf{v})^{T} \mathbf{w}=\mathbf{u}^{T} \mathbf{w}+\mathbf{v}^{T} \mathbf{w}$.
- For all $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{V}, \alpha\left(\mathbf{u}^{T} \mathbf{v}\right)=\left(\alpha \mathbf{u}^{T}\right) \mathbf{v}$.
- For all $\mathbf{u} \in \mathbb{V}, \mathbf{u}^{T} \mathbf{u} \geq 0$.
- For all $\mathbf{u} \in \mathbb{V}, \mathbf{u}^{T} \mathbf{u}=0 \Leftrightarrow \mathbf{u}=0$.

Vector Spaces

The norm of a vector $\mathbf{u} \in \mathbb{V}$ in Euclidean vector space $(\mathbb{V},\langle\cdot, \cdot\rangle)$ is defined as $\|\mathbf{u}\|=\sqrt{\mathbf{u}^{T} \mathbf{v}}$. The Cauchy-Schwartz inequality is a crucial property of an arbitrary inner product.

If $(\mathbb{V},\langle\cdot, \cdot\rangle)$ is Euclidean vector space then the inner product satisfies the Cauchy-Schwartz inequality $\mathbf{u} \leq \mathbf{u v}, \mathbf{v} \leq \mathbf{u v}$, if and only if one of the vectors is a positive multiple of the other, equality is achieved.

Vector Spaces

Eigenvalues and Eigenvectors

The geometric multiplicity of E is the name given to its dimension. If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ is a basis for \mathbb{V}, \mathbf{A} is the matrix for L in this basis and a vector $\mathbf{v} \in \mathbb{V}$ has coordinates \mathbf{v} with respect to this basis then $L(\mathbf{v})=$ $\lambda \mathbf{v} \Leftrightarrow \mathbf{A} \mathbf{v}=\lambda \mathbf{v}$.

Spaces

- Vector Spaces
- Affine Spaces
- Metric Spaces

Affine Spaces

An affine space is a set \mathcal{X} that admits a free transitive action of a vector space \mathbb{V} [BAE2012]. That is, there is a map $\mathcal{X} \times \mathbb{V} \rightarrow$ $x:(\mathbf{x}, \mathbf{v}) \rightarrow \mathbf{x}+\mathbf{v}$, called translation by the vector \mathbf{v}, such that:

- The inclusion of vectors is referred to as the structure of translations, for all $\mathbf{x} \in \mathcal{X}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{V}, \mathbf{x}+(\mathbf{u}+\mathbf{v})=(\mathbf{x}+\mathbf{u})+\mathbf{v}$.
- The identity is represented by the zero vector for all $\mathbf{x} \in \mathcal{X}$,

$$
\mathbf{x}+0=\mathbf{x} .
$$

Affine Spaces

Affine Maps

Specifically, we have the following proposal. Let f be an affine map between two affine spaces (\mathbb{X}, \mathbb{U}) and (\mathbb{Y}, \mathbb{V}). Then there is a unique linear map $L: \mathbb{U} \rightarrow \mathbb{V}$ such that $f(\mathbf{x}+\mathbf{v})=f(\mathbf{x})+L(\mathbf{v})$ for all $\boldsymbol{x} \in$ \mathbb{X} and $\mathbf{u} \in \mathbb{U}$.

Spaces

- Vector Spaces
- Affine Spaces
- Metric Spaces

Metric Spaces

A metric space (X, d) is a set \mathcal{X} equipped with a map d [BAE2012]: $\mathcal{X} \times$ $X \rightarrow \mathbb{R}$ that meets the following three criteria:

- Symmetry, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}: d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$.
- The triangle inequality, for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}: d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})$.
- Positivity, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}: d(\boldsymbol{x}, \mathbf{y}) \geq 0, d(\mathbf{x}, \mathbf{y})=0 \Leftrightarrow \mathbf{x}=\mathbf{y}$.

Let (\mathcal{X}, d) be a metric space. The open ball with radius $r>0$ and center $\mathbf{x} \in \mathcal{X}$ is the set $B(\mathbf{x}, r)=\{\mathbf{y} \in \mathcal{X} \mid d(\mathbf{x}, \boldsymbol{y})<r\}$.

Metric Spaces

Assume that \mathbb{X} is a metric space. A subset $\mathcal{U} \subseteq \mathbb{X}$ is called an open set if there for all points $\mathbf{x} \in \mathcal{U}$ exists an open ball $B(\mathbf{x}, r) \subseteq \mathcal{U}$.

An open set to the left with space for a ball around each point. Every ball around a point on the boundary is not found in a non open set to the right.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

